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Learning outcomes of this lecture

In this lecture we will
I Learn the origin of fluctuations in target RCS
I Describe the statistics of the fluctuations
I Characterize RCS decorrelation lengths
I Understand the basic assumptions of the Swerling fluctuation

models
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Sphere scattering

The scattering from a sphere can be computed analytically. This
gives very precise results, and spheres are often used as calibrating
targets at measurement sites.
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Sphere scattering

A sphere has the same backscattering in all directions due to
symmetry.
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Corner reflectors

A corner reflector has a strong backscattering in a large angular
interval. Dihedral = two walls, trihedral = three walls.

Discussion
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Multiple targets
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Two scatterers
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Two scatterers, RCS as function of angle
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Randomly distributed targets

Put out a number of randomly distributed targets.

With Ri a random variable, the RCS

σ =

∣∣∣∣∣
N∑
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√
σie
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2

also becomes a random variable, with some probability density
function as angle or frequency varies. However, once the scatterers
are fixed the model (including σ) is completely deterministic.
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Randomly distributed targets

The RCS as function of angle appears as a random variable, with
some probability density.
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Equal scatterers

A large number of approximately equal scatterers with uniformly
distributed phase have exponentially distributed RCS:

p(σ) =

{
1
σ̄ exp

[
−σ
σ̄

]
σ ≥ 0

0 σ < 0

where σ̄ is the mean. The amplitude voltage (ς =
√
σ) is Rayleigh

distributed:

p(ς) =

{
2ς
σ̄ exp

[
− ς2

σ̄

]
ς ≥ 0

0 ς < 0

For any RCS distribution pσ(σ), the corresponding amplitude

distribution pς(ς) is given by pς(ς) = 2ςpσ(ς2). This is seen from

1 =

∫
pσ(σ) dσ

σ→ς2
=

∫
pσ(ς2)2ς︸ ︷︷ ︸

=pς(ς)

dς

where dσ = d(ς2) = 2ς dς.
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One dominating scatterer

When the situation has one dominating and many small scatterers,
the RCS can be modeled by a fourth-degree chi-square distribution
(easier to handle analytically than the true Rician distribution):

p(σ) =

{
4σ
σ̄2 exp

[
−2σ

σ̄

]
σ ≥ 0

0 σ < 0
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Graphical comparison of the distributions

Discussion
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Matlab demo (see http://radarsp.com)
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RCS decorrelation

Decorrelation occurs when the observation of RCS is significantly
changed by an alteration of time, frequency, or angle. To estimate
when this occurs, consider the situation below.
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∣∣∣∣∣
M∑

i=−M

√
σie
−j2k·Ri

∣∣∣∣∣
2

= σ0

∣∣∣∣∣
M∑

i=−M
e−j2ki∆x sin θ

∣∣∣∣∣
2

= σ0
sin2[(2M + 1)k∆x sin θ]

sin2(k∆x sin θ)
20 / 37



RCS decorrelation

Introduce the total length L = (2M + 1)∆x of the collection of
scatterers:

σ = σ0
sin2(kL sin θ)

sin2(k∆x sin θ)

The first zero corresponds to kL sin θ = π, implying the correlation
lengths (using k = 2π/λ = 2πf/c and sin θ ≈ θ for small θ)

∆f =
c

2L sin θ
(frequency decorrelation)

∆θ =
λ

2L
(angle decorrelation)

L sin θ is the projected length of the target in boresight.

The book derives these values differently (from an autocorrelation
function), but the results are the same. However, different
definitions of decorrelation may apply in different applications.
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RCS correlation properties, width of target

Autocorrelation in angle for a rectangular target 5 m× 10 m. Note
that a wider target has shorter correlation length.
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RCS correlation properties, frequency agility

Variation in RCS due to frequency agility for 5 m× 10 m target.

Frequency agility can be used to decorrelate contributions from
clutter and atmospheric effects.

Discussion
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Detection framework

A radar with azimuth beamwidth θ3 and pulse repetition frequency
PRF is rotating at angular speed Ω rad/s. This provides

N =
θ3

Ω
PRF main beam samples per 360◦ sweep
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Swerling models

Extreme cases for decorrelation. The non-fluctuating case is
sometimes listed as the Swerling 0 or Swerling 5 case.

I The exponential distribution models many equal scatterers.

I Chi-square degree 4 models one dominant scatterer
surrounded by many small.

I Scan-to-scan decorrelation may occur for long scan times.

I Pulse-to-pulse decorrelation may occur for frequency agile
systems.

www.radartutorial.eu Discussion
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Different decorrelations, scan or pulse
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Example: choice of model

Consider the following scenario:

I Target: 10 m long, complex aircraft.

I Frequency: 10 GHz.

I Range: 30 km.

I Cross-range velocity: 200 m/s.

Choice of model:

I The complex nature of the aircraft with no clear dominating
scatterer suggests an exponential PDF.

I Decorrelation angle: ∆θ = λ
2L = 1.5 mrad = 0.86◦. This

corresponds to a flight time ∆t = R∆θ/v = 225 ms.

I If dwell time Td < 225 ms we expect coherence during
pulse-to-pulse and choose Swerling 1.

I If dwell time Td > 225 ms the signal is decorrelated within the
PRI, and we choose Swerling 2.
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Doppler shift

A target traveling at radial velocity v cosψ towards the radar
causes a frequency shift f → f + fd. After demodulation (removal
of carrier frequency f), the baseband signal will ideally be

y[m] = Aej2πfdmT

where fd is easily detected by a Fourier transform of the data y[m].
However, amplitude fluctuations may change this (A→ A[m]).
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Doppler spectrum of fluctuating targets

More on Doppler processing in next lecture!
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Conclusions

I Interference causes fluctuations in RCS with viewing angle
and frequency, which may be modeled as random.

I Typical probability densities have been reviewed.

I An interactive matlab program is available for investigating
effects of number of scatterers, frequency, range etc.

I Decorrelations in angle and frequency have been quantified.

I The bounding cases of Swerling models have been presented.
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Discussion

Why do you think there are different sizes of the trihedrals in the
picture?

Answer: What matters is the size of the scatterer in terms of
wavelengths. The different sizes target different wavelengths.

Go back
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Discussion

What is the implication of a long tail in the probability distribution?

Answer: with a long tail (slow decrease), there is a higher
probability for extreme events.

Go back
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Discussion

With the frequency response below, what approximate mean (dB)
RCS would a frequency agile system detect, switching between the
different frequency bins? 0 dB, 10 dB, 20 dB, 30 dB, or 40 dB?

Answer: Around 20 dB (more exactly 18 dB).

Go back
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Discussion

With a decorrelation time of ∆T , pulse repetition interval PRI,
and dwell time Td = npPRI, what is the condition for a Swerling 1
situation (scan-to-scan decorrelation), and a Swerling 2 situation
(pulse-to-pulse decorrelation)?

Answer:

I Swerling 1: Td > ∆T (or NTd > ∆T , with N being the
number of scan positions for a search radar)

I Swerling 2: PRI > ∆T
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