Simulation

Lecture H2

Heuristic Methods: Iterated Local Search, Simulated Annealing and Tabu Search

> Author: Saeed Bastani <u>saeed.bastani@gmail.com</u> Teacher: Mohammadhassan Safavi Mohammadhassan.safavi@eit.lth.se May 2018

Thanks to Prof. Arne Løkketangen at Molde University College (Norway), for sharing his presentation slides (http://kursinfo.himolde.no/forskningsgrupper/)

Outline

✓ Iterated Local Search (ILS)
✓ Simulated Annealing (SA)
✓ Tabu Search (TA)

Iterated Local Search

- It is a meta-heuristic
- It is a simple extension of Local Search
- Aims at escaping local optima
- Relies on controlled restarts
 - Repeat (iterate) the same procedure over and over again, possibly with different starting solutions

Restarts (1)

- Given a Local Search procedure
 - After a while the algorithm stops
 - A Local Search stops in a local optimum
 - SA stops when the temperature has reached some lowest possible value (according to a cooling schedule)
 - What to do then?
- Restarts
 - Repeat (iterate) the same procedure over and over again, possibly with different starting solutions

Restarts (2)

- If everything in the search is deterministic (no randomization), it does no good to restart
- If something can be changed...
 - The starting solution
 - The random neighbor selection
 - Some controlling parameter (e.g., the temperature)
- ... then maybe restarting can lead us to a different (and thus possibly better) solution

Iterated Local Search (1)

- We can look at a Local Search (using "Best Improvement"-strategy) as a function
 - Input: a solution
 - Output: a solution
 - $-LS: S \rightarrow S$
 - The set of local optima (with respect to the neighborhood used) equals the range of the function
- Applying the function to a solution returns a locally optimal solution (possibly the same as the input)

Iterated Local Search (2)

- A simple algorithm (Multi-start Local Search):
 - Pick a random starting solution
 - Perform Local Search
 - Repeat (record the best local optimum encountered)
- Generates multiple independent local optima
- Theoretical guarantee: will encounter the global optimum at some point (due to random starting solution)
- Not very efficient: wasted iterations

Iterated Local Search (3)

- Iterated Local Search tries to benefit by restarting close to a currently selected local optimum
 - Possibly quicker convergence to the next local optimum (already quite close to a good solution)
 - Has potential to avoid unnecessary iterations in the Local Search loop, or even unnecessary complete restarts
 - Uses information from current solution when starting another Local Search

Iterated Local Search I

- 1: input: starting solution, s_0
- 2: input: Local Search procedure, LS
- 3: $current \leftarrow LS(s_0)$
- 4: while stopping criterion not met do
- 5: $s \leftarrow \text{perturbation of } current \text{ based on search history}$
- $6: \quad s^* \Leftarrow LS(s)$
- 7: if s^* is accepted as the new current solution then
- 8: $current \leftarrow s^*$
- 9: end if

10: end while

Pictorial Illustration of ILS

solution space S

Principle of Iterated Local Search

- The Local Search algorithm defines a set of locally optimal solutions
- The Iterated Local Search metaheuristic searches among these solutions, rather than in the complete solution space
 - The search space of the ILS is the set of local optima
 - The search space of the LS is the solution space (or a suitable subspace thereof)

A Basic Iterated Local Search

- Initial solution:
 - Random solution
 - Construction heuristic
- Local Search:
 - Usually readily available (given some problem, someone has already designed a local search, or it is not too difficult to do so)
- Perturbation:
 - A random move in a "higher order neighborhood"
 - If returning to the same solution (*s*=current*), then increase the strength of the perturbation?
- Acceptance:
 - Move only to a better local optimum

ILS Example: TSP (1)

- Given:
 - Fully connected, weighted graph
- Find:
 - Shorted cycle through all nodes
- Difficulty: – NP-hard
- Interest:
 - Standard
 benchmark
 problem

(Example stolen from slides by Thomas Stützle)

ILS Example: TSP (2)

- Initial solution: greedy heuristic
- Local Search: 2-opt

- Perturbation: double-bridge move (a specific 4-opt move)
- Acceptance criterion: accept s* if f(s*) ≤ f(current)

ILS Example: TSP (3)

• Double-bridge move for TSP:

15

About Perturbations

• The strength of the perturbation is important

- Too strong: close to random restart

- Too weak: Local Search may undo perturbation
- The strength of the perturbation may vary at run-time
- The perturbation should be complementary to the Local Search

– E.g., 2-opt and Double-bridge moves for TSP

About the Acceptance Criterion

- Many variations:
 - Accept s* only if f(s*)<f(current)</p>
 - Extreme intensification
 - Random Descent in space of local optima
 - Accept s* always
 - Extreme diversification
 - Random Walk in space of local optima
 - Intermediate choices possible
- For TSP: high quality solutions known to cluster
 - A good strategy would incorporate intensification

ILS Example: TSP (4)

		instance	$\Delta_{avg}(RR)$	$\Delta_{avg}({\tt RW})$	$\Delta_{avg}(\texttt{Better})$
•	$\Delta_{avg}(x) = average$	kroA100	0.0	0.0	0.0
	deviation from	d198	0.003	0.0	0.0
	optimum for method λ	lin318	0.66	0.30	0.12
•	RR: random restart	pcb442	0.83	0.42	0.11
		rat783	2.46	1.37	0.12
•	RW: ILS with random	pr1002	2.72	1.55	0.14
	walk as acceptance	d1291	2.21	0.59	0.28
	criterion	fl1577	10.3	1.20	0.33
•	Better: ILS with First	pr2392	4.38	2.29	0.54
	Improvement as	pcb3038	4.21	2.62	0.47
	acceptance criterion	fl3795	38.8	1.87	0.58
	L	rl5915	6.90	2.13	0.66

ILS: The Local Search

- The Local Search used in the Iterated Local Search metaheuristic can be handled as a "Black Box"
 - If we have any improvement method, we can use this as our Local Search and focus on the other parts of the ILS
 - Often though: a good Local Search gives a good ILS
- Can use very complex improvement methods, even such as other metaheuristics (e.g., SA)

Guidelines for ILS

- The starting solution should to a large extent be irrelevant for longer runs
- The Local Search should be as effective and fast as possible
- The best choice of perturbation may depend strongly on the Local Search
- The best choice of acceptance criterion depends strongly on the perturbation and Local Search
- Particularly important: the interaction among perturbation strength and the acceptance criterion

A Comment About ILS and Metaheuristics

- After seeing Iterated Local Search, it is perhaps easier to understand what a metaheuristic is
- ILS required that we have a Local Search algorithm to begin with
 - When a local optimum is reached, we perturb the solution in order to escape from the local optimum
 - We control the perturbation to get good behaviour: finding an improved local optimum
- ILS "controls" the Local Search, working as a "meta"-heuristic (the Local Search is the underlying heuristic)
 - Meta- in the meaning "more comprehensive";
 "transcending"

Simulated Annealing

Simulated Annealing

- A metaheuristic inspired by statistical thermodynamics
 - Based on an analogy with the cooling of material in a heat bath
- Used in optimization for 20 years
- Very simple to implement
- A lot of literature
- Converges to the global optimum under weak assumptions (- usually slowly)

Simulated Annealing - SA

- Metropolis' algorithm (1953)
 - Algorithm to simulate energy changes in physical systems when cooling
- Kirkpatrick, Gelatt and Vecchi (1983)
 - Suggested to use the same type of simulation to look for good solutions in a COP

SA - Analogy

Thermodynamics

- 1. Configuration of particles
- 2. System state
- 3. Energy
- 4. State change
- 5. Temperature
- 6. Final state

Discrete optimization

1. Solution

- 2. Feasible solution
- 3. Objective Function
- 4. Move to neighboring solution
- 5. Control Parameter
- 6. Final Solution

Simulated Annealing

- Can be interpreted as a modified random descent in the space of solutions
 - Choose a random neighbor
 - Improving moves are always accepted
 - Deteriorating moves are accepted with a probability that depends on the amount of the deterioration and on the *temperature* (a parameter that decreases with time)
- Can escape local optima

Move Acceptance in SA

- We assume a minimization problem
- Set $\Delta = Obj(random neighbor) Obj(current solution)$
- If $\Delta < 0 \rightarrow$ accept (we have an improving move)
- Else accept if

 $Random(0,1) < e^{-\frac{\Delta}{t}}$

• If the move is not accepted: try another random neighbor

SA - Structure

- Initial temperature t_0 high
 - (if $\infty \rightarrow$ random walk)
- Reduce *t* regularly
 - need a *cooling schedule*
 - if too fast → stop in some local optimum too early

28

- if too slow \rightarrow too slow convergence
- Might restart
- Choice of neighborhood structure is important

SA

- Statistical guarantee that SA finds the global optimum
- In practice this requires exponential (or ∞) running time
- The cooling schedule is vitally important
 - Much research on this
 - Static schedules: specified in advance
 - Adaptive schedules: react to information from the search

Simulated Annealing

- 1: input: starting solution, s_0
- 2: input: neighborhood operator, ${\cal N}$
- 3: input: evaluation function, f
- 4: input: the cooling schedule, t_k
- 5: input: the number of iterations for each temperature, ${\cal M}_k$
- 6: $current \Leftarrow s_0$
- 7: $k \Leftarrow 0$
- 8: while stopping criterion not met do
- 9: $m \Leftarrow 0$
- 10: while $m < M_k$ do
- 11: $s \Leftarrow \text{randomly selected solution from } N(current)$
- 12: if $f(s) \leq f(current)$ then
- 13: $current \Leftarrow s$
- 14: else
- 15: $\Delta \Leftarrow f(s) f(current)$
- 16: $\xi \Leftarrow$ a random number, uniformly drawn from [0, 1]
- 17: if $\xi \leq e^{-\Delta/t_k}$ then
- 18: $current \Leftarrow s$
- 19: end if
- 20: end if
- 21: $m \Leftarrow m + 1$
- 22: end while
- 23: $k \Leftarrow k + 1$
- 24: end while

Choice of Move in SA

- Modified "Random Descent"
- Select a random solution in the neighborhood
- Accept this
 - Unconditionally if better than current
 - With a certain, finite probability if worse than current
- The probability is controlled by a parameter called the *temperature*
- Can escape from local optima

SA – Cooling Schedule

- Requires:
 - Good choice of cooling schedule
 - Good stopping criterion
 - Faster cooling at the beginning and end
 - Testing is important

SA – Overall Structure

- Set the initial value of the control variable t (t_0) to a high value
- Do a certain number of iterations with the same temperature
- Then reduce the temperature $t_{i+1} = \alpha(t_i)$
- Need a "cooling schedule"
- Stopping criterion e.g. "minimum temperature"
 Repetition is possible
- Solution quality and speed are dependent on the choices made
- Choice of neighborhood structure is important

Statistical Analysis of SA

- Model: State transitions in the search space
- Transition probabilities [p_{ij}] (i,j are solutions)
- Only dependent on i and j: homogenous Markov chain
- If all the transition probabilities are finite, then the SA search will converge towards a stationary distribution, independent of the starting solution.
 - When the temperature approaches zero, this distribution will approach a uniform distribution over the global optima
- Statistical guarantee that SA finds a global optimum
- But: exponential (or infinite) search time to guarantee finding the optimum

SA in Practice (1)

- Heuristic algorithm
- Behaviour strongly dependent on the cooling schedule
- Theory:
 - An exponential number of iterations at each temperature
- Practice:
 - A large number of iterations at each temperature, few temperatures
 - A small number of iterations at each temperature, many temperatures

SA in Practice (2)

• Geometric chain

 $-t_{i+1} = \alpha t_i, i = 0,...,K$ $-\alpha < 1 (0.8 - 0.99)$

- Number of repetitions can be varied
- Adaptivity:
 - Variable number of moves before the temperature reduction
- Necessary to experiment
SA – General Decisions

- Cooling Schedule
 - Based on maximum difference in the objective function value of solutions, given a neighborhood
 - Number of repetitions at each temperature
 - Reduction rate, α
- Adaptive number of repetitions
 - more repetitions at lower temperatures
 - number of accepted moves, but a maximum limit
- Very low temperatures are not necessary
- Cooling rate most important

SA – Problem Specific Decisons

- Important goals
 - Response time
 - Quality of the solution
- Important choices
 - Search space
 - Infeasible solutions should they be included?
 - Neighborhood structure
 - Move evaluation function
 - Use of penalty for violated constraints
 - Approximation if expensive to evaluate
 - Cooling schedule

SA – Choice of Neighborhood

- Size
- Variation in size
- Topology
 - Symmetry
 - Connectivity
 - Every solution can be reached from all the others
- Move evaluation function
 - How expensive is it to calculate ?

SA - Speed

- Random choice of neighbor
 - Reduction of the neighborhood
 - Does not search through all the neighbors
- Cost of new candidate solution
 - Difference without full evaluation
 - Approximation (using surrogate functions)
- Move acceptance criterion
 Simplify

SA – Example: TSP

- Search space (n-1)!/2
- Neighborhood size:
 - -2-opt: n(n-1)/2
- Connected
- Simple representation of moves
- Natural cost function
- Difference in cost between solutions is easy to calculate
- Generalization: k-Opt

SA – Fine Tuning

- Test problems
- Test bench
- Visualization of solutions
- Values for
 - cost / penalties
 - temperature
 - number / proportion of accepted move
 - iterations / CPU time
- Depencies between the SA-parameters
- The danger of overfitting

SA – Modifications and Extensions

- Probabilistic
 - Altered acceptance probabilities
 - Simplified cost functions
 - Approximation of exponential function
 - Can use a look-up table
 - Use few temperatures
 - Restart
- Deterministic
 - Threshold Accepting, TA
 - Cooling schedule
 - Restart

SA – Combination with Other Methods

- Preprocessing find a good starting solution
- Standard local search during the SA
 - Every accepted move
 - Every improving move
- SA in construction heuristics

Threshold Accepting

- Extensions/generalizations
 - Deterministic annealing
 - Threshold acceptance methods
 - Why do we need randomization?
- Local search methods in which deterioration of the objective up to a *threshold* is accepted

– Accept if and only if $\Delta \leq \Theta_k$

• Does not have proof of convergence, but in practice results have been good compared to SA

Threshold Accepting

- 1: input: starting solution, s_0
- 2: input: neighborhood operator, N
- 3: input: evaluation function, f
- 4: input: threshold, Θ
- 5: $current \Leftarrow s_0$
- 6: while stopping criterion not met do
- 7: $s \Leftarrow$ randomly selected solution from N(current)

8:
$$\Delta \Leftarrow f(s) - f(current)$$

- 9: if $\Delta < \Theta$ then
- 10: $current \Leftarrow s$
- 11: end if

12: end while

Generalized Hill-Climbing Algorithms

- Generalization of SA
- General framework for modeling Local Search Algorithms
 - Can describe Simulated Annealing, Threshold Accepting, and some simple forms of Tabu Search
 - Can also describe simple Local Search variations, such as the "First Improvement", "Best Improvement", "Random Walk" and "Random Descent"-strategies

Generalized Hill-Climbing Algorithm

- 1: input: starting solution, s_0
- 2: input: neighborhood operator, N
- 3: input: evaluation function, f
- 4: input: outer loop bound, K, inner loop bounds M_k , k = 1, 2, ..., K
- 5: input: hill-climbing (random) functions $R_k : S \times S \to \mathbb{R} \cup \{-\infty, +\infty\}$
- 6: $current \Leftarrow s_0$
- 7: $k \Leftarrow 1$
- 8: $m \Leftarrow 1$
- 9: while $k \leq K$ do
- 10: while $m \le M_k$ do
- 11: $s \Leftarrow$ solution generated from N(current)

12:
$$\Delta \Leftarrow f(s) - f(current)$$

13: **if**
$$R_k(current, s) \ge \Delta$$
 then

14:
$$current \Leftarrow s$$

15: end if

16:
$$m \Leftarrow m + 1$$

17: end while

18:
$$k \Leftarrow k+1$$

19: end while

Generalized Hill-Climbing Algorithms

- The flexibility comes from
 - Different ways of generating the neighbors
 - Randomly
 - Deterministically
 - Sequentially, sorted by objective function value?
 - Different acceptance criteria, R_k
 - Based on a threshold (e.g., Threshold Accepting)
 - Based on a temperature and difference in evaluation (e.g., SA)
 - Other choices?

Tabu Search

Tabu

- The word tabu (or taboo) comes from Tongan
 - a language of Polynesia
 - used by the aborigines of Tonga island to indicate things that cannot be touched because they are sacred
- Meaning of Tabu:
 - "Loaded with a dangerous, unnatural force"
 - "Banned due to moral, taste or risk"

Tabu Search

- Tabu Search:
 - Cut off the search from parts of the search space (temporarily)
 - Guide the search towards other parts of the search by using penalties and bonuses
- Uses principles for intelligent problem solving
- Uses structures that are exploring the search history, without remembering everything
 - Branch&Bound, A*: have complete memory
 - Simulated Annealing: have no memory

Origin of Tabu Search

- Fred Glover 1986: "Future paths for integer programming and links to artificial intelligence"
- Pierre Hansen 1986: "The Steepest Ascent/Mildest Descent Heuristic for Combinatorial Optimization"
- *Tabu* coined by Glover

Main Ideas of Tabu Search

- Based on Local Search LS
- Allows non-improving moves

 can exit local optima
- Uses extra memory to avoid looping, and to diversify the search
- General strategy for controlling a LS, or other "inner" heuristic
- *Meta-Heuristic* (Glover)

General Formulation

Tabu Search

- 1: $current \Leftarrow$ a starting solution
- 2: Initialize tabu memory
- 3: while stopping criterion not met do
- 4: Find a list of candidate moves, a subset of N(current)
- 5: Select the solution, s, in the candidate list that minimizes an extended cost function
- 6: Update tabu memory and perform the move: $current \leftarrow s$
- 7: end while

Some Critical Choices

- Choice of neighborhood, N
- Definition of the tabu memory
- How to select the candidate list
- The definition of the evaluation function
 - Improvement in solution values
 - Tabu criteria
 - Aspiration criteria
 - Long term strategies
 - Diversification, intensification, ...

Basic Tabu Search

- Local Search with "Best Improvement" strategy
 - Always select the best move
- But: some neighbors are *tabu*, and cannot be selected
 - Defined by the *tabu criterion*
 - Tabu neighbors might be selected anyway if they are deemed to be good enough
 - Aspiration criterion
- Memory tabu list

The Tabu Criterion (1)

- Since we (in basic TS) always select the "Best Improvement", how can we avoid cycling between solutions?
- The answer is the tabu criterion:
 - We are not allowed to move to solutions that we have visited before
 - They are tabu!

The Tabu Criterion (2)

- The basic job of the tabu criterion is thus to avoid visiting the same solution more than once
- How to accomplish this?
 - Store all the solutions visited during the search, and check that the new solution is not among those previously visited
 - Too time consuming!
 - Find some way of (approximately) represent those solutions that we have seen most recently, and avoid returning immediately to those (or similar) solutions

Tabu Attribute Selection

• Attribute

– A property of a solution or a move

- Can be based on any aspect of the solution that are changed by a move
- Attributes are the basis for tabu restrictions
 - We use them to represent the solutions visited recently
- A move can change more than one attribute
 - e.g. a 2-opt move in TSP involves 4 cities and 4 edges

Example – Attributes in TSP/

- Attributes based on the edges
 - A1: Edges added to the tour
 - A2: Edges removed from the tour

• Move

- Exchanges two cities
- 4 edges removed
- 4 edges added
- Exchange(5,6)
 - A1:(2,5),(5,7),(4,6),(6,1)
 - A2:(2,6),(6,7),(4,5),(5,1)

TS – Tabu Criterion

- The tabu criterion is defined on selected attributes of a move, (or the resulting solution if the move is selected)
- It is very often a component of the solution
- The attribute is tabu for a certain amount of time (i.e. iterations)
 - This is called the *Tabu Tenure* (**TT**)
- The tabu criterion usually avoids the immediate move reversal (or repetition)
- It also avoids the other (later) moves containing the tabu attribute. This cuts off a much larger part of the search space

TS – Attributes and Tabu Criteria

- Can have several tabu criteria on different attributes, each with its own tabu tenure
 - These can be disjunct
- If a move is to exchange a component (e.g. *edge*) *in* the solution with a component *not in* the solution, we can have the following tabu attributes and criteria
 - Edge added
 - Edge dropped
 - Edge added or edge dropped
 - Edge added and edge dropped

Use of Attributes in Tabu Restrictions

- Assume that the move from $s_k \rightarrow s_{k+1}$ involves the attribute *A*
- The usual tabu restriction:
 - Do not allow moves that reverse the status for A
- The TSP example:
 - Move: exchange cities 2 and 5: $x_{2,5}$
 - The tabu criterion could disallow:
 - Moves involving 2 and 5
 - Moves involving 2 or 5
 - Moves involving 2
 - Moves involving 5

Tabu Tenure (1)

- The tabu criterion will disallow moves that change back the value of some attribute(s)
- For how long do we need to enforce this rule?
 - For ever: the search stops because no changes are allowed
 - For too long: the search might become too limited (too much of the search space is cut off due to the tabu criterion)
 - For too short: the search will still cycle
- The number of iterations for which the value of the attribute remains tabu is called the *Tabu Tenure*

Tabu Tenure (2)

- Earlier: The magical number 7, plus or minus 2
- Sometimes: in relation to problem size: n^{1/2}
- Static (fixed) tabu tenure is not recommended
 The search gets more easily stuck in loops
- Dynamic tabu tenure is highly recommended
 - Change the tabu tenure at certain intervals
 - Can use uniform random selection in $[tt_1, tt_2]$
 - This is usually called dynamic, even though it is not
- Reactive Tabu Search
 - Detect stagnation \rightarrow increase TT
 - When escaped \rightarrow reduce TT

Example: 0/1 Knapsack

- Flip-Neighborhood
- If the move is selecting an item to include in the solution, then any move trying to remove the same item is *tabu* for the duration of the *tabu tenure*
- Similarly, an item thrown out is not allowed in for the duration of the tabu tenure iterations
- Here the attribute is the same as the whole move

Flip Neighborhood

Flip Neighborhood Neighbor Infeas. Variables flipped so far: none leighbor

Flip Neighborhood Neighbor Infeas. Variables flipped so far: 3 leighbor

Flip Neighborhood

Neighbor

Infeas.

leighbor

Variables flipped so far: 3

Flip Neighborhood

Neighbor

Infeas.

leighbor

Variables flipped so far: 3, 2

Flip Neighborhood

Neighbor

Infeas.

leighbor

Variables flipped so far: 3, 2

Local and Global optima

Solution value

Solution space

Aspiration Criterion (1)

- The tabu criterion is usually not exact
 - Some solutions that are not visited are nevertheless tabu for some time
- Possible problem: one of the neighbors is very good, but we cannot go there because some attribute is tabu
- Solution: if we somehow know that the solution is not visited before, we can allow ourselves to move there anyway
 - i.e., the solution is a new best solution: obviously we have not visited it before!

Aspiration Criterion (2)

- Simplest: allow new best solutions, otherwise keep tabu status
- Criteria based on
 - Degree of feasibility
 - Degree of change
 - Feasibility level vs. Objective function value
 - Objective function value vs. Feasibility level
 - Distance between solutions
 - E.g. hamming distance
 - Influence of a move
 - The level of structural change in a solution
- If all moves are tabu:
 - Choose the best move, or choose randomly (in the candidate list)

Frequency Based Memory

- Complementary to the short term memory (tabu status)
- Used for long term strategies in the search
- Frequency counters
 - residency-based
 - transition-based
- TSP-example
 - how often has an edge been in the solution? (*residency*)
 - how often has the edge status been changed? (*transition*)

TS - Diversification

- Basic Tabu Search often gets stuck in one area of the search space
- Diversification is trying to get to somewhere else
- Historically random restarts have been very popular
- Frequency-based diversification tries to be more clever
 - penalize elements of the solution that have appeared in many other solutions visited

TS - Intensification

- To aggressively prioritize good solution attributes in a new solution
- Usually based on frequency
- Can be based on elite solutions, or part of them (vocabularies)

Intensification and Diversification

- Intensification
 - Aggressively prioritize attributes of good solutions in a new solution
 - Short term: based directly on the attributes
 - Longer term: use of elite solutions, or parts of elite solutions (vocabulary building)
- Diversification
 - The active spreading of the search, by actively prioritizing moves that gives solutions with new composition of attributes

Intensification and Diversification - simple mechanisms

- Use of frequency-based memory
- Based on a subset S_f of all the solutions visited (or moves executed)
- Diversification:
 - Choose S_f to contain a large part of the generated solutions (e.g. all the local optima)
- Intensification:
 - Choose S_f to be a small subset of *elite* solutions
 - E.g., that have overlapping attributes
 - Can have several such subset
 - Partitioning, clustering-analysis

Whips and Carrots

- Used in the move evaluation function, in addition to the change in the objective function value and tabu status
- A carrot for intensification will be a whip for diversification
- Diversification:
 - Moves containing attributes with a high frequency count are penalized
 - TSP-example: $g(x) = f(x) + w_1 \Sigma \omega_{ij}$
- Intensification:
 - Moves to solutions containing attributes with a high frequency among the elite solutions are encouraged
 - TSP-example: $g(x) = f(x) w_2 \Sigma \gamma_{ij}$

TS Example: TSP

- Representation: permutation vector
- Move: pairwise exchange

$$(i, j)$$
 $i < j$ $i, j \in [1, n]$
1 2 3 4 5 6 7

TSP Example

- Number of neighbors: $\binom{n}{2}$
- For every neighbor: *Move value*

 $\Delta_{k+1} = f(i_{k+1}) - f(i_k), \qquad i_{k+1} \in N(i_k)$

- Choice of tabu criterion
 - Attribute: cities involved in a move
 - Moves involving the same cities are tabu
 - Tabu tenure = 3 (fixed)
- Aspiration criterion
 - new best solution

TSP Example: Data structure

- Data structure: triangular table, storing the number of iterations until moves are legal
- Updated for every move

	2		3	4		5	6	7
1	0		2	0		0	0	0
		2	0	3		0	0	0
				3 0		0	0	0
					4	1	0	0
						5	0	0
							6	0

Starting solution: Value = 234

1	2	3	4	5	6	7
2	5	7	3	4	6	1

	2		3	4		5	6	7
1	0		0	0		0	0	0
		2	0	0		0	0	0
			3	6 0		0	0	0
					4	0	0	0
						5	0	0
							6	0

Current solution: Value = 200

1	2	3	4	5	6	7
2	4	7	3	5	6	1

\sim		-	
('at	ndida	te l	ict
Cai	Iuiua		131.

Exchange	Value
3.1	-2
2.3	-1
3.6	1
7.1	2
6.1	4

	2		3	4		5	6	7
1	0		0	0		0	0	0
		2	0	0		0	0	0
			3	0		0	0	0
					4	3	0	0
						5	0	0
							6	0

Curr	Current solution: Value = 200										
1	2	3	4	5	6	7					
2	4	7	3	5	6	1					

	2		3		4	5	6	7
1	0		3		0	0	0	0
		2	0		0	0	0	0
				3	0	0	0	0
					4	2	0	0
						5	0	0
							6	0

Current solution: Value = 198

1	2	3	4	5	6	7
2	4	7	1	5	6	3

Tabu! Value Exchange Candidate list: 1.3 2 Choose move (2,4)4 2.4 7.6 6 Worsening move! 7 4.5 9 5.3

	2		3		4	5	6	7
1	0		3		0	0	0	0
		2	0		0	0	0	0
				3	0	0	0	0
					4	2	0	0
						5	0	0
							6	0

Tabu!

Choose move (2,4)

Worsening move!

Current solution: Value = 198

1	2	3	4	5	6	7
2	4	7	1	5	6	3

Candidate list: Excha

Exchange	value	
1.3	2	*
2.4	4	•
7.6	6	
4.5	7	
5.3	9	

	2		3		4	5	6	7	
1	0		2		0	0	0	0	
		2	0		3	0	0	0	
				3	0	0	0	0	
					4	1	0	0	
						5	5 0	0	
							6	0	

Current solution: Value = 202

1	2	3	4	5	6	7
4	2	7	1	5	6	3

Candidate list:

Exchange	Value	Tabul
4.5	-6	
5.3	-2	\sim Choose move (4.5)
7.1	0	
1.3	3	Aspiration!
2.6	6	

	2		3		4	5	6	7
1	0		2		0	0	0	0
		2	0		3	0	0	0
				3	0	0	0	0
					4	1	0	0
						Ę	5 0	0
							6	0

Observations

- In the example 3 out of 21 moves are prohibited
- More restrictive tabu effect can be achieved by
 - Increasing the tabu tenure
 - Using stronger tabu-restrictions
 - Using OR instead of AND for the 2 cities in a move

TSP Example: Frequency Based Long Term Memory

- Typically used to diversify the search
- Can be activated after a period with no improvement
- Often penalize attributes of moves that have been selected often

	1	2	3	4	5	6	7	
1			2					
2				3				
3	3							
4	1	5			1			
5		4		4				
6			1		2			
7	4			3				

Tabu-status (closeness in time)

Frequency of moves

References

• Book

 Modern heuristic techniques for combinatorial problems/ by Colin R. Reeves

- Papers:
 - The theory and practice of simulated annealing/ by Darrall Henderson, Sheldon H. Jacobson, and Alan W. Johnson
 - An introduction to Tabu Search/ by Michel Gendreau