
Simulation

Lecture H1
Heuristic Methods: Local Search

Author : Saeed Bastani
Saeed.bastani@gmail.com

Teacher: Mohammadhassan Safavi
Mohammadhassan.safavi@eit.lth.se

May 2018

Thanks to Prof. Arne Løkketangen at Molde University College, Norway, for making and sharing his presentation slides

(http://kursinfo.himolde.no/forskningsgrupper/)

Outline

 Introduction

 Why do we need heuristics?

 Local Search

 Meta-Heuristics

3

How can we solve problems?

• It can sometimes be advantageous to

distinguish between three groups of

methods for finding solutions to our abstract

problems

• (Exact) Algorithms

• Approximation Algorithms

• Heuristic Algorithms

4

(Exact) Algorithms

• An algorithm is sometimes described as a

set of instructions that will result in the

solution to a problem when followed

correctly

• Unless otherwise stated, an algorithm is

assumed to give the optimal solution to an

optimization problem

– That is, not just a good solution, but the best

solution

5

Approximation Algorithms

• Approximation algorithms (as opposed to
exact algorithms) do not guarantee to find
the optimal solution

• However, there is a bound on the quality

– E.g., for a maximization problem, the algorithm
can guarantee to find a solution whose value is
at least half that of the optimal value

• We will not see many approximation
algorithms here, but mention them as a
contrast to heuristic algorithms

6

Heuristic Algorithms
• Heuristic algorithms do not guarantee to

find the optimal solution, however:

– Heuristic algorithms do not even necessarily
have a bound on how bad they can perform

• That is, they can return a solution that is arbitrarily
bad compared to the optimal solution

– However, in practice, heuristic algorithms
(heuristics for short) have proven successful

– Most of the following lectures of the course
will focus on this type of heuristic solution
method

7

What is a heuristic?

• From greek heuriskein (meaning ”to find”)

• Wikipedia says:

– (…)A heuristic is a technique designed to solve

a problem that ignores whether the solution can

be proven to be correct, but which usually

produces a good solution (…).

– Heuristics are intended to gain computational

performance or conceptual simplicity,

potentially at the cost of accuracy or precision.

8

Why don’t we always use exact

methods?
• If a heuristic does not guarantee a good solution,

why not use an (exact) algorithm that does?

• The running time of the algorithm

– For reasons explained soon, the running time of an
algorithm may render it useless on the problem you
want to solve

• The link between the real-world problem and the
formal problem is weak

– Sometimes you cannot properly formulate a COP/IP
that captures all aspects of the real-world problem

– If the problem you solve is not the right problem, it
might be just as useful to have one (or more) heuristic
solutions, rather than the optimal solution of the formal
problem

9

P vs NP (1)
• Computational complexity is sometimes

used to motivate the use of heuristics

• Formal decision problems are divided into
many classes, but two such classes are

– P (Polynomial)

• Includes problems for which there exist algorithms
that have a running time that is a polynomial
function of the size of the instance

– NP (Nondeterministic Polynomial)

• Includes problems for which one can verify in
polynomial time that a given solution is correct

10

P vs NP (2)

• We believe that P is different from NP, but
nobody has proven this
– $1 000 000 awaits those that can prove it

– (note that all of P is contained in NP)

• Some optimization problems can be solved in
polynomial time
– If you have a graph with n nodes, the shortest path

between any two nodes can be found after f(n)
operations, where f(n) grows as quickly as n2

– If you want to distribute n jobs among n workers, and
each combination of job and worker has a cost, the
optimal assignment of jobs can be found in g(n)
operations, where g(n) grows as quickly as n3

11

P vs NP (3)

• However, for some optimization problems we

know of no polynomial time algorithm

– Unless P=NP there are none!

• Sometimes, finding the optimal solution reduces

to examining all the possible solutions (i.e., the

entire solution space)

– Some algorithms do implicit enumeration of the

solution space (but this sometimes reduces to

examining all solutions)

• So, how many solutions must we examine in order

to find the optimal solution?

12

What is a Combinatorial

Optimization Problem (COP)? (1)

• In a formal problem we usually find

– Data (parameters)

– Decision variables

– Constraints

• The problem is typically to find values for

the variables that optimize some objective

function subject to the constraints

– Optimizing over some discrete structure gives a

Combinatorial Optimization Problem

13

What is a Combinatorial

Optimization Problem (COP)? (2)

• Can be expressed, very generally, as

• Where

– x is a vector of decision variables

– f(x) is the objective function

– S is the solution space

– F is the set of feasible solutions

Example COP: Set Cover (1)

• We are given:

– A finite set S = {1, …, n}

– A collection of subsets of S: S1, S2, …, Sm

• We are asked:

– Find a subset T of {1, …, m} such that Uj ϵ TSj= S

– Minimize |T|

• Decision variant of the problem:

– we are additionally given a target size k, and

– asked whether a T of size at most k will suffice

• One instance of the set cover problem:

S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 = {1,3,6}, S4 =
{2,3,5}, S5 = {4,5,6}, S6 = {1,3}

Example COP: Set Cover (2)

• S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 = {1,3,6}, S4 =
{2,3,5}, S5 = {4,5,6}, S6 = {1,3}

1

3

6 5

4

2

16

Example COP:

TSP – Travelling Salesman Problem

Feasible Solution: 1 2 7 3 4 5 6 1 with value: 184

1 2 3 4 5 6 7

1 0 18 17 23 23 23 23

2 2 0 88 23 8 17 32

3 17 33 0 23 7 43 23

4 33 73 4 0 9 23 19

5 9 65 6 65 0 54 23

6 25 99 2 15 23 0 13

7 83 40 23 43 77 23 0

1

2
3

4

5

6

7

17

The Combinatorial Explosion (1)

• The number of possible solutions for
different problems:

– The Set Covering Problem:

• The size of the S is n

• The number of solutions: 2n

– The Traveling Salesman Problem:

• A salesman must travel between n cities, visiting
each once. The salesman can visit the cities in any
order

• The number of solutions: ½*(n-1)!

18

The Combinatorial Explosion (2)

• The combinatorial explosion refers to the fact that

some functions (such as those that result as the

number of solutions for some hard optimization

problems) increase very quickly!

• How would you solve a Traveling Salesman

Problem with 100 customers?

n n2 n3 2n 1/2(n-1)!

10 100 1000 1024 181440

100 10000

100000

0

1.27E+3

0 4.7E+155

1000

100000

0 1E+09

1.1E+30

1 #NUM!

Polynomial vs Exponential time

Time complexity Running time

n 1 sec.

n log n 20 sec.

n2 12 days

2n 40 quadrillion (1015) years

Assume: computer speed 106 IPS and input size n = 106

19

20

A Small Note on the TSP

• Although the number of solutions of the TSP
grows very quickly, surprisingly large instances
has been solved to optimality

– A TSP has been solved for 24978 cities in Sweden (the
length was about 72500 kilometers)

– A TSP for 33810 points on a circuit board was solved
in 2005

• It took 15.7 CPU-years!

• However, we also have heuristic methods that can
quickly find solutions within 2-3% of optimality
for problems with millions of cities!

21

How to find solutions?

• Exact methods
– Explicit enumeration

– Implicit enumeration
• Divide problem into simpler problems

• Solve the simpler problems exactly

• Trivial solutions

• Inspection of the problem instance

• Constructive method
– Gradual costruction with a greedy heuristic

• Solve a simpler problem
– Remove/modify constraints

– Modify the objective function

22

Example: TSP

Trivial solution:

1 2 3 4 5 6 7 1 (288)

Greedy construction:

1 3 5 7 6 4 2 1 (160)

1 2 3 4 5 6 7

1 0 18 17 23 23 23 23

2 2 0 88 23 8 17 32

3 17 33 0 23 7 43 23

4 33 73 4 0 9 23 19

5 9 65 6 65 0 54 23

6 25 99 2 15 23 0 13

7 83 40 23 43 77 23 0

COP Example: The Knapsack

Problem (1)

23

24

COP Example: The Knapsack

Problem (2)

• n items {1,...,n} available, weight ai , profit ci

• A selection shall be packed in a knapsack with capacity b

• Find the selection of items that maximizes the profit

i

1
x

0


 


If the item i is in the knapsack

otherwise

n

i i

i 1

n

i i

i 1

max c x s.t.

a x b











25

Example: Knapsack Problem (3)

• Knapsack with capacity 101

• 10 ”items” (e.g. projects, ...) 1,...,10

• Trivial solution: empty knapsack, value 0

• Greedy solution, assign the items after value:

– (0000010000), value 85

– Better suggestions?

1 2 3 4 5 6 7 8 9 10

Value 79 32 47 18 26 85 33 40 45 59

Size 85 26 48 21 22 95 43 45 55 52

26

Given a Solution: How to Find a Better

One

• Modification of a given solution gives a ”neighbor

solution”

• A certain set of operations on a solution gives a set

of neighbor solutions, a neighborhood

• Evaluations of neighbors

– Objective function value

– Feasibility ?

27

Example: TSP

• Operator: 2-opt

• How many neighbors?

28

Example: Knapsack Instance

• Given solution 0010100000 value 73

• Natural operator: ”Flip” a bit, i.e.

– If the item is in the knapsack, take it out

– If the item is not in the knapsack, include it

• Some Neighbors:

– 0110100000 value 105

– 1010100000 value 152, not feasible

– 0010000000 value 47

1 2 3 4 5 6 7 8 9 10

Value 79 32 47 18 26 85 33 40 45 59

Size 85 26 48 21 22 95 43 45 55 52

0 0 1 0 1 0 0 0 0 0

29

Definition: Neighborhood

• Let (S,f) be a COP-instance

• A neighborhood function is a mapping from a
solution to the set of possible solutions, reached
by a move.

–

• For a given solution , N defines a
neighborhood of solutions, , that in some
sense is ”near” to

• is then a ”neighbor” of

: 2SN S

s S

()N s S

()t N s

s

s

30

Neighborhood Operator

• Neighborhoods are most often defined by a given

operation on a solution

• Often simple operations

– Remove an element

– Add an element element

– Interchange two or more elements of a solution

• Several neighborhoods – qualify with an operator

(),N s 

31

Terminology: Optima (1)

• Assume we want to solve

• Let x be our current (incumbent) solution

in a local search

• If f(x) ≥ f(y) for all y in F, then we say that

x is a global optimum of F.

32

Terminology: Optima (2)

• Further assume that N is a neighborhood
operator, so that N(x) is the set of neighbors
of x

• If f(x) ≥ f(y) for all y in N(x), then we say
that x is a local optimum (of f, with respect to
the neighborhood operator N)

• Note that all global optima are also local
optima (with respect to any neigborhood)

33

Local Search (LS)/ Neighborhood

Search (1)
• Start with an initial solution

• Iteratively search in the neighborhood for better

solutions

• Sequense of solutions

• Strategy for which solution in the neighborhood

that will be accepted as the next solution

• Stopping Criteria

• What happens when the neighborhood does not

contain a better solution?

1 (), 0,k ks N s k   K……

34

Local Search / Neighborhood Search

(2)
• We remember what a local optimum is:

– If a solution x is ”better” than all the solutions in its

neighborhood, N(x), we say that x is a local optimum

– We note that local optimality is defined relative to a

particular neighborhood

• Let us denote by SN the set of local optima

– SN is relative to N

• If SN only contains global optima, we say that N is

exact

– Can we find examples of this?

35

Local Search / Neighborhood Search

(3)
• Heuristic method

• Iterative method

• Small changes to a given solution

• Alternative search strategies:
– Accept first improving solution (”First Accept”)

– Search the full neighborhood and go to the best improving solution
• ”Steepest Descent”

• ”Hill Climbing”

• ”Iterative Improvement”

(These methods are called ”Best Accept”)

• Strategies with randomization
– Random neighborhood search (”Random Walk”)

– ”Random Descent”

• Other strategies?

36

Local Search / Neighborhood Search

(4)
In a local search need the following:

• a Combinatorial Optimization Problem (COP)

• a starting solution (e.g. random)

• a defined search neighborhood (neighboring solutions)

• a move (e.g. changing a variable from 0 → 1
or 1 → 0), going from one solution to a neighboring
solution

• a move evaluation function – a rating of the possibilities
– Often myopic

• a neighborhood evaluation strategy

• a move selection strategy

• a stopping criterion – e.g. a local optimum

37

38

39

Observations

• ”Best Accept” and ”First Accept” stops in a local

optimum

• If the neighborhood N is exact, then the local

search is an exact optimization algorithm

• Local Search can be regarded as a traversal in a

directed graph (the neighborhood graph), where

the nodes are the members of S, and N defines the

topolopy (the nodes are marked with the solution

value), and f defines the ”topography”

40

Local Search: Traversal of the

Neighborhood Graph

0s
1s

0()N s

1s

0s

1()N s

2s
1s

A move is the process of selecting a given solution in the

neighborhood of the current solution to be the current

solution

for the next iteration

1 (), 0,k ks N s k   K…

41

Local and Global Optima

Solution value

Solution space

42

Example of Local Search

• The Simplex algorithm for Linear Programmering
(LP)

– Simplex Phase I gives an initial (feasible) solution

– Phase II gives iterative improvement towards the
optimal solution (if it exists)

• The Neighborhood is defined by the simplex
polytope

• The Strategy is ”Iterative Improvement”

• The moves are determined by pivoting rules

• The neighborhood is exact. This means that the
Simplex algorithm finds the global optimum (if it
exists)

43

Example: The Knapsack Problem

• n items {1,...,n} available,

weight ai profit ci

• A selection of the items shall

be packed in a knapsack with

capasity b

• Find the items that

maximizes the profit
i

1
x

0


 


n

i i

i 1

n

i i

i 1

max c x s.t.

a x b











44

Example (cont.)

Max z = 5x1 + 11x2 + 9 x3 + 7x4

Such that: 2x1 + 4x2 + 3x3 + 2x4  7

45

Example (cont.)

• The search space is the set of solutions

• Feasibility is with respect to the constraint set

• Evaluation is with respect to the objective

function

n

i i

i 1

a x b




n

i i

i 1

max c x




46

Search Space

• The search space is the set of solutions

0000

0

0001

7

1100

16

1000

5

0100

11

0011

16

0010

9

0111

27

0101

18

1010

14

1011

21

1111

32

1001

12

1110

25

1101

23

0110

20

Obj. Fun. Value

xxxx  Solution

47

Feasible/Infeasible Space

0000

0

0001

7

1100

16

1000

5

0100

11

0011

16

0010

9

0111

27

0101

18

1010

14

1011

21

1111

32

1001

12

1110

25

1101

23

0110

20

Example : Sum of weights equal or less than b=7 are feasible

48

Add - Neighborhood

0000

0

0001

7

1100

16

1000

5

0100

11

0011

16

0010

9

0111

27

0101

18

1010

14

1011

21

1111

32

1001

12

1110

25

1101

23

0110

20

Current Solution Neighbors

49

Flip Neighborhood

0000

0

0001

7

1100

16

1000

5

0100

11

0011

16

0010

9

0111

27

0101

18

1010

14

1011

21

1111

32

1001

12

1110

25

1101

23

0110

20

Current Solution Neighbors

50

Applying best accept

0010

9

0001

7

1000

5

0110

20

0011

16

1100

16

0111

27

1010

14

1011

21

1111

32

1001

12

1110

25

1101

23

0100

11

Current Solution

Neighbors

0101

18

0000

0

The algorithm ends with f=20

51

Advantages of Local Search

• For many problems, it is quite easy to design a

local search (i.e., LS can be applied to almost any

problem)

• The idea of improving a solution by making small

changes is easy to understand

• The use of neigborhoods sometimes makes the

optimal solution seem ”close”, e.g.:

– A knapsack has n items

– The search space has 2n members

– From any solution, no more than n flips are required to

reach an optimal solution!

52

Disadvantages of Local Search

• The search stops when no improvement can

be found

• Restarting the search might help, but is

often not very effective in itself

• Some neighborhoods can become very large

(time consuming to examine all the

neighbors)

53

Main Challenge in Local Search

How can we avoid the searh

stopping in a local optimum?

54

Metaheuristics (1)

• Concept introduced by Glover (1986)

• Generic heuristic solution approaches

designed to control and guide specific

problem-oriented heuristics

• Often inspired from analogies with natural

processes

• Rapid development over the last 15 years

55

Metaheuristics (2)

• Different definitions:

– A metaheuristic is an iterative generating process,
controlling an underlying heuristic, by combining (in an
intelligent way) various strategies to explore and
exploit search spaces (and learning strategies) to find
near-optimal solutions in an efficient way

– A metaheuristic refers to a master strategy that guides
and modifies other heuristics to produce solutions
beyond those that are normally generated in a quest for
local optimality.

– A metaheuristic is a procedure that has the ability to
escape local optimality

56

Metaheuristics (2)

• Glover and Kochenberger (2003) writes:

– Metaheuristics, in their original definition, are solution
methods that orchestrate an interaction between local
improvement procedures and higher level strategies to
create a process capable of escaping from local optima
and performing a robust search of solution space.

– Over time, these methods have also come to include
any procedures that employ strategies for overcoming
the trap of local optimality in complex solution spaces,
especially those procedures that utilize one or more
neighborhood structures as a means of defining
admissible moves to transition from one solution to
another, or to build or destroy solutions in constructive
and destructive processes.

57

A History of Success…

• Metaheuristics have been applied quite

successfully to a variety of difficult

combinatorial problems encountered in

numerous application settings

• Because of that, they have become

extremely popular and are often seen as a

panacea

58

… and of Failures

• There have also been many less-than-

successful applications of metaheuristics

• The moral being that one should look at

alternatives first (exact algorithms, problem

specific approximation algorithms or

heuristics)

• If all else is unsatisfactory, metaheuristics

can often perform very well

59

Some well-known Metaheuristics

• Simulated Annealing (SA)

• Tabu Search (TS)

• Genetic Algorithms (GA)

• Scatter Search (SS)

60

Some other Metaheuristics
• Adaptive Memory Procedures (AMP)

• Variable Neighborhood Search (VNS)

• Iterative Local Search (ILS)

• Guided Local Search (GLS)

• Threshold Acceptance methods (TA)

• Ant Colony Optimization (ACO)

• Greedy Randomized Adaptive Search Procedure (GRASP)

• Evolutionary Algorithms (EA)

• Memetic Algorithms (MA)

• Neural Networks (NN)

• And several others…

– Particle Swarm, The Harmony Method, The Great Deluge Method,
Shuffled Leaping-Frog Algorithm, Squeaky Wheel Optimzation,
…

61

Metaheuristic Classification

• x/y/z Classification

– x = A (adaptive memory) or M (memoryless)

– y = N (systematic neighborhood search) or S
(random sampling)

– z = 1 (one current solution) or P (population of
solutions)

• Some Classifications

– Simulated Annealing (M/S/1)

– Tabu search (A/N/1)

– Genetic Algorithms (M/S/P)

– Scatter Search (M/N/P)

62

Typical Search Trajectory

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Iteration

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

Value

Best Value

63

Metaheuristics and Local Search

• In Local Search, we iteratively improve a
solution by making small changes until we
cannot make further improvements

• Metaheuristics can be used to guide a Local
Search, and to help it to escape a local
optimum

• Several metaheuristics are based on Local
Search, but the mechanisms to escape local
optima vary widely

– We will look at Simulated Annealing and Tabu
Search, as well as mention some others

