

EITN90 Radar and Remote Sensing Lecture 10: Machine learning approaches to radar signal analysis

Daniel Sjöberg

Department of Electrical and Information Technology

Learning outcomes of this lecture

In this lecture we will

- Give an introduction to machine learning and simple implementations.
- See how supervised learning has been used in radar target classification problems.
- Consider a case study and live demonstration for gesture recognition.

Outline

1 An overview of machine learning problems

- Ø ML in remote sensing
- 6 ML in target recognition
- **4** ML in micro-Doppler analysis
- **6** Case study: gesture recognition with an FMCW radar

6 Conclusions

Outline

1 An overview of machine learning problems

- 2 ML in remote sensing
- **3** ML in target recognition
- **4** ML in micro-Doppler analysis
- **5** Case study: gesture recognition with an FMCW radar

6 Conclusions

Some radar data representations

Classical PPI radar screen

Doppler-range plot

FIGURE 1-32 = 1 m resolution SAR image of the Washington, D.C., mall area. (Courtesy of Sandia National Laboratories. With

permission.)

SAR-image

Interpretation of the data may require a skilled operator.

Machine learning

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E. (*Tom Mitchell, 1997*)

The ML approach focuses on the data rather than how the data is generated. Four main problems are in focus:

- Classification
- Regression
- Clustering
- Dimensionality reduction

Solving different ML-problems with scikit-learn

An easy-to-use package: https://scikit-learn.org

More possibilities with https://www.tensorflow.org/

Different classifiers

Classification example: training data in 2D, blue or red dots distributed in three different ways.

Different ML approaches provide different predictions (the red and blue colored backgrounds).

In the following, we focus on support vector machines (SVM) for simplicity of presentation, but there are several alternatives.

Linear Support Vector Machine (SVM)

A linear support vector machine finds the widest linear separation of labeled training data (a hyperplane in higher dimensions).

SVM mathematics

Training data: $\{(x_1, y_1), \ldots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ is the observation and $y_i \in \{-1, 1\}$ is the classification. The parameters $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ are determined by a convex optimization problem:

Hard margin	Soft margin
(training data is separable)	(training data not separable)
$\begin{array}{ll} \mbox{minimize} & \frac{1}{2}w^{\rm T}w\\ \mbox{subject to} & y_i(w^{\rm T}x_i-b)\geq 1 \end{array}$	$ \begin{array}{ll} \mbox{minimize} & \frac{1}{2}w^{\mathrm{T}}w + C\sum_{i=1}^{n}\zeta_{i} \\ \mbox{subject to} & y_{i}(w^{\mathrm{T}}x_{i}-b) \geq 1-\zeta_{i} \\ & \zeta_{i} \geq 0, i=1,2,\ldots,n \end{array} $

Classification of new data is made using the decision function: $f(x) = \operatorname{sign}(w^{\mathrm{T}}x - b)$. SVMs are considered robust and able to learn from small sets of data.

Kernel trick

When data is not separable by a hyperplane, replace the scalar product $x^{T}x'$ with a product in a higher dimensional space, like

$$k(x,x') = \varphi(x)^{\mathrm{T}} \varphi(x'), \quad \text{where} \quad \varphi(x) = (a,b,a^2+b^2)$$

This can allow for finding a separating hyperplane in the higher dimension. A typical kernel is the radial basis function kernel,

$$k(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$$

Neural networks

Another popular model is artificial neural networks (ANN), connecting the inputs to the outputs via a sequence of functions (neurons) $y_k = \varphi(\sum_i w_{ki}x_i)$, where φ is the activation function and w_{ki} are the weights. The network may have many layers.

http://playground.tensorflow.org

Deep learning

Short detour to slides 8 and 12 in Deep Learning Basics 2019 from MIT, https://deeplearning.mit.edu/.

Preprocessing

In order to make the data more amenable to ML techniques, some preprocessing is usually required:

- Mean removal
- Scaling
- Normalization
- Binarization
- . . .

Identify the target set: what will be observed?

Select the feature set: what is important?

Observe the feature set: measure accurately

Test the feature set: train and use a classifier

- Identify the target set: what will be observed?
 - Broad classes of targets (humans, rabbits, cars, bikes...)
 - Variations within classes (adults, children, minivans, trucks...)
- Select the feature set: what is important?

Observe the feature set: measure accurately

Test the feature set: train and use a classifier

- Identify the target set: what will be observed?
 - Broad classes of targets (humans, rabbits, cars, bikes...)
 - Variations within classes (adults, children, minivans, trucks...)
- Select the feature set: what is important?
 - Maximize the similarity of objects in the same class while maximizing the dissimilarity of objects in different classes.
- Observe the feature set: measure accurately

Test the feature set: train and use a classifier

- Identify the target set: what will be observed?
 - Broad classes of targets (humans, rabbits, cars, bikes...)
 - Variations within classes (adults, children, minivans, trucks...)
- Select the feature set: what is important?
 - Maximize the similarity of objects in the same class while maximizing the dissimilarity of objects in different classes.
- Observe the feature set: measure accurately
 - Processing to increase SNR: averaging, background removal, pulse compression...
- Test the feature set: train and use a classifier

- Identify the target set: what will be observed?
 - Broad classes of targets (humans, rabbits, cars, bikes...)
 - Variations within classes (adults, children, minivans, trucks...)
- Select the feature set: what is important?
 - Maximize the similarity of objects in the same class while maximizing the dissimilarity of objects in different classes.
- Observe the feature set: measure accurately
 - Processing to increase SNR: averaging, background removal, pulse compression...
- Test the feature set: train and use a classifier
 - Supervised learning: each training observation is given a ground truth from the operator.
 - Unsupervised learning: the training data are clustered into classes, which are then used as ground truth.
 - Reinforced learning: learn from new data through feedback.

Outline

() An overview of machine learning problems

Ø ML in remote sensing

- **3** ML in target recognition
- **4** ML in micro-Doppler analysis
- **(5)** Case study: gesture recognition with an FMCW radar

6 Conclusions

General methodology

Geoscience Frontiers 7 (2016) 3-10

Research paper

Machine learning in geosciences and remote sensing David J. Lary^a, Amir H. Alavi^{b.,}, Amir H. Gandomi^c, Annette L. Walker^d

Image description process 1 Selection/Insertion of RSI 1 Insertion of Samples 1 Indication of Samples 1 Indication of Samples 1 Insertion of RSI 1 Insertion of

Figure 1. Steps of the classification process (dos Santos et al., 2010).

ML in remote sensing

ISPRS Journal of Photogrammetry and Remote Sensing 66 (2011) 247-259

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

Review article

Support vector machines in remote sensing: A review

Giorgos Mountrakis^{*}, Jungho Im, Caesar Ogole Department of Environmental Resources Engineering. SUNY College of Environmental Science and Forestry. I Forestry Dr. Syracuse. NY 13210. USA

Review paper summarizing many uses of ML in remote sensing. Results from a few papers are shown in the following, using multispectral data in each pixel to classify the terrain.

MULTISPECTRAL CLASSIFICATION OF LANDSAT IMAGES: A COMPARISON OF SUPPORT VECTOR MACHINE AND NEURAL NETWORK CLASSIFIERS

Nivedita Candade, Research Assistant Dr. Barnali Dixon, Assistant Professor University of South Florida, St. Petersburg 140 Seventh Ave South, St. Petersburg, FL 33701. Phone: 727 553 4863 neandade@mail.usf.edu bdixon@stpt.usf.edu

Original image characteristics Projection: UTM Zone 17N Spheroid: WGS 84 Datum: WGS 84 Unit: meters Pixel size: 30m Systematic Correction GeoTIFF format

Figure 3. Standard False-Color composite.Combination of bands 2,3 and 4.

Table 2. Description of Landsat TM bands

Band	Color	Wavelength (um)	Applications
Band 1	Blue	0.45-0.52	Separation of soil and vegetation
Band 2	Green	0.52-0.60	Reflection of vegetation
Band 3	Red	0.63-0.69	Chlorophyll absorption
Band 4	Near IR	0.76-0.90	Delineation of water boundaries
Band 5	Mid-IR	1.55-1.75	Vegetative moisture
Band 6	Far IR	10.4-12.5	Hydrothermal mapping
Band 7	Thermal	2.08-2.35	Plant heat stress

Classification results

									User's
	citrus j	pasture	sod	timber	urban	water	wetland	Total	Accuracy (%)
citrus	743	227	0) 0	0	0	264	1234	60
pasture	0	100	24	2		0	0	126	79
sod	0	0	68	: 0	0	0	0	68	100
timber	0	0	0	966	- 0	0	0	966	100
urban	0	0	0	0	15	0	0	15	100
water	0	0	0	0	- 0	892	0	892	100
wetland	0	1	0	0	- 0	0	1313	1314	100
Total	743	328	92	968	15	892	1577	4615	
Producer's									
Accuracy (%)	100	69	74	100	100	100	83		

Table 4. Neural Network, SBP

Overal	accuracy=	88.7%
--------	-----------	-------

Table 5. SVM- Polynomial kernel, degree 3, c=1000

									User's
	citrus pa	sture	sod	timber	urban	water	wetland	Total	Accuracy (%)
citrus	1211	4	0	18	0	0	1	1234	98
pasture	0	85	36	5	0	0	0	126	67
sod	0	0	68	0	0	0	0	68	100
timber	0	0	0	966	0	0	0	966	100
urban	0	0	0	0	15	0	0	15	100
water	0	0	0	0	0	892	0	892	100
wetland	2	0	0	3	0	0	1309	1314	100
Total	1213	89	104	992	15	892	1310	4615	
Producer's									
Accuracy (%)	100	96	65	97	100	100	100		

Overall accuracy= 98.48% Table 7. Linear kernel, c=1000

Table 6. RBF kernel, nu=0.01

									User's
	citrus	pasture s	sod	timber u	ırban	water	wetland	Total	Accuracy (%)
citrus	1049	0	0	22	0	0	163	1234	85
pasture	0	116	1	9	0	0	0	126	92
sod	0	0	68	0	0	0	0	68	100
timber	0	0	0	966	0	0	0	966	100
urban	0	0	0	0	15	0	0	15	100
water	0	0	0	0	0	892	0	892	100
wetland	0	0	0	0	0	0	1314	1314	100
Total	1049	116	69	997	15	892	1477	4615	
Producer's									
Accuracy (%)	100	100	- 99	97	100	100	89		
		0				1970/			

Overall accuracy= 95.77%

									User's
	citrus	pasture	Sod	timber	urban	water	wetland	Total	Accuracy (%)
citrus	1054	- 0	0	28	: 0	0	152	1234	85
pasture	0	112	6	8		0 0	0	126	89
sod	0	0	68	0	. 0	0	0	68	100
timber	0	0	0	966	i (0	0	966	100
urban	0	0	0	0	15	0	0	15	100
water	0	0	0	0	0	892	0	892	100
wetland	0	0	0	0		0	1314	1314	100
Total	1054	112	74	1002	15	892	1466	4615	
Producer's									
Accuracy (%)	100	100	92	96	100	100	90		

Overall accuracy=95.79%

The training data consisted of 350 samples, 50 pixels per class. The SVMs learn with few number of samples.

c. Linear kernel

d. Neural network

	10	Table 8. Alea coverage of the models in 76									
	citrus	pasture	sod	timber	urban	water	wetland				
NN-classifier	13	3 30.5	13.67	22.81	3.11	0.72	16.12				
SVM-poly	15	5 22	14.83	32.83	3.64	0.74	11				
SVM-RBF	15.18	3 21.59	13.78	30.7	3.5	0.93	14.25				
SVM-linear	15 57	7 27 94	7 36	30 59	3 45	0.93	14 16				

Figure 5. Classified maps using ANN and SVM classifiers

Table 8. Area coverage of the models in %

A Relative Evaluation of Multiclass Image Classification by Support Vector Machines

Giles M. Foody, Member, IEEE, and Ajay Mathur

Data	was	aquired	i k	n	11	spectra	
bands,	only	3 used	for	pro	oces	sing.	

			I Classes ↓	Predicto			DA
Total	Grass	Potato	Carrot	Barley	Wheat	Sugarbeet	$Actual \rightarrow$
97	0	7	0	0	3	87	Sugarbeet
96	0	0	1	2	90	3	Wheat
51	0	0	0	45	6	0	Barley
33	0	3	29	0	1	0	Carrot
26	1	23	0	0	2	0	Potato
17	14	2	1	0	0	0	Grass
320	15	35	31	47	102	90	Total
90.00%	accuracy =	Overall					
			Classes ↓	Predicto			DT
Total	Grass	Potato	Carrot	Barley	Wheat	Sugarbeet	$Actual \rightarrow$
97	1	2	0	1	4	89	Sugarbeet
96	2	0	1	6	79	8	Wheat
51	0	0	0	48	0	3	Barley
33	0	0	33	0	0	0	Carrot
26	1	23	0	0	2	0	Potato
17	17	0	0	0	0	0	Grass
320	21	25	34	55	85	100	Total
Total	Grave	Potato	Classes	Predicto	Wheel	Scoutboat	NN Asteril i
Total	Grass	Potato	Carrot	Barley	Wheat	Sugarbeet	$Actual \rightarrow$
	0	3	0	1	3	90	Sugarbeet
97				7	84	3	Wheat
97	1	0	1		2	0	Barley
97 96 51	0	0	1	49	-		
97 96 51 33	1 0 0	0	1 0 31	49 0	2	0	Carrol
97 96 51 33 26	1 0 0	0 0 23	1 0 31 0	49 0 0	2 2	0	Potato
97 96 51 33 26 17	1 0 1 17	0 0 23 0	1 0 31 0 0	49 0 0	2 2 0	0 0 0	Carrot Potato Grass
97 96 51 33 26 17 320	1 0 1 17 19	0 0 23 0 26	1 0 31 0 0 32	49 0 0 57	2 2 0 93	0 0 93	Carrot Potato Grass Total
97 96 51 33 26 17 320 91.88%	1 0 1 17 19 accuracy =	0 0 23 0 26 Overall	1 0 31 0 0 32	49 0 0 57	2 2 0 93	0 0 0 93	Carrot Potato Grass Total
97 96 51 33 26 17 320 91.88%	1 0 1 17 19 accuracy =	0 0 23 0 26 Overall	1 0 31 0 0 32 1 Classes ↓	49 0 0 57 Predicto	2 2 0 93	0 0 93	Carrol Potato Grass Total SVM
97 96 51 33 26 17 320 91.88% Total	1 0 1 17 19 accuracy =	0 0 23 0 26 Overall	1 0 31 0 32 1 Classes ↓ Carrot	49 0 0 57 Predicte Barley	2 2 0 93	0 0 93 Sugarbeet	Carrol Potato Grass Total SVM Actual →
97 96 51 33 26 17 320 91.88% Total 97	1 0 1 17 19 accuracy = Grass 1	0 0 23 0 26 Overall Potato 1	1 0 31 0 32 1 Classes ↓ Carrot 0	49 0 0 57 Predicto Barley 0	2 2 0 93 Wheat 6	0 0 93 Sugarbeet 89	Carrol Potato Grass Total SVM Actual → Sugarbeet
97 96 51 33 26 17 320 91.88% Total 97 96	1 0 1 17 19 accuracy = Grass 1 0	0 0 23 0 26 Overall Potato 1 0	1 0 31 0 32 1 Classes ↓ Carrot 0 1	49 0 0 57 Predicto Barley 0 5	2 2 0 93 Wheat 6 88	0 0 93 Sugarbeet 89 2	Carrol Potato Grass Total SVM Actual → Sugarbeet Wheat
97 96 51 33 26 17 320 91.88% Total 97 96 51	1 0 1 17 19 accuracy = Grass 1 0 0	0 0 23 0 26 Overall Potato 1 0 0	1 0 31 0 0 32 1 Classes ↓ Carret 0 1 0	49 0 0 57 Predicte Barley 0 5 49	2 2 0 93 Wheat 6 88 1	0 0 93 Sugarbeet 89 2 1	Carrol Potato Grass Total SVM Actual → Sugarbeet Wheat Barley
97 96 51 33 26 17 320 91.88% Total 97 96 51 33	1 0 1 17 19 accuracy = Grass 1 0 0	0 0 23 0 26 Overall Potato 1 0 0 0	1 0 0 31 0 0 32 1Classes ↓ Carrot 0 1 0 33	49 0 0 57 Predicte Barley 0 5 49 0	2 2 0 93 Wheat 6 88 1 0	0 0 93 Sugarbeet 89 2 1 0	Carrol Potato Grass Total SVM Actual → Sugarbeet Wheat Barley Carrot
97 96 51 33 26 17 320 91.88% Total 97 96 51 33 33 26	1 0 1 17 19 accuracy = Grass 1 0 0 0	0 0 23 0 26 Overall Potato 1 0 0 0 24	1 0 31 0 0 32 1 Classes ↓ Carrot 0 1 1 0 33 0	49 0 0 57 Predicto Barley 0 5 49 0 0	2 2 0 93 Wheat 6 88 1 0 2	0 0 93 Sugarbeet 89 2 1 0 0	Carrol Potato Grass Total SVM Actual → Sugarbeet Wheat Barley Carrot Potato
97 96 51 33 266 17 320 91.88% Total 97 96 51 33 326 17	1 0 0 1 17 19 accuracy = Grass 1 0 0 0 0 0 17	0 0 23 0 26 Overall Potato 1 0 0 0 0 24 0	1 0 31 0 0 32 Carret 0 1 0 33 0 0 0	49 0 0 57 Predicto Barley 0 5 49 0 0 0 0	2 2 0 93 93 Wheat 6 88 1 0 2 0	0 0 93 Sugarbeet 89 2 1 0 0 0	Carrol Potato Grass Total SVM Actual → Sugarbeet Wheat Barley Carrot Potato Grass

Fig. 3. Error matrices for the classifications derived from the DA, DT, NN, and SVM classifications trained with the largest training set (containing 100 cases of each class). For clarity, the main diagonal that indicates correct allocations has been highlighted.

Outline

1 An overview of machine learning problems

2 ML in remote sensing

6 ML in target recognition

4 ML in micro-Doppler analysis

(5) Case study: gesture recognition with an FMCW radar

6 Conclusions

Received August 30, 2016, accepted September 16, 2016, date of publication September 21, 2016, date of current version October 15, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2611492

Automatic Target Recognition in Synthetic Aperture Radar Imagery: A State-of-the-Art Review

KHALID EL-DARYMLI¹, (Member, IEEE), ERIC W. GILL², (Senior Member, IEEE), PETER McGUIRE^{2,3}, DESMOND POWER³, (Member, IEEE), AND CECILIA MOLONEY² (Member, IEEE)

¹Northern Radar Inc., St. John's, NL A1B 3E4, Canada
²Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
³C-CORE, St. John's, NL A1B 3X5, Canada

Thorough review of target recognition techniques, not only ML. Too much to go through here in detail.

Support Vector Machines for SAR Automatic Target Recognition

QUN ZHAO, Member, IEEE

JOSE C. PRINCIPE, Fellow, IEEE University of Florida

TABLE III									
Misclassification	Rates	and	Confuser	Rejection	Rates	(%)			

	BMP2	BTR70	T72	Average	Confuser Rejection
Template	11.58	2.04	10.14	9.60	53.47
Perceptron	9.71	0.00	5.84	6.67	27.19
OH	8.69	0.51	3.78	5.42	38.50
SVM	4.94	0.00	7.04	5.13	68.80

Fig. 3. (a) Illustration of pose. (b) SAR images of target T72, BTR70, BMP2 taken at different aspect angles.

Fig. 4. Classifier topology is depicted. First a pose estimator is applied to image and determines approximate pose of target, then classifier is chosen according to result of pose estimation.

when $P_d = 0.9$										
	BMP2	BTR70	T72	Rejection						
BMP2	483	59	9	36						
BTR70	4	188	en 0	4						
T72	43	16	427	96						
281	111	83	38	42						
D7	16	4	3	251						
(a) Template matching										
	BMP2	BTR70	T72	Rejection						
BMP2	436	16	41	83						
BTR70	0	194	0	2						
T72	18	16	502	51						
281	9	105	100	60						
D7	29	29 68 88								
(b) perceptron										
	BMP2	BTR70	T72	Rejection						
BMP2	443	9	42	88						
BTR70	0	193	1	2						
T72	16	6	519	46						
281	9	50	117	98						
D7	53	9	99	113						
(c) optimal hyperplane										
	BMP2	BTR70	T72	Rejection						
BMP2	511	14	15	47						
BTR70	0	195	0	1						
T72	31	10	453	88						
281	57	24	10	183						
D7	53	0	27	145						
(d) support vector machine										

TABLE IV Confusion Matrices (Counts) of Classifiers and Confuser Rejection when $P_a = 0.9$

SAR Target Recognition Based on Deep Learning

Sizhe Chen, Haipeng Wang

Key Laboratory for Information Sciences of Electromagnetic Waves (MoE) Fudan University, Shanghai, China Email: hpwang@fudan.edu.cn

Feature mans

Classification

		BMP2	BRDM2	BIRGO	BIR/0	<i>D</i> /	251	162	1/2	ZILISI	250234	accuracy (%)
	BMP2	157	9	2	9	0	4	0	4	6	4	80.5
	BRDM2	9	220	6	18	0	3	1	2	15	0	80.2
	BTR60	0	11	168	4	4	4	1	2	1	0	86.1
	BTR70	3	4	3	181	0	4	0	0	1	0	92.3
	D7	0	0	0	0	252	0	8	2	5	7	91.9
	281	14	9	5	5	0	190	7	22	21	1	69.3
	T62	2	1	5	0	4	7	242	3	7	2	88.6
	T72	3	3	1	1	0	8	2	168	9	1	85.7
	ZIL131	5	6	5	7	1	12	3	9	226	0	82.4
	ZSU234	1	1	3	0	4	1	2	7	6	249	90.8
average classification rate: 84.7%												

27 / 44

Outline

1 An overview of machine learning problems

- 2 ML in remote sensing
- **3** ML in target recognition

4 ML in micro-Doppler analysis

(5) Case study: gesture recognition with an FMCW radar

6 Conclusions

- Complex live targets like a waving hand, running horse, flying helicopter etc, present many different velocity components in a Doppler spectrum.
- Recording the Doppler spectrum as a function of time provides a 2D spectrogram a(f_d,t).
- The analysis of $a(f_d, t)$ is called micro-Doppler analysis.
- ML techniques can be used to identify features in the spectrograms and do classification.

Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine

Youngwook Kim, Member, IEEE, and Hao Ling, Fellow, IEEE

30 / 44

Human Detection and Activity Classification Based on Micro-Doppler Signatures Using Deep Convolutional Neural Networks

Youngwook Kim, Senior Member, IEEE, and Taesup Moon, Member, IEEE

Fig. 4. Outdoor measurements. (a) Human. (b) Dog. (c) Horse. (d) Car.

Outline

1 An overview of machine learning problems

- 2 ML in remote sensing
- **3** ML in target recognition
- **4** ML in micro-Doppler analysis

6 Case study: gesture recognition with an FMCW radar

6 Conclusions

Gesture recognition

In 2015, Google released a 60 $\rm GHz$ radar platform (Soli) for gesture recognition. Here, we will see that similar functionality can be achieved using the 24 $\rm GHz$ radar system from the lab.

Demonstration

The same radar equipment as used in the lab last Friday has been augmented with a simple gesture recognition program.

Principal operation of the radar system

FMCW operation, stepped frequency.

Signal model

After down-conversion, we form the analytic signal from I and Q: $s(t) = I(t) + jQ(t) = \underbrace{(Ae^{j(-4\pi(f_0+f_d)R/c+\phi)})}_{=A'}e^{j(2\pi f_d t - 4\pi\Delta f(t)R/c)}$

Sample the up-chirp and down-chirp signal at $t_n = n \Delta t$ with $\Delta f_n = n B/N$, and take the Fourier transform:

$$s_n = \begin{cases} A' \mathrm{e}^{\mathrm{j} n 2\pi (f_\mathrm{d} \Delta t - 2BR/(Nc))} & \text{up-chirp} \\ A' \mathrm{e}^{\mathrm{j} n 2\pi (f_\mathrm{d} \Delta t + 2BR/(Nc))} & \text{down-chirp} \end{cases} \implies \hat{s}_n = \mathrm{FFT}[s_n]$$

Combine M signals into one data frame:

$$\mathsf{one frame} = \left\{ \begin{pmatrix} |\hat{s}_{0}^{(0)}| & |\hat{s}_{1}^{(0)}| & \cdots & |\hat{s}_{N}^{(0)}| \\ |\hat{s}_{0}^{(1)}| & |\hat{s}_{1}^{(1)}| & \cdots & |\hat{s}_{N}^{(1)}| \\ \vdots & \vdots & \ddots & \vdots \\ |\hat{s}_{0}^{(M)}| & |\hat{s}_{1}^{(M)}| & \cdots & |\hat{s}_{N}^{(M)}| \end{pmatrix}_{\mathsf{up-chirp}}, \begin{pmatrix} |\hat{s}_{0}^{(0)}| & |\hat{s}_{1}^{(0)}| & \cdots & |\hat{s}_{N}^{(0)}| \\ |\hat{s}_{0}^{(1)}| & |\hat{s}_{1}^{(1)}| & \cdots & |\hat{s}_{N}^{(1)}| \\ \vdots & \vdots & \ddots & \vdots \\ |\hat{s}_{0}^{(M)}| & |\hat{s}_{1}^{(M)}| & \cdots & |\hat{s}_{N}^{(N)}| \end{pmatrix}_{\mathsf{down-chirp}} \right\}$$

Only the amplitudes of the $2M \times N$ complex numbers are used, and each frame is normalized with its peak value.

Choosing system parameters

- Carrier frequency $f_0 = 24 \, \text{GHz}$.
- Bandwidth $B = 425 \,\mathrm{MHz}$.
- Sampling time $\Delta t = 0.34 \,\mathrm{ms.}$
- Doppler shift $f_{\rm d} = \frac{2v}{c} f_0 = \frac{v}{1 \text{ m/s}} \frac{2 \cdot 24 \cdot 10^9}{3 \cdot 10^8} \text{ Hz} = \frac{v}{1 \text{ m/s}} 160 \text{ Hz}.$
- ► Sampled received signal $s_n = A' e^{jn2\pi (f_d \Delta t \mp \frac{2BR}{N_c})}$ (up- and down-chirp).
- ▶ Phase shift relative to 2π at n = N, $R = 0.5 \,\mathrm{m}$, $v = 1 \,\mathrm{m/s}$:

$$\begin{array}{ll} \mbox{Range:} & N \frac{2BR}{Nc} = \frac{2 \cdot 425 \cdot 10^6 \cdot 0.5}{3 \cdot 10^8} = 1.4 \\ \mbox{Doppler:} & N f_{\rm d} \varDelta t = N \cdot 160 \cdot 0.34 \cdot 10^{-3} = 0.054 N \end{array}$$

The choice N=32 makes range and Doppler almost equally balanced with more than 2π phase change.

• Dwell time $T_{\rm d} = N \Delta t = 32 \cdot 0.34 \cdot 10^{-3} \, {\rm s} = 0.011 \, {\rm s}.$

▶ Collecting M = 16 dwells in one frame gives aquisition time $T_{\rm f} = 2MT_{\rm d} = 2 \cdot 16 \cdot 0.011 = 0.35 \, {\rm s}$, in the order of the time of a typical gesture.

Each raw data frame goes through the following processing:

- Background subtraction.
- Estimation and subtraction of a ramp signal.
- ► Fourier transform (FFT).
- Taking the amplitude and normalizing by the maximum amplitude in the frame.

A number of frames are used for training the SVM, which is subsequently used to classify gestures performed.

Gestures

Additional gestures evaluated

- Static: a hand at different altitudes above the sensor (separated roughly by the resolution c/(2B) = 35 cm).
- Circle: clockwise or counter-clockwise rotation of index finger in non-radial motion (should be difficult to distinguish).
- Soli gestures:

Each gesture was repeated until 100 frames had been recorded. For $1 \le n \le 29$, n frames were chosen for training and 70 frames for evaluation. The selection was random, and the outcome averaged over 100 selections.

Results for different sets of gestures

Discussion of the gesture recognition system

- The system can distinguish between movements with significantly different Doppler spectrograms.
- The system performs well for thumb up/mid/down, and static poses separated by the resolution.
- The system performs less well for non-radial motion, and micro-motions like the Soli gestures.
- With one single sensor, the gestures need to be adapted to the sensor; with several sensors, more relaxed requirements for the gestures are expected.
- Unsupervised learning can be implemented.

Discussion of the gesture recognition system

- The system can distinguish between movements with significantly different Doppler spectrograms.
- The system performs well for thumb up/mid/down, and static poses separated by the resolution.
- The system performs less well for non-radial motion, and micro-motions like the Soli gestures.
- With one single sensor, the gestures need to be adapted to the sensor; with several sensors, more relaxed requirements for the gestures are expected.
- Unsupervised learning can be implemented.
- Very short development time: a fully functioning system after one weekend!

Outline

1 An overview of machine learning problems

- 2 ML in remote sensing
- **3** ML in target recognition
- **4** ML in micro-Doppler analysis
- **5** Case study: gesture recognition with an FMCW radar

6 Conclusions

Conclusions

- Some ML approaches to radar signal analysis have been reviewed, with particular emphasis to supervised learning using SVMs.
- Terrain classification in SAR images has been performed based on multispectral data in each pixel.
- Target classification in SAR images may require an initial pose estimation. Open data is scarce.
- Gesture classification in Doppler spectrogram is a field of current research and implementation, expected to emerge in consumer products.