
Simulation

Lecture H2

Heuristic Methods:
Iterated Local Search, Simulated Annealing and Tabu Search

Author: Saeed Bastani
saeed.bastani@gmail.com

Teacher: Mohammadhassan Safavi
Mohammadhassan.safavi@eit.lth.se

May 2018

Thanks to Prof. Arne Løkketangen at Molde University College (Norway), for sharing his presentation slides

(http://kursinfo.himolde.no/forskningsgrupper/)

mailto:saeed.bastani@gmail.com

Outline

 Iterated Local Search (ILS)

 Simulated Annealing (SA)

 Tabu Search (TA)

3

Iterated Local Search

• It is a meta-heuristic

• It is a simple extension of Local Search

• Aims at escaping local optima

• Relies on controlled restarts

– Repeat (iterate) the same procedure over and
over again, possibly with different starting
solutions

4

Restarts (1)

• Given a Local Search procedure

– After a while the algorithm stops

• A Local Search stops in a local optimum

• SA stops when the temperature has reached some
lowest possible value (according to a cooling
schedule)

– What to do then?

• Restarts

– Repeat (iterate) the same procedure over and
over again, possibly with different starting
solutions

5

Restarts (2)

• If everything in the search is deterministic

(no randomization), it does no good to

restart

• If something can be changed…

– The starting solution

– The random neighbor selection

– Some controlling parameter (e.g., the

temperature)

• … then maybe restarting can lead us to a

different (and thus possibly better) solution

6

Iterated Local Search (1)

• We can look at a Local Search (using ”Best
Improvement”-strategy) as a function

– Input: a solution

– Output: a solution

– LS: S → S

– The set of local optima (with respect to the
neighborhood used) equals the range of the
function

• Applying the function to a solution returns a
locally optimal solution (possibly the same
as the input)

7

Iterated Local Search (2)

• A simple algorithm (Multi-start Local Search):

– Pick a random starting solution

– Perform Local Search

– Repeat (record the best local optimum encountered)

• Generates multiple independent local optima

• Theoretical guarantee: will encounter the global
optimum at some point (due to random starting
solution)

• Not very efficient: wasted iterations

8

Iterated Local Search (3)

• Iterated Local Search tries to benefit by
restarting close to a currently selected local
optimum

– Possibly quicker convergence to the next local
optimum (already quite close to a good
solution)

– Has potential to avoid unnecessary iterations in
the Local Search loop, or even unnecessary
complete restarts

• Uses information from current solution when
starting another Local Search

9

10

Pictorial Illustration of ILS

11

Principle of Iterated Local Search

• The Local Search algorithm defines a set of
locally optimal solutions

• The Iterated Local Search metaheuristic
searches among these solutions, rather than
in the complete solution space

– The search space of the ILS is the set of local
optima

– The search space of the LS is the solution space
(or a suitable subspace thereof)

12

A Basic Iterated Local Search
• Initial solution:

– Random solution

– Construction heuristic

• Local Search:
– Usually readily available (given some problem,

someone has already designed a local search, or it is not
too difficult to do so)

• Perturbation:
– A random move in a ”higher order neighborhood”

– If returning to the same solution (s*=current), then
increase the strength of the perturbation?

• Acceptance:
– Move only to a better local optimum

13

ILS Example: TSP (1)

• Given:

– Fully connected,
weighted graph

• Find:

– Shorted cycle
through all nodes

• Difficulty:

– NP-hard

• Interest:

– Standard
benchmark
problem

(Example stolen from slides by Thomas Stützle)

14

ILS Example: TSP (2)

• Initial solution: greedy heuristic

• Local Search: 2-opt

• Perturbation: double-bridge move (a specific 4-opt
move)

• Acceptance criterion: accept s* if f(s*) ≤
f(current)

15

ILS Example: TSP (3)

• Double-bridge move for TSP:

16

About Perturbations

• The strength of the perturbation is important

– Too strong: close to random restart

– Too weak: Local Search may undo perturbation

• The strength of the perturbation may vary at

run-time

• The perturbation should be complementary

to the Local Search

– E.g., 2-opt and Double-bridge moves for TSP

17

About the Acceptance Criterion

• Many variations:

– Accept s* only if f(s*)<f(current)

• Extreme intensification

• Random Descent in space of local optima

– Accept s* always

• Extreme diversification

• Random Walk in space of local optima

– Intermediate choices possible

• For TSP: high quality solutions known to cluster

– A good strategy would incorporate intensification

18

ILS Example: TSP (4)

• Δavg(x) = average
deviation from
optimum for method x

• RR: random restart

• RW: ILS with random
walk as acceptance
criterion

• Better: ILS with First
Improvement as
acceptance criterion

19

ILS: The Local Search

• The Local Search used in the Iterated Local
Search metaheuristic can be handled as a
”Black Box”

– If we have any improvement method, we can
use this as our Local Search and focus on the
other parts of the ILS

– Often though: a good Local Search gives a
good ILS

• Can use very complex improvement
methods, even such as other metaheuristics
(e.g., SA)

20

Guidelines for ILS
• The starting solution should to a large extent be

irrelevant for longer runs

• The Local Search should be as effective and fast

as possible

• The best choice of perturbation may depend

strongly on the Local Search

• The best choice of acceptance criterion depends

strongly on the perturbation and Local Search

• Particularly important: the interaction among

perturbation strength and the acceptance criterion

21

A Comment About ILS and

Metaheuristics
• After seeing Iterated Local Search, it is perhaps

easier to understand what a metaheuristic is

• ILS required that we have a Local Search
algorithm to begin with

– When a local optimum is reached, we perturb the
solution in order to escape from the local optimum

– We control the perturbation to get good behaviour:
finding an improved local optimum

• ILS ”controls” the Local Search, working as a
”meta”-heuristic (the Local Search is the
underlying heuristic)

– Meta- in the meaning ”more comprehensive”;
”transcending”

Simulated Annealing

22

23

Simulated Annealing

• A metaheuristic inspired by statistical
thermodynamics

– Based on an analogy with the cooling of
material in a heat bath

• Used in optimization for 20 years

• Very simple to implement

• A lot of literature

• Converges to the global optimum under
weak assumptions (- usually slowly)

24

Simulated Annealing - SA

• Metropolis’ algorithm (1953)

– Algorithm to simulate energy changes in

physical systems when cooling

• Kirkpatrick, Gelatt and Vecchi (1983)

– Suggested to use the same type of simulation to

look for good solutions in a COP

25

SA - Analogy

Thermodynamics

1. Configuration of

particles

2. System state

3. Energy

4. State change

5. Temperature

6. Final state

Discrete optimization

1. Solution

2. Feasible solution

3. Objective Function

4. Move to neighboring

solution

5. Control Parameter

6. Final Solution

26

Simulated Annealing

• Can be interpreted as a modified random

descent in the space of solutions

– Choose a random neighbor

– Improving moves are always accepted

– Deteriorating moves are accepted with a

probability that depends on the amount of the

deterioration and on the temperature (a

parameter that decreases with time)

• Can escape local optima

27

Move Acceptance in SA

• We assume a minimization problem

• Set Δ = Obj(random neighbor) – Obj(current
solution)

• If Δ < 0 accept (we have an improving move)

• Else accept if

• If the move is not accepted: try another random
neighbor

teRandom

)1,0(

28

SA - Structure

• Initial temperature t0 high

– (if random walk)

• Reduce t regularly

– need a cooling schedule

– if too fast stop in some local optimum too

early

– if too slow too slow convergence

• Might restart

• Choice of neighborhood structure is

important

29

SA

• Statistical guarantee that SA finds the
global optimum

• In practice this requires exponential (or)
running time

• The cooling schedule is vitally important

– Much research on this

– Static schedules: specified in advance

– Adaptive schedules: react to information from
the search

30

31

Choice of Move in SA

• Modified ”Random Descent”

• Select a random solution in the
neighborhood

• Accept this

– Unconditionally if better than current

– With a certain, finite probability if worse than
current

• The probability is controlled by a parameter
called the temperature

• Can escape from local optima

32

SA – Cooling Schedule

0t

te

 Random Walk

Random Descent

t

• Requires:

– Good choice of

cooling schedule

– Good stopping

criterion

– Faster cooling at

the beginning and

end

– Testing is

important

33

SA – Overall Structure
• Set the initial value of the control variable t (t0) to a

high value

• Do a certain number of iterations with the same
temperature

• Then reduce the temperature

• Need a ”cooling schedule”

• Stopping criterion – e.g. ”minimum temperature”
– Repetition is possible

• Solution quality and speed are dependent on the
choices made

• Choice of neighborhood structure is important

1 ()i it t

34

Statistical Analysis of SA

• Model: State transitions in the search space

• Transition probabilities [pij] (i,j are solutions)

• Only dependent on i and j: homogenous Markov
chain

• If all the transition probabilities are finite, then the
SA search will converge towards a stationary
distribution, independent of the starting solution.
– When the temperature approaches zero, this distribution

will approach a uniform distribution over the global optima

• Statistical guarantee that SA finds a global optimum

• But: exponential (or infinite) search time to guarantee
finding the optimum

35

SA in Practice (1)

• Heuristic algorithm

• Behaviour strongly dependent on the cooling

schedule

• Theory:

– An exponential number of iterations at each

temperature

• Practice:

– A large number of iterations at each temperature, few

temperatures

– A small number of iterations at each temperature, many

temperatures

36

SA in Practice (2)

• Geometric chain

– ti+1 = ti, i = 0,…,K

– <1 (0.8 - 0.99)

• Number of repetitions can be varied

• Adaptivity:

– Variable number of moves before the

temperature reduction

• Necessary to experiment

37

SA – General Decisions

• Cooling Schedule

– Based on maximum difference in the objective function

value of solutions, given a neighborhood

– Number of repetitions at each temperature

– Reduction rate,

• Adaptive number of repetitions

– more repetitions at lower temperatures

– number of accepted moves, but a maximum limit

• Very low temperatures are not necessary

• Cooling rate most important

38

SA – Problem Specific Decisons

• Important goals

– Response time

– Quality of the solution

• Important choices

– Search space

• Infeasible solutions – should they be included?

– Neighborhood structure

– Move evaluation function

• Use of penalty for violated constraints

• Approximation – if expensive to evaluate

– Cooling schedule

39

SA – Choice of Neighborhood

• Size

• Variation in size

• Topology

– Symmetry

– Connectivity

• Every solution can be reached from all the others

• Move evaluation function

– How expensive is it to calculate ?

40

SA - Speed

• Random choice of neighbor

– Reduction of the neighborhood

– Does not search through all the neighbors

• Cost of new candidate solution

– Difference without full evaluation

– Approximation (using surrogate functions)

• Move acceptance criterion

– Simplify

41

SA – Example: TSP

• Search space - (n-1)!/2

• Neighborhood size:

– 2-opt: n(n-1)/2

• Connected

• Simple representation of moves

• Natural cost function

• Difference in cost between solutions is easy to

calculate

• Generalization: k-Opt

42

SA – Fine Tuning

• Test problems

• Test bench

• Visualization of solutions

• Values for

– cost / penalties

– temperature

– number / proportion of accepted move

– iterations / CPU time

• Depencies between the SA-parameters

• The danger of overfitting

43

SA – Modifications and Extensions

• Probabilistic

– Altered acceptance probabilities

– Simplified cost functions

– Approximation of exponential function

• Can use a look-up table

– Use few temperatures

– Restart

• Deterministic

– Threshold Accepting, TA

– Cooling schedule

– Restart

44

SA – Combination with Other

Methods
• Preprocessing – find a good starting

solution

• Standard local search during the SA

– Every accepted move

– Every improving move

• SA in construction heuristics

45

Threshold Accepting

• Extensions/generalizations

– Deterministic annealing

– Threshold acceptance methods

– Why do we need randomization?

• Local search methods in which deterioration
of the objective up to a threshold is
accepted

– Accept if and only if Δ ≤ Θk

• Does not have proof of convergence, but in
practice results have been good compared to
SA

46

47

Generalized Hill-Climbing

Algorithms
• Generalization of SA

• General framework for modeling Local

Search Algorithms

– Can describe Simulated Annealing, Threshold

Accepting, and some simple forms of Tabu

Search

– Can also describe simple Local Search

variations, such as the ”First Improvement”,

”Best Improvement”, ”Random Walk” and

”Random Descent”-strategies

48

49

Generalized Hill-Climbing Algorithms

(2)
• The flexibility comes from

– Different ways of generating the neighbors

• Randomly

• Deterministically

• Sequentially, sorted by objective function value?

– Different acceptance criteria, Rk

• Based on a threshold (e.g., Threshold Accepting)

• Based on a temperature and difference in evaluation (e.g., SA)

• Other choices?

Tabu Search

50

51

Tabu

• The word tabu (or taboo) comes from

Tongan

– a language of Polynesia

– used by the aborigines of Tonga island to

indicate things that cannot be touched because

they are sacred

• Meaning of Tabu:

– ”Loaded with a dangerous, unnatural force”

– ”Banned due to moral, taste or risk”

52

Tabu Search

• Tabu Search:

– Cut off the search from parts of the search space

(temporarily)

– Guide the search towards other parts of the search by

using penalties and bonuses

• Uses principles for intelligent problem solving

• Uses structures that are exploring the search

history, without remembering everything

– Branch&Bound, A*: have complete memory

– Simulated Annealing: have no memory

53

Origin of Tabu Search

• Fred Glover 1986: ”Future paths for integer

programming and links to artificial

intelligence”

• Pierre Hansen 1986: ”The Steepest

Ascent/Mildest Descent Heuristic for

Combinatorial Optimization”

• Tabu coined by Glover

54

Main Ideas of Tabu Search

• Based on Local Search – LS

• Allows non-improving moves

– can exit local optima

• Uses extra memory to avoid looping, and to

diversify the search

• General strategy for controlling a LS, or

other “inner” heuristic

• Meta-Heuristic (Glover)

55

General Formulation

56

Some Critical Choices

• Choice of neighborhood, N

• Definition of the tabu memory

• How to select the candidate list

• The definition of the evaluation function

– Improvement in solution values

– Tabu criteria

– Aspiration criteria

– Long term strategies

• Diversification, intensification, …

57

Basic Tabu Search

• Local Search with “Best Improvement”

strategy

– Always select the best move

• But: some neighbors are tabu, and cannot

be selected

– Defined by the tabu criterion

– Tabu neighbors might be selected anyway if

they are deemed to be good enough

• Aspiration criterion

• Memory – tabu list

58

The Tabu Criterion (1)

• Since we (in basic TS) always select the
”Best Improvement”, how can we avoid
cycling between solutions?

• The answer is the tabu criterion:

– We are not allowed to move to solutions that
we have visited before

• They are tabu!

59

The Tabu Criterion (2)

• The basic job of the tabu criterion is thus to
avoid visiting the same solution more than
once

• How to accomplish this?

– Store all the solutions visited during the search,
and check that the new solution is not among
those previously visited

• Too time consuming!

– Find some way of (approximately) represent
those solutions that we have seen most recently,
and avoid returning immediately to those (or
similar) solutions

60

Tabu Attribute Selection
• Attribute

– A property of a solution or a move

• Can be based on any aspect of the solution that
are changed by a move

• Attributes are the basis for tabu restrictions

– We use them to represent the solutions visited
recently

• A move can change more than one attribute

– e.g. a 2-opt move in TSP involves 4 cities and 4
edges

61

Example – Attributes in TSP

• Attributes based on the edges

– A1: Edges added to the tour

– A2: Edges removed from the tour

• Move

– Exchanges two cities

– 4 edges removed

– 4 edges added

– Exchange(5,6)

• A1:(2,5),(5,7),(4,6),(6,1)

• A2:(2,6),(6,7),(4,5),(5,1)

4

1

6

5

7

2 3

4

1

6

5

7

2 3

62

TS – Tabu Criterion

• The tabu criterion is defined on selected attributes
of a move, (or the resulting solution if the move is
selected)

• It is very often a component of the solution

• The attribute is tabu for a certain amount of time
(i.e. iterations)
– This is called the Tabu Tenure (TT)

• The tabu criterion usually avoids the immediate
move reversal (or repetition)

• It also avoids the other (later) moves containing
the tabu attribute. This cuts off a much larger part
of the search space

63

TS – Attributes and Tabu Criteria

• Can have several tabu criteria on different attributes,
each with its own tabu tenure

– These can be disjunct

• If a move is to exchange a component (e.g. edge) in
the solution with a component not in the solution,
we can have the following tabu attributes and
criteria

– Edge added

– Edge dropped

– Edge added or edge dropped

– Edge added and edge dropped

64

Use of Attributes in Tabu

Restrictions
• Assume that the move from sk sk+1

involves the attribute A

• The usual tabu restriction:
– Do not allow moves that reverse the status for A

• The TSP example:
– Move: exchange cities 2 and 5: x2,5

– The tabu criterion could disallow:
• Moves involving 2 and 5

• Moves involving 2 or 5

• Moves involving 2

• Moves involving 5

65

Tabu Tenure (1)

• The tabu criterion will disallow moves that change

back the value of some attribute(s)

• For how long do we need to enforce this rule?

– For ever: the search stops because no changes are

allowed

– For too long: the search might become too limited (too

much of the search space is cut off due to the tabu

criterion)

– For too short: the search will still cycle

• The number of iterations for which the value of

the attribute remains tabu is called the Tabu

Tenure

66

Tabu Tenure (2)
• Earlier: The magical number 7, plus or minus 2

• Sometimes: in relation to problem size: n1/2

• Static (fixed) tabu tenure is not recommended

– The search gets more easily stuck in loops

• Dynamic tabu tenure is highly recommended

– Change the tabu tenure at certain intervals

– Can use uniform random selection in [tt1, tt2]

• This is usually called dynamic, even though it is not

• Reactive Tabu Search

– Detect stagnation increase TT

– When escaped reduce TT

68

Example: 0/1 Knapsack

• Flip-Neighborhood

• If the move is selecting an item to include in
the solution, then any move trying to
remove the same item is tabu for the
duration of the tabu tenure

• Similarly, an item thrown out is not allowed
in for the duration of the tabu tenure
iterations

• Here the attribute is the same as the whole
move

69

Flip Neighborhood

0000

0

0001

7

1100

16

1000

5

0100

11

0011

16

0010

9

0111

27

0101

18

1010

14

1011

21

1111

32

1001

12

1110

25

1101

23

0110

20

Current Solution

70

Flip Neighborhood

0000

0

0001

7

1100

16

1000

5

0100

11

0011

16

0010

9

0111

27

0101

18

1010

14

1011

21

1111

32

1001

12

1110

25

1101

23

0110

20

Neighbor

Neighbor
Infeas.

Variables flipped so far: none

71

Flip Neighborhood

0000

0

0001

7

1100

16

1000

5

0100

11

0011

16

0010

9

0111

27

0101

18

1010

14

1011

21

1111

32

1001

12

1110

25

1101

23

0110

20

Neighbor

Neighbor
Infeas.

Variables flipped so far: 3

72

Flip Neighborhood

0000

0

0001

7

1100

16

1000

5

0100

11

0011

16

0010

9

0111

27

0101

18

1010

14

1011

21

1111

32

1001

12

1110

25

1101

23

0110

20

Neighbor

Neighbor
Infeas.

Tabu!

Variables flipped so far: 3

73

Flip Neighborhood

0000

0

0001

7

1100

16

1000

5

0100

11

0011

16

0010

9

0111

27

0101

18

1010

14

1011

21

1111

32

1001

12

1110

25

1101

23

0110

20

Neighbor

Neighbor
Infeas.

Variables flipped so far: 3, 2

74

Flip Neighborhood

0000

0

0001

7

1100

16

1000

5

0100

11

0011

16

0010

9

0111

27

0101

18

1010

14

1011

21

1111

32

1001

12

1110

25

1101

23

0110

20

Neighbor

Neighbor
Infeas.

Variables flipped so far: 3, 2

Tabu!

Tabu!

75

Local and Global optima

Solution value

Solution space

76

Aspiration Criterion (1)

• The tabu criterion is usually not exact

– Some solutions that are not visited are nevertheless tabu

for some time

• Possible problem: one of the neighbors is very

good, but we cannot go there because some

attribute is tabu

• Solution: if we somehow know that the solution is

not visited before, we can allow ourselves to move

there anyway

– i.e., the solution is a new best solution: obviously we

have not visited it before!

77

Aspiration Criterion (2)
• Simplest: allow new best solutions, otherwise keep

tabu status

• Criteria based on
– Degree of feasibility

– Degree of change

– Feasibility level vs. Objective function value

– Objective function value vs. Feasibility level

– Distance between solutions
• E.g. hamming distance

– Influence of a move
• The level of structural change in a solution

• If all moves are tabu:
– Choose the best move, or choose randomly (in the candidate

list)

78

Frequency Based Memory

• Complementary to the short term memory (tabu status)

• Used for long term strategies in the search

• Frequency counters

– residency-based

– transition-based

• TSP-example

– how often has an edge been in the solution? (residency)

– how often has the edge status been changed? (transition)

79

TS - Diversification

• Basic Tabu Search often gets stuck in one area of

the search space

• Diversification is trying to get to somewhere else

• Historically random restarts have been very

popular

• Frequency-based diversification tries to be more

clever

– penalize elements of the solution that have appeared in

many other solutions visited

80

TS - Intensification

• To aggressively prioritize good solution

attributes in a new solution

• Usually based on frequency

• Can be based on elite solutions, or part of

them (vocabularies)

81

Intensification and

Diversification
• Intensification

– Aggressively prioritize attributes of good solutions in a

new solution

• Short term: based directly on the attributes

• Longer term: use of elite solutions, or parts of elite solutions

(vocabulary building)

• Diversification

– The active spreading of the search, by actively

prioritizing moves that gives solutions with new

composition of attributes

82

Intensification and Diversification

- simple mechanisms
• Use of frequency-based memory

• Based on a subset Sf of all the solutions visited (or
moves executed)

• Diversification:

– Choose Sf to contain a large part of the generated
solutions (e.g. all the local optima)

• Intensification:

– Choose Sf to be a small subset of elite solutions

• E.g., that have overlapping attributes

– Can have several such subset

• Partitioning, clustering-analysis

83

Whips and Carrots
• Used in the move evaluation function, in addition

to the change in the objective function value and
tabu status

• A carrot for intensification will be a whip for
diversification

• Diversification:
– Moves containing attributes with a high frequency

count are penalized

– TSP-example: g(x)=f(x)+w1ij

• Intensification:
– Moves to solutions containing attributes with a high

frequency among the elite solutions are encouraged

– TSP-example: g(x)=f(x)-w2ij

84

TS Example: TSP

• Representation: permutation vector

• Move: pairwise exchange

4

1

6

5

7

2 3

1 2 3 4 5 6 7

 , , 1,i j i j i j n

85

Move: Exchange in

permutation vector

4

1

6

5

7

2 3

2 5 7 3 4 6 1

2 6 7 3 4 5 1

4

1

6

5

7

2 3

Move: Exchange(5,6)

86

TSP Example

• Number of neighbors:

• For every neighbor: Move value

• Choice of tabu criterion

– Attribute: cities involved in a move

– Moves involving the same cities are tabu

– Tabu tenure = 3 (fixed)

• Aspiration criterion

– new best solution

2

n

1 1 1() (), ()k k k k kf i f i i N i

87

TSP Example: Data structure

2 3 4 5 6 7

1 0 2 0 0 0 0

2 0 3 0 0 0

3 0 0 0 0

4 1 0 0

5 0 0

6 0

• Data structure: triangular table, storing the

number of iterations until moves are legal

• Updated for every move

89

TSP Example: Iteration 0

2 3 4 5 6 7

1 0 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0

4 0 0 0

5 0 0

6 0

1 2 3 4 5 6 7

2 5 7 3 4 6 1

Tabu list:

Starting solution: Value = 234

90

TSP Example: Iteration 1

1 2 3 4 5 6 7

2 5 7 3 4 6 1

Current solution: Value = 234

1 2 3 4 5 6 7

2 4 7 3 5 6 1

After move: Value = 200

2 3 4 5 6 7

1 0 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0

4 3 0 0

5 0 0

6 0

Tabu list:

Exchange Value

5.4 -34

7.4 -4

3.6 -2

2.3 0

4.1 4

Candidate list:

91

TSP Example: Iteration 2

2 3 4 5 6 7

1 0 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0

4 3 0 0

5 0 0

6 0

Current solution: Value = 200
1 2 3 4 5 6 7

2 4 7 3 5 6 1

Tabu list:

Candidate list:
Exchange Value

3.1 -2

2.3 -1

3.6 1

7.1 2

6.1 4

Choose move (3,1)

92

TSP Example: Iteration 2

Exchange Value

3.1 -2

2.3 -1

3.6 1

7.1 2

6.1 4

Current solution: Value = 200
1 2 3 4 5 6 7

2 4 7 3 5 6 1

Tabu list:

Candidate list:
Choose move (3,1)

2 3 4 5 6 7

1 0 3 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0

4 2 0 0

5 0 0

6 0

Update tabu list

93

TSP Example: Iteration 3
Current solution: Value = 198

Tabu list:

Candidate list:

Choose move (2,4)

2 3 4 5 6 7

1 0 3 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0

4 2 0 0

5 0 0

6 0

1 2 3 4 5 6 7

2 4 7 1 5 6 3

Exchange Value

1.3 2

2.4 4

7.6 6

4.5 7

5.3 9

Tabu!

Worsening move!

94

TSP Example: Iteration 3
Current solution: Value = 198

Tabu list:

Candidate list:

Choose move (2,4)

1 2 3 4 5 6 7

2 4 7 1 5 6 3

Exchange Value

1.3 2

2.4 4

7.6 6

4.5 7

5.3 9

Tabu!

Worsening move!

2 3 4 5 6 7

1 0 2 0 0 0 0

2 0 3 0 0 0

3 0 0 0 0

4 1 0 0

5 0 0

6 0

Update

tabu list

95

TSP Example: Iteration 4
Current solution: Value = 202

Tabu list:

Candidate list:

1 2 3 4 5 6 7

4 2 7 1 5 6 3

Exchange Value

4.5 -6

5.3 -2

7.1 0

1.3 3

2.6 6

Tabu!

Choose move (4,5)

Aspiration!

2 3 4 5 6 7

1 0 2 0 0 0 0

2 0 3 0 0 0

3 0 0 0 0

4 1 0 0

5 0 0

6 0

96

Observations

• In the example 3 out of 21 moves are

prohibited

• More restrictive tabu effect can be achieved

by

– Increasing the tabu tenure

– Using stronger tabu-restrictions

• Using OR instead of AND for the 2 cities in a move

97

TSP Example: Frequency Based

Long Term Memory

1 2 3 4 5 6 7

1 2

2 3

3 3

4 1 5 1

5 4 4

6 1 2

7 4 3

Tabu-status (closeness in time)

Frequency of moves

• Typically used to diversify the search

• Can be activated after a period with no improvement

• Often penalize attributes of moves that have been selected
often

References

• Book

– Modern heuristic techniques for combinatorial

problems/ by Colin R. Reeves

• Papers:

– The theory and practice of simulated annealing/

by Darrall Henderson, Sheldon H. Jacobson,

and Alan W. Johnson

– An introduction to Tabu Search/ by Michel

Gendreau

98

