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How can we solve problems?

• It can sometimes be advantageous to 

distinguish between three groups of 

methods for finding solutions to our abstract 

problems

• (Exact) Algorithms

• Approximation Algorithms

• Heuristic Algorithms
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(Exact) Algorithms

• An algorithm is sometimes described as a 

set of instructions that will result in the 

solution to a problem when followed 

correctly

• Unless otherwise stated, an algorithm is 

assumed to give the optimal solution to an 

optimization problem

– That is, not just a good solution, but the best

solution
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Approximation Algorithms

• Approximation algorithms (as opposed to 
exact algorithms) do not guarantee to find 
the optimal solution

• However, there is a bound on the quality

– E.g., for a maximization problem, the algorithm 
can guarantee to find a solution whose value is 
at least half that of the optimal value

• We will not see many approximation 
algorithms here, but mention them as a 
contrast to heuristic algorithms
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Heuristic Algorithms
• Heuristic algorithms do not guarantee to 

find the optimal solution, however:

– Heuristic algorithms do not even necessarily 
have a bound on how bad they can perform

• That is, they can return a solution that is arbitrarily 
bad compared to the optimal solution

– However, in practice, heuristic algorithms 
(heuristics for short) have proven successful

– Most of the following lectures of the course 
will focus on this type of heuristic solution 
method
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What is a heuristic?

• From greek heuriskein (meaning ”to find”)

• Wikipedia says:

– (…)A heuristic is a technique designed to solve 

a problem that ignores whether the solution can 

be proven to be correct, but which usually 

produces a good solution (…).

– Heuristics are intended to gain computational 

performance or conceptual simplicity, 

potentially at the cost of accuracy or precision.
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Why don’t we always use exact 

methods?
• If a heuristic does not guarantee a good solution, 

why not use an (exact) algorithm that does?

• The running time of the algorithm

– For reasons explained soon, the running time of an 
algorithm may render it useless on the problem you 
want to solve

• The link between the real-world problem and the 
formal problem is weak

– Sometimes you cannot properly formulate a COP/IP 
that captures all aspects of the real-world problem

– If the problem you solve is not the right problem, it 
might be just as useful to have one (or more) heuristic 
solutions, rather than the optimal solution of the formal 
problem
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P vs NP (1)
• Computational complexity is sometimes 

used to motivate the use of heuristics

• Formal decision problems are divided into 
many classes, but two such classes are

– P (Polynomial)

• Includes problems for which there exist algorithms 
that have a running time that is a polynomial 
function of the  size of the instance

– NP (Nondeterministic Polynomial)

• Includes problems for which one can verify in 
polynomial time that a given solution is correct
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P vs NP (2)

• We believe that P is different from NP, but 
nobody has proven this 
– $1 000 000 awaits those that can prove it

– (note that all of P is contained in NP)

• Some optimization problems can be solved in 
polynomial time
– If you have a graph with n nodes, the shortest path 

between any two nodes can be found after f(n) 
operations, where f(n) grows as quickly as n2

– If you want to distribute n jobs among n workers, and 
each combination of job and worker has a cost, the 
optimal assignment of jobs can be found in g(n) 
operations, where g(n) grows as quickly as n3
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P vs NP (3)

• However, for some optimization problems we 

know of no polynomial time algorithm

– Unless P=NP there are none!

• Sometimes, finding the optimal solution reduces 

to examining all the possible solutions (i.e., the 

entire solution space)

– Some algorithms do implicit enumeration of the 

solution space (but this sometimes reduces to 

examining all solutions)

• So, how many solutions must we examine in order 

to find the optimal solution?
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What is a Combinatorial 

Optimization Problem (COP)? (1)

• In a formal problem we usually find

– Data (parameters)

– Decision variables

– Constraints

• The problem is typically to find values for 

the variables that optimize some objective 

function subject to the constraints

– Optimizing over some discrete structure gives a 

Combinatorial Optimization Problem
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What is a Combinatorial 

Optimization Problem (COP)? (2)

• Can be expressed, very generally, as

• Where

– x is a vector of decision variables

– f(x) is the objective function

– S is the solution space

– F is the set of feasible solutions



Example COP: Set Cover (1)

• We are given:

– A finite set S = {1, …, n}

– A collection of subsets of S: S1, S2, …, Sm

• We are asked:

– Find a subset T of {1, …, m} such that Uj ϵ TSj= S

– Minimize |T|

• Decision variant of the problem: 

– we are additionally given a target size k, and

– asked whether a T of size at most k will suffice

• One instance of the set cover problem:

S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 = {1,3,6}, S4 = 
{2,3,5}, S5 = {4,5,6}, S6 = {1,3}



Example COP: Set Cover (2)

• S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 = {1,3,6}, S4 = 
{2,3,5}, S5 = {4,5,6}, S6 = {1,3}

1

3
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4
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Example COP: 

TSP – Travelling Salesman Problem 

Feasible Solution: 1 2 7 3 4 5 6 1 with value: 184

1 2 3 4 5 6 7

1 0 18 17 23 23 23 23

2 2 0 88 23 8 17 32

3 17 33 0 23 7 43 23

4 33 73 4 0 9 23 19

5 9 65 6 65 0 54 23

6 25 99 2 15 23 0 13

7 83 40 23 43 77 23 0

1

2
3

4

5

6

7
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The Combinatorial Explosion (1)

• The number of possible solutions for 
different problems:

– The Set Covering Problem:

• The size of the S is n

• The number of solutions: 2n

– The Traveling Salesman Problem:

• A salesman must travel between n cities, visiting 
each once. The salesman can visit the cities in any 
order

• The number of solutions: ½*(n-1)!
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The Combinatorial Explosion (2)

• The combinatorial explosion refers to the fact that 

some functions (such as those that result as the 

number of solutions for some hard optimization 

problems) increase very quickly!

• How would you solve a Traveling Salesman 

Problem with 100 customers?

n n2 n3 2n 1/2(n-1)!

10 100 1000 1024 181440

100 10000

100000

0

1.27E+3

0 4.7E+155

1000

100000

0 1E+09

1.1E+30

1 #NUM!



Polynomial vs Exponential time

Time complexity Running time

n 1 sec.

n log n 20 sec.

n2 12 days

2n 40 quadrillion (1015) years

Assume:   computer speed 106 IPS    and    input size n = 106

19
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A Small Note on the TSP

• Although the number of solutions of the TSP 
grows very quickly, surprisingly large instances 
has been solved to optimality

– A TSP has been solved for 24978 cities in Sweden (the 
length was about 72500 kilometers)

– A TSP for 33810 points on a circuit board was solved 
in 2005

• It took 15.7 CPU-years!

• However, we also have heuristic methods that can 
quickly find solutions within 2-3% of optimality 
for problems with millions of cities!
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How to find solutions?

• Exact methods
– Explicit enumeration 

– Implicit enumeration
• Divide problem into simpler problems

• Solve the simpler problems exactly

• Trivial solutions

• Inspection of the problem instance

• Constructive method
– Gradual costruction with a greedy heuristic

• Solve a simpler problem
– Remove/modify constraints

– Modify the objective function
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Example: TSP

Trivial solution:

1 2 3 4 5 6 7 1 (288)

Greedy construction:

1 3 5 7 6 4 2 1 (160)

1 2 3 4 5 6 7

1 0 18 17 23 23 23 23

2 2 0 88 23 8 17 32

3 17 33 0 23 7 43 23

4 33 73 4 0 9 23 19

5 9 65 6 65 0 54 23

6 25 99 2 15 23 0 13

7 83 40 23 43 77 23 0



COP Example: The Knapsack 

Problem (1)

23
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COP Example: The Knapsack 

Problem (2)

• n items {1,...,n} available, weight  ai , profit ci

• A selection shall be packed in a knapsack with capacity b

• Find the selection of items that maximizes the profit

i

1
x

0


 


If the item i is in the knapsack

otherwise

n

i i

i 1

n

i i

i 1

max c x s.t.

a x b










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Example: Knapsack Problem (3)

• Knapsack with capacity 101

• 10  ”items” (e.g. projects, ...) 1,...,10

• Trivial solution: empty knapsack, value 0

• Greedy solution, assign the items after value:

– (0000010000), value 85

– Better suggestions? 

1 2 3 4 5 6 7 8 9 10

Value 79 32 47 18 26 85 33 40 45 59

Size 85 26 48 21 22 95 43 45 55 52
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Given a Solution: How to Find a Better 

One

• Modification of a given solution gives a ”neighbor 

solution”

• A certain set of operations on a solution gives a set 

of neighbor solutions, a neighborhood

• Evaluations of neighbors

– Objective function value

– Feasibility ?
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Example: TSP

• Operator: 2-opt

• How many neighbors?
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Example: Knapsack Instance

• Given solution 0010100000 value 73

• Natural operator: ”Flip” a bit, i.e.

– If the item is in the knapsack, take it out

– If the item is not in the knapsack, include it

• Some Neighbors:

– 0110100000 value 105

– 1010100000 value 152, not feasible

– 0010000000 value 47

1 2 3 4 5 6 7 8 9 10

Value 79 32 47 18 26 85 33 40 45 59

Size 85 26 48 21 22 95 43 45 55 52

0 0 1 0 1 0 0 0 0 0
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Definition: Neighborhood

• Let (S,f) be a COP-instance

• A neighborhood function is a mapping from a 
solution to the set of possible solutions, reached 
by a move.

–

• For a given solution           , N defines a 
neighborhood of solutions,                 , that in some 
sense is ”near” to

• is then a ”neighbor” of  

: 2SN S

s S

( )N s S

( )t N s

s

s
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Neighborhood Operator

• Neighborhoods are most often defined by a given 

operation on a solution

• Often simple operations

– Remove an element

– Add an element element

– Interchange two or more elements of a solution 

• Several neighborhoods – qualify with an operator

( ),N s 
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Terminology: Optima (1)

• Assume we want to solve

• Let x be our current (incumbent) solution 

in a local search

• If f(x) ≥ f(y) for all y in F, then we say that 

x is a global optimum of F.
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Terminology: Optima (2)

• Further assume that N is a neighborhood 
operator, so that N(x) is the set of neighbors 
of x

• If f(x) ≥ f(y) for all y in N(x), then we say 
that x is a local optimum (of f, with respect to 
the neighborhood operator N)

• Note that all global optima are also local 
optima (with respect to any neigborhood)
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Local Search (LS)/ Neighborhood 

Search (1)
• Start with an initial solution

• Iteratively search in the neighborhood for better 

solutions

• Sequense of solutions 

• Strategy for which solution in the neighborhood 

that will be accepted as the next solution

• Stopping Criteria

• What happens when the neighborhood does not 

contain a better solution?

1 ( ), 0,k ks N s k   K……
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Local Search / Neighborhood Search 

(2)
• We remember what a local optimum is:

– If a solution x is ”better” than all the solutions in its 

neighborhood, N(x), we say that x is a local optimum

– We note that local optimality is defined relative to a 

particular neighborhood

• Let us denote by SN the set of local optima 

– SN is relative to N

• If SN only contains global optima, we say that N is 

exact

– Can we find examples of this?
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Local Search / Neighborhood Search 

(3)
• Heuristic method

• Iterative method

• Small changes to a given solution

• Alternative search strategies:
– Accept first improving solution (”First Accept”)

– Search the full neighborhood and go to the best improving solution
• ”Steepest Descent”

• ”Hill Climbing”

• ”Iterative Improvement”

(These methods are called ”Best Accept”)

• Strategies with randomization
– Random neighborhood search (”Random Walk”)

– ”Random Descent”

• Other strategies?
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Local Search / Neighborhood Search 

(4)
In a local search need the following:

• a Combinatorial Optimization Problem (COP)

• a starting solution (e.g. random)

• a defined search neighborhood (neighboring solutions)

• a move (e.g. changing a variable from 0 → 1 
or 1 → 0), going from one solution to a neighboring 
solution

• a move evaluation function – a rating of the possibilities
– Often myopic

• a neighborhood evaluation strategy

• a move selection strategy

• a stopping criterion – e.g. a local optimum
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Observations

• ”Best Accept” and ”First Accept” stops in a local 

optimum

• If the neighborhood N is exact, then the local 

search is an exact optimization algorithm

• Local Search can be regarded as a traversal in a 

directed graph (the neighborhood graph), where 

the nodes are the members of S, and N defines the 

topolopy (the nodes are marked with the solution 

value), and f defines the ”topography”



40

Local Search: Traversal of the 

Neighborhood Graph

0s
1s

0( )N s

1s

0s

1( )N s

2s
1s

A move is the process of  selecting a given solution in the 

neighborhood of  the current solution to be the current 

solution 

for the next iteration

1 ( ), 0,k ks N s k   K…
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Local and Global Optima

Solution value

Solution space
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Example of Local Search

• The Simplex algorithm for Linear Programmering 
(LP)

– Simplex Phase I gives an initial (feasible) solution

– Phase II gives iterative improvement towards the 
optimal solution (if it exists)

• The Neighborhood is defined by the simplex 
polytope

• The Strategy is ”Iterative Improvement”

• The moves are determined by pivoting rules

• The neighborhood is exact. This means that the 
Simplex algorithm finds the global optimum (if it 
exists)
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Example: The Knapsack Problem

• n items {1,...,n} available, 

weight  ai profit ci

• A selection of the items shall 

be packed in a knapsack with 

capasity b

• Find the items that 

maximizes the profit
i

1
x

0


 


n

i i

i 1

n

i i

i 1

max c x s.t.

a x b










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Example (cont.)

Max z = 5x1 + 11x2 + 9 x3 + 7x4

Such that:   2x1 +   4x2 + 3x3 + 2x4  7
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Example (cont.)

• The search space is the set of solutions

• Feasibility is with respect to the constraint set

• Evaluation is with respect to the objective 

function

n

i i

i 1

a x b




n

i i

i 1

max c x



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Search Space

• The search space is the set of solutions

0000
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23

0110
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Obj. Fun. Value

xxxx  Solution
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Feasible/Infeasible Space
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Example : Sum of weights equal or less than b=7 are feasible 
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Add - Neighborhood
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Flip Neighborhood
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Applying best accept

0010

9
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7

1000
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The algorithm ends with f=20
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Advantages of Local Search

• For many problems, it is quite easy to design a 

local search (i.e., LS can be applied to almost any 

problem)

• The idea of improving a solution by making small 

changes is easy to understand

• The use of neigborhoods sometimes makes the 

optimal solution seem ”close”, e.g.:

– A knapsack has n items

– The search space has 2n members

– From any solution, no more than n flips are required to 

reach an optimal solution!
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Disadvantages of Local Search

• The search stops when no improvement can 

be found

• Restarting the search might help, but is 

often not very effective in itself

• Some neighborhoods can become very large 

(time consuming to examine all the 

neighbors)
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Main Challenge in Local Search

How can we avoid the searh 

stopping in a local optimum? 



54

Metaheuristics (1)

• Concept introduced by Glover (1986) 

• Generic heuristic solution approaches 

designed to control and guide specific 

problem-oriented heuristics

• Often inspired from analogies with natural 

processes

• Rapid development over the last 15 years
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Metaheuristics (2)

• Different definitions:

– A metaheuristic is an iterative generating process, 
controlling an underlying heuristic, by combining (in an 
intelligent way) various strategies to explore and 
exploit search spaces (and learning strategies) to find 
near-optimal solutions in an efficient way

– A metaheuristic refers to a master strategy that guides 
and modifies other heuristics to produce solutions 
beyond those that are normally generated in a quest for 
local optimality. 

– A metaheuristic is a procedure that has the ability to 
escape local optimality
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Metaheuristics (2)

• Glover and Kochenberger (2003) writes:

– Metaheuristics, in their original definition, are solution 
methods that orchestrate an interaction between local 
improvement procedures and higher level strategies to 
create a process capable of escaping from local optima 
and performing a robust search of solution space. 

– Over time, these methods have also come to include 
any procedures that employ strategies for overcoming 
the trap of local optimality in complex solution spaces, 
especially those procedures that utilize one or more 
neighborhood structures as a means of defining 
admissible moves to transition from one solution to 
another, or to build or destroy solutions in constructive 
and destructive processes.
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A History of Success…

• Metaheuristics have been applied quite 

successfully to a variety of difficult 

combinatorial problems encountered in 

numerous application settings

• Because of that, they have become

extremely popular and are often seen as a

panacea
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… and of Failures

• There have also been many less-than-

successful applications of metaheuristics

• The moral being that one should look at 

alternatives first (exact algorithms, problem 

specific approximation algorithms or 

heuristics)

• If all else is unsatisfactory, metaheuristics 

can often perform very well
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Some well-known Metaheuristics

• Simulated Annealing (SA)

• Tabu Search (TS)

• Genetic Algorithms (GA)

• Scatter Search (SS)
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Some other Metaheuristics
• Adaptive Memory Procedures (AMP)

• Variable Neighborhood Search (VNS)

• Iterative Local Search (ILS)

• Guided Local Search (GLS)

• Threshold Acceptance methods (TA)

• Ant Colony Optimization (ACO)

• Greedy Randomized Adaptive Search Procedure (GRASP)

• Evolutionary Algorithms (EA)

• Memetic Algorithms (MA)

• Neural Networks (NN)

• And several others…

– Particle Swarm, The Harmony Method, The Great Deluge Method, 
Shuffled Leaping-Frog Algorithm, Squeaky Wheel Optimzation, 
…
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Metaheuristic Classification

• x/y/z Classification

– x = A (adaptive memory) or M (memoryless)

– y = N (systematic neighborhood search) or S 
(random sampling)

– z = 1 (one current solution) or P (population of 
solutions)

• Some Classifications

– Simulated Annealing (M/S/1)

– Tabu search (A/N/1)

– Genetic Algorithms (M/S/P)

– Scatter Search (M/N/P)
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Typical Search Trajectory
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Metaheuristics and Local Search

• In Local Search, we iteratively improve a 
solution by making small changes until we 
cannot make further improvements

• Metaheuristics can be used to guide a Local 
Search, and to help it to escape a local 
optimum

• Several metaheuristics are based on Local 
Search, but the mechanisms to escape local 
optima vary widely

– We will look at Simulated Annealing and Tabu 
Search, as well as mention some others


