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Learning outcomes of this lecture

In this lecture we will
I See how relative motion induces the Doppler frequency shift
I Introduce the Fourier transform to describe signals
I Study the spectrum of pulsed radar signals
I Understand I/Q channels for data acquisition
I See examples of range-Doppler spectra
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Doppler shift

fd =
2vr
c
f =

2v

λ
cosψ

Only the radial motion (towards/from the radar) matters.
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Doppler shift, examples

fd =
2vr
c
f =

2v

λ
cosψ

Since most speeds v are very small compared to speed of light c,
the Doppler shift is small compared to the carrier frequency.
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The Fourier transform

The Fourier transform is the archetypical method to consider a
time domain function in frequency domain:

X(f) =

∫ ∞
−∞

x(t)e−j2πft dt

x(t) =

∫ ∞
−∞

X(f)ej2πft df

Often, the transform is instead expressed in terms of angular
frequency ω = 2πf :

X̂(ω) =

∫ ∞
−∞

x(t)e−jωt dt

x(t) =
1

2π

∫ ∞
−∞

X̂(ω)ejωt dω

Discussion
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Some explicit Fourier transforms

x(t) X(f)

1 δ(f)

ej2πf0t δ(f − f0)

cos(2πf0t)
1
2δ(f − f0) +

1
2δ(f + f0)

rect(t/τ) τ
sin(πfτ)

πfτ
= τ sinc(πfτ)

e−(t/τ)
2/2 τ

√
2πe−(2πfτ)

2/2
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Some properties of the Fourier transform

I Linearity:

x(t) = ax1(t) + bx2(t) ⇔ X(f) = aX1(f) + bX2(f)

I Time shifting:

x(t) = y(t− t0) ⇔ X(f) = e−j2πft0Y (f)

I Frequency shifting:

x(t) = ej2πf0ty(t) ⇔ X(f) = Y (f − f0)

I Scaling (a > 0 is a real number):

x(t) = y(at) ⇔ X(f) =
1

a
Y (f/a)

I Convolution vs product ([x1 ∗ x2](t) =
∫
x1(t− τ)x2(τ) dτ):

x(t) = [x1 ∗ x2](t) ⇔ X(f) = X1(f)X2(f)

x(t) = x1(t)x2(t) ⇔ X(f) = [X1 ∗X2](f)
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Discrete Fourier transform and FFT

The Discrete Fourier Transform (DFT) is a discretization of the
continuous transform in time and frequency:

Xk =

N−1∑
n=0

xne
−j2πkn/N

xn =
1

N

N−1∑
k=0

Xke
j2πkn/N

The Fast Fourier Transform (FFT) is any implementation of the
DFT that can be considered “fast”.

The most known is the Cooley-Tukey radix-2 algorithm, requiring
the number of samples to be N = 2r for some integer r. If this is
not the case, zero-padding can be applied with little penalty.
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The effect of zero-padding a DFT

Assume a sampled signal x = {xn}N−1n=0 is augmented by a number
of zeros,

y = {yn}M−1n=0 , yn =

{
xn n = 0, 1, . . . , N − 1

0 n = N,N + 1, . . . ,M − 1 > N

The corresponding DFT is then

Yk =

M−1∑
n=0

yne
−j2πkn/M =

N−1∑
n=0

xne
−j2πkn/M

which can be seen as an interpolation in frequency since the step
length 1/M is smaller than the original 1/N .
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The effect of zero-padding a DFT
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Original time-domain function (top graph) sampled at 8 points.
Augmented with zeros to 16, 32, and 64 points, makes the DFT
interpolate between the original points.
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Pulsed radar signals

We intend to find out the spectrum of a pulsed radar signal:

t

x(t)

The strategy is to express the signal as a modulated carrier:

x(t) = ej2πftp(t)

where ej2πft is the carrier wave, and p(t) is the modulation
(change in amplitude).
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Infinite length continuous wave

A
2 δ(f + f0)

x(t) = A cos(2πf0t) =
A

2
(ej2πf0t + e−j2πf0t)

X(f) =
A

2
δ(f − f0) +

A

2
δ(f + f0)
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Single rectangular pulse

pτ (t) =

{
A, −τ/2 < t < τ/2

0, otherwise

Pτ (f) =

∫ τ/2

−τ/2
Ae−j2πft dt = Aτ

sin(πfτ)

πfτ
= Aτ sinc(πfτ)

Note the contradictory definition of sinc(z) in the book’s (8.15). 17 / 56



Infinite pulse train

pI(t) =

∞∑
n=−∞

pτ (t− nT ) =

[
pτ (·) ∗

∞∑
n=−∞

δ(· − nT )

]
(t)

PI(f) = {Aτ sinc(πfτ)}︸ ︷︷ ︸
=Pτ (f)

 1

T

∞∑
k=−∞

δ(f − k · PRF︸︷︷︸
=1/T

)
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Finite pulse train

pF(t) = pI(t) · pTd(t), pTd(t) =

{
1, −Td/2 < t < Td/2

0, otherwise

PF(f) = [PI(·) ∗ PTd(·)](f) =
ATdτ

T

∞∑
k=−∞

sinc(πτk · PRF) sinc[π(f − k · PRF)Td]
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End result: modulated finite pulse train

The carrier wave cos(2πf0t) shifts the spectrum to ±f0.
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Frequency scales

Four frequency scales:
I Bandwidth of spectral lines (1/Td)
I Spacing of spectral lines (1/T )
I Rayleigh bandwidth of single pulse envelopes (1/τ)
I Center frequencies (±f0)
Discussion
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Pulsed waveform spectrum with moving targets

The stationary clutter stays centered at ±f0, whereas a moving
target signal is shifted by fd. If the separation is large enough, the
stationary clutter can be filtered out, allowing detection of the
weaker target.
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Doppler resolution

Since linewidth is proportional to 1/Td, Doppler resolution
improves with increasing dwell time Td.
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Receiver bandwidth effects

I In principle, the signal carries power at all frequencies.
I About 91% of the total energy is inside the main lobe.
I Extending the bandwidth outside the main lobe increases

signal with at most additional 9%, but noise increases
proportionally to bandwidth.

I To maximize SNR, the receiver bandwidth should match
expected signal.
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Why multiple pulses?

I Consider an X-band radar (10GHz) with 10µs pulses. A
target moving at Mach 1 (340m/s), implies a Doppler shift of
22.7 kHz.

I Without Doppler shift, one pulse has
(10 · 10−6) · (10 · 109) = 100 000 cycles.

I With Doppler shift, one pulse has
(10 · 10−6) · (10 · 109 + 22.7 · 103) = 100 000.227 cycles, only
about a quarter of a cycle more.

I The Doppler resolution from one pulse is
1/τ = 1/(10 · 10−6)Hz = 100 kHz, not sufficient to resolve
the Doppler peak at 22.7 kHz shift.

I Using multiple pulses, the resolution becomes
1/Td = 1/(N · PRI) = PRF/N , which can be made small
enough.
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Received signal

R0

Transmitted signal:

x(t) = A cos(2πf0t+ θ) = Re{Aej(2πf0t+θ)} = Re{(Aejθ)ej2πf0t}
Received signal:

y(t) ∼ x
(
t− 2R0

c

)
= Re

{(
Aej(θ−

4πR0
λ

)
)
ej2πf0t

}
Complex amplitude of received signal: A exp

[
j

(
θ − 4π

λ
R0

)]
Discussion

27 / 56



Video detector

By mixing the received signal with a reference signal 2 cos(2πf0t),
we obtain (writing θ − 4πR0/λ = θ′)

A cos(2πf0t+ θ′) · 2 cos(2πf0t)

=
A

2

[
ej(2πf0t+θ

′) + e−j(2πf0t+θ
′)
] [

ej2πf0t + e−j2πf0t
]

=
A

2

[
ej(4πf0t+θ

′) + e−j(4πf0t+θ
′) + ejθ

′
+ e−jθ

′
]

After low pass filtering: A cos(θ′) = A cos(θ − 4πR0/λ)

Not enough to determine both amplitude A and phase θ′!
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Coherent detector

I In-phase (I) channel, reference signal cos(2πf0t).
I Quadrature (Q) channel, reference signal

cos(2πf0t+ π/2) = − sin(2πf0t).

The I/Q channels can be combined to form the analytic signal

a = I + jQ = A cos θ′ + jA sin θ′ = Aejθ
′

from which both amplitude A and phase θ′ can be determined.
Requires an accurate phase difference between I and Q references.
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Range bins, fast time

I For one transmitted pulse, sample the receiver output
(down-converted frequency, almost constant during sample
time).

I Each reflected pulse contributes to only one sample.

I Store the samples as a vector, with elements being called
range bins, range gates, range cells, or fast-time samples.
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Slow time, datacube
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Measuring Doppler with multiple pulses

y[m] = A exp {j[θ − (4π/λ)(R0 − vmT )]}

= A exp

{
j

[
2π

(
2v

λ

)
(mT ) + θ −

(
4πR0

λ

)]}
= A exp[j(2πfdtm + θ′)], 0 ≤ m ≤M − 1

The Doppler shift fd can be found from a frequency analysis of the
received analytic signal!
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Coherent pulses

If the pulses are non-coherent, the phase in consecutive pulses is
uncorrelated, and frequency analysis cannot be used.
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Doppler spectrum in one range bin

The signal is sampled every PRI seconds, hence the Doppler
spectrum (DFT in slow time) is contained in [−PRF/2,PRF/2],
where PRF = 1/PRI.

Clutter and stationary targets are centered at fd = 0, moving
targets and noise appear throughout the spectrum.
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Range-Doppler spectrum

The range-Doppler spectrum is obtained by plotting a radar signal
as function of both range (fast-time) and Doppler frequency
(Fourier transformed slow-time).
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Range-Doppler spectrum, realistic data

Note the clutter ridge around fd ≈ 0, and targets in different range
bins.
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Simulated data, http://radarsp.com

FRSP Demos/FRSP Non-GUI demos/Pulse Doppler/

-100

6

-80

-60

200
4

-40

RANGE-DOPPLER PLOT OF UNPROCESSED DATA

100

range (km)

-20

velocity (m/s)

0

02
-100

0 -200

RANGE-DOPPLER CONTOUR PLOT OF UNPROCESSED DATA

-150 -100 -50 0 50 100 150

velocity (m/s)

2

2.5

3

3.5

4

4.5

5

5.5

ra
n
g
e
 (

k
m

)

Target extent in range corresponds to uncompressed pulse length
10µs · c/2 = 1.5 km.
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Simulated data, http://radarsp.com

Clutter cancellation through high-pass filtering.
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Note target on clutter ridge edge is almost deleted.
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Simulated data, http://radarsp.com

Pulse compression (a chirped pulse is used, better range resolution,
covered in Chapter 20.)
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Main lobe clutter spreading

The Doppler shift depends on squint angle ψ, which implies a
frequency broadening due to the beam width θ3:

fd =
2v

λ
cosψ ⇒ BMLC =

4v

λ
sin

(
θ3
2

)
sinψ ≈ 2vθ3

λ
sinψ
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Clutter spectrum elements

The clutter spectrum of a moving platform has many elements,
induced by antenna sidelobes and different velocity components.
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Example of range-Doppler clutter distribution
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Frequency Modulated Continuous Wave (FMCW)

In a continuous wave system, the transmitter is always on. The
frequency can be tuned by a control signal.

VCO

transmitting
antenna

receiving
antenna

90◦

Vtune

I

Q

This makes for a cheap system, where the range information is
obtained by frequency synthesis, rather than time-of-flight
measurements.

Discussion 48 / 56



Signal processing I

With a target at range R, the received signal is

r(t) = Aej2πf(t−2R/c)

After downconversion (removing ej2πft) the analytic signal is

a = I + jQ = Ae−j4πfR/c

Measure at discrete times tn with changing frequency fn:

tn = n∆t n = 0, 1, . . . , N − 1

fn = f0 + nB/N B = bandwidth

Rn = R0 − nv∆t v = radial velocity

The sampled signal is then (after expansion of the product fnRn)

an = Ae−j4πf0R0/c︸ ︷︷ ︸
=A′

e
jn2π

(
− 2BR0

Nc
+

2vf0∆t
c

)
ej2π

n22Bv∆t
Nc

The last term is a chirping effect, which can be neglected if the
target’s movement in one pulse (Nv∆t) is much less than the

spatial resolution c/(2B): n22Bv∆t
Nc < Nv∆t

c/(2B) � 1. 49 / 56



Signal processing II

Using both up-chirped and down-chirped signals,

an = A′e
jn2π

(
− 2BR0

Nc
+

2vf0∆t
c

)
(up-chirp, fn = f0 + nB/N)

an = A′e
jn2π

(
2BR0
Nc

+
2vf0∆t

c

)
(down-chirp, fn = f0 + (N − n)B/N)

we can use FFT to compute both 2BR0
Nc and 2vf0∆t

c .

Conclusion:

I Both range R and velocity v can be detected by FMCW.

I Necessary to use I and Q signals, sweeping the frequency over
bandwidth B in N steps up and down. Dwell time is 2N∆t.

I The technique will be used in the lab on Friday.
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Conclusions

I The Doppler shift is due to relative motion between radar and
target.

I The Fourier transform can be used to compute frequency
domain data.

I The spectrum of a pulsed radar has been characterized,
having several frequency scales.

I The I/Q channels and analytic signal have been introduced.

I The range-Doppler spectrum provide information on both
range and velocity.

I Range and velocity can be extracted from FMCW data using
Fourier analysis.

52 / 56



Discussion

The Fourier transform is defined by

X(f) =

∫ ∞
−∞

x(t)e−j2πft dt

x(t) =

∫ ∞
−∞

X(f)ej2πft df

If x(t) has units of volts (V), what unit does X(f) have?

Answer: [X(f)] = Vs (x(t) is multiplied by dt, having units of s).

Go back
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Discussion

How does the spectrum look if 1) Td = T = τ , 2) Td > T = τ?

Answer: 1) Equal to the dashed sinc envelope. This corresponds to
a single rectangular pulse of length Td = T = τ with carrier
frequency f0. 2) With Td > T = τ , there is a single peak inside
the dashed sinc envelope (one long rectangular pulse).

Go back 54 / 56
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Discussion

The complex amplitude of the received signal is

Ac = A exp

[
j

(
θ − 4π

λ
R0

)]
If we could measure Ac, how can we extract information on the
range R0?

Answer: By varying the wavelength λ, we control the phase due to
R0. For instance, using two wavelengths λ1 and λ2 we get

Ac1

Ac2
= exp

[
−j4πR0

(
1

λ1
− 1

λ2

)]
⇒ R0 =

arg(Ac1/Ac2)

−j4π
(

1
λ1
− 1

λ2

)
(under the requirement that |4πR0(

1
λ1
− 1

λ2
)| < π).

Go back
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Discussion

Would a continuous wave radar be best for long or short ranges?

VCO

transmitting
antenna

receiving
antenna

90◦

Vtune

I

Q

Answer: High duty cycle implies low peak power and short range.

Go back
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