

Load the Solver Add-in | Formulate the Model | Trial and Error | Solve the Model

Excel includes a tool called solver that uses techniques from the operations research to find optimal solutions for all kind of decision problems.

Load the Solver Add-in

To load the solver add-in, execute the following steps.

1. On the File tab, click Options.

2. Under Add-ins, select Solver Add-in and click on the Go button.

Search Entire Site	Go
Chapter < >	
Solver	

Learn more, it's easy

Transportation Problem

Assignment Problem

Shortest Path Problem

Maximum Flow Problem

Capital Investment

Sensitivity Analysis

Download Excel File

solver.xlsx

Most Read

Pivot Tables

Formulas and Functions

Charts

Analysis Toolpak

Drop-down List

cel Options			?						
General	View and manage Micros	oft Office Add	ins						
Formulas									
Proofing	Add-ins								
Save	Name 🔺	Location	Туре						
anguage	Active Application Add-ins								
dvanced	No Active Application Add-ins								
dvanceu	Inactive Application Add inc								
ustomize Ribbon		C:\32.XU	Excel Add-in						
visk Assess Taalbar	Analysis ToolPak - VBA	C:\XI AM	Excel Add-in						
JICK ACCESS TOOIDAL	Date (XML)	C:\FL.DLL	Action						
d-ins	Euro Currency Tools	C:\XLAM	Excel Add-in						
	Inquire	C:\im.dll	COM Add-in						
ust Center	Microsoft Actions Pane 3		XML Expansion Pack						
	Microsoft Power Map for Excel	C:\LL.DLL	COM Add-in						
	Microsoft Power Pivot for Excel	C:\dln.dll	COM Add-in						
	Microsoft Power View for Excel	C:\ent.dll	COM Add-in						
	Solver Add-in	C:\XLAM	Excel Add-in						
	Add-in: Solver Add-in								
	Publisher:								
	Compatibility: No compatibili	ty information a	vailable						
	Location: C:\Program File	es\Microsoft Offi R.XI AM	ice\root\Office16\Library						
	Description: Tool for optimi	ization and equat	tion solving						
	Manage: Excel Add-ins	▼ <u>G</u> o	6						
		[OK Cancel						

3. Check Solver Add-in and click OK.

Add-ins	?	×
Add-ins available: Analysis ToolPak Analysis ToolPak - VBA Euro Currency Tools	OK Cance <u>B</u> rows	el
~	A <u>u</u> tomat	ion
Solver Add-in		
Tool for optimization and equati	on solving	

4. You can find the Solver on the Data tab, in the Analyze group.

Formulate the Model

The model we are going to solve looks as follows in Excel.

	А	В	С	D	E	F	G	Н	I	J
1	1 Cycle Trader									
2										
3			Bicycles	Mopeds	Child Seats					
4		Unit Profit	100	300	50					
5							Resources		Resources	
6							Used		Available	
7		Capital	300	1200	120		0	\leq	93000	
8		Storage	0.5	1	0.5		0	\leq	101	
9										
10										
11			Bicycles	Mopeds	Child Seats				Total Profit	
12		Order Size	0	0	0				0	
13										

1. To formulate this linear programming model, answer the following three questions.

a. What are the decisions to be made? For this problem, we need Excel to find out how much to order of each product (bicycles, mopeds and child seats).

b. What are the constraints on these decisions? The constrains here are that the amount of capital and storage used by the products cannot exceed the limited amount of capital and storage (resources) available. For example, each bicycle uses 300 units of capital and 0.5 unit of storage.

C. What is the overall measure of performance for these decisions? The overall measure of performance is the total profit of the three products, so the objective is to maximize this quantity.

2. To make the model easier to understand, name the following ranges.

Range Name	Cells
UnitProfit	C4:E4
OrderSize	C12:E12
ResourcesUsed	G7:G8
ResourcesAvailable	17:18
TotalProfit	112

3. Insert the following three SUMPRODUCT functions.

E	F	G	Н		J
					-
Child Seats					-
50					
		Resources		Resources	
		Used		Available	
120		=SUMPRODUCT(C7:E7,OrderSize)	\leq	93000	
0.5		=SUMPRODUCT(C8:E8,OrderSize)	\leq	101	
Child Seats				Total Profit	
0				=SUMPRODUCT(UnitProfit,OrderSize)	

Explanation: The amount of capital used equals the sumproduct of the range C7:E7 and OrderSize. The amount of storage used equals the sumproduct of the range C8:E8 and OrderSize. Total Profit equals the sumproduct of UnitProfit and OrderSize.

Trial and Error

With this formulation, it becomes easy to analyze any trial solution.

For example, if we order 20 bicycles, 40 mopeds and 100 child seats, the total amount of resources used does not exceed the amount of resources available. This solution has a total profit of 19000.

	А	В	С	D	E	F	G	Н	1	J
1	1 Cycle Trader									
2										
3			Bicycles	Mopeds	Child Seats					
4		Unit Profit	100	300	50					
5							Resources		Resources	
6							Used		Available	
7		Capital	300	1200	120		66000	\leq	93000	
8		Storage	0.5	1	0.5		100	\leq	101	
9										
10										
11			Bicycles	Mopeds	Child Seats				Total Profit	
12		Order Size	20	40	100				19000	
13										

It is not necessary to use trial and error. We shall describe next how the Excel Solver can be used to quickly find the optimal solution.

Solve the Model

To find the optimal solution, execute the following steps.

1. On the Data tab, in the Analyze group, click Solver.

Enter the solver parameters (read on). The result should be consistent with the picture below.

Se <u>t</u> Objec	tive:		TotalProfit		1
To:	● <u>M</u> ax	() Mi <u>n</u>	○ <u>V</u> alue Of:	0	
<u>B</u> y Chang	ing Variat	ole Cells:			
OrderSize	2				E
S <u>u</u> bject to	o the Cons	straints:			
Resource	sUsed <=	ResourcesAvailab	ble	<u>^</u>	<u>A</u> dd
					<u>C</u> hange
					<u>D</u> elete
					<u>R</u> eset All
				~	<u>L</u> oad/Save
<mark>∕ Ma<u>k</u>e</mark>	Unconstra	ained Variables N	on-Negative		
S <u>e</u> lect a S Method:	olving	Simplex LP		~	O <u>p</u> tions
Solving	Method				
Select th Simplex problem	ne GRG No engine fo is that are	onlinear engine fo r linear Solver Pro non-smooth.	or Solver Problems ti oblems, and select th	hat are smooth nonl ne Evolutionary engi	inear. Select the LP ne for Solver

You have the choice of typing the range names or clicking on the cells in the spreadsheet.

- 2. Enter TotalProfit for the Objective.
- 3. Click Max.
- 4. Enter OrderSize for the Changing Variable Cells.
- 5. Click Add to enter the following constraint.

Add Constraint			×
C <u>e</u> ll Reference: ResourcesUsed	* <= V	Co <u>n</u> straint: ResourcesAvailable	
	Add	<u>C</u> ancel	

6. Check 'Make Unconstrained Variables Non-Negative' and select 'Simplex LP'.

7. Finally, click Solve.

Result:

Solver Results		×					
Solver found a solution. All Constraints and optima conditions are satisfied.	lity Re <u>p</u> orts						
 Keep Solver Solution Restore Original Values 	Answer Sensitivity Limits						
Return to Solver Parameters Dialog	Outline Reports						
<u>OK</u> ancel		<u>S</u> ave Scenario					
Solver found a solution. All Constraints and optimal	ty conditions are satisfie	d.					
When the GRG engine is used, Solver has found at least a local optimal solution. When Simplex LP is used, this means Solver has found a global optimal solution.							

The optimal solution:

	Α	В	С	D	E	F	G	Н	l.	J
1	1 Cycle Trader									
2										
3			Bicycles	Mopeds	Child Seats					
4		Unit Profit	100	300	50					
5							Resources		Resources	
6							Used		Available	
7		Capital	300	1200	120		93000	\leq	93000	
8		Storage	0.5	1	0.5		101	\leq	101	
9										
10										
11			Bicycles	Mopeds	Child Seats				Total Profit	
12		Order Size	94	54	0				25600	
13										

Conclusion: it is optimal to order 94 bicycles and 54 mopeds. This solution gives the maximum profit of 25600. This solution uses all the resources available.

1/7 Completed! Learn much more about the solver >

Go to Next Chapter: Analysis ToolPak

SOLVER • FREE EXCEL HELP • COPYRIGHT (C) 2010-2017 • ALL RIGHTS RESERVED MICROSOFT EXCEL TUTORIAL | HOW TO USE VBA & MACROS | EXCEL FORMULAS | FUNCTIONS IN EXCEL