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Learning outcomes of this lecture

In this lecture we will

Learn the origin of fluctuations in target RCS

Describe the statistics of the fluctuations

Characterize RCS decorrelation lengths

Understand the basic assumptions of the Swerling fluctuation
models
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Sphere scattering

The scattering from a sphere can be computed analytically. This
gives very precise results, and spheres are often used as calibrating
targets at measurement sites.

FIGURE 7-1 = [
Examples of RCS
calibration spheres.
(Courtesy of
Professor Nadav
Levanon, Tel-Aviv
University.)
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Sphere scattering

A sphere has the same backscattering in all directions due to

FIGURE 6-12 =
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Corner reflectors

A corner reflector has a strong backscattering in a large angular

interval. Dihedral = two walls, trihedral = three walls.

FIGURE 7-3 =
Corner reflectors.
(a) Dihedrals.

(b) Trihedrals.
(Courtesy of
Professor Nadav
Levanon, Tel-Aviv
University.)
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Multiple targets
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When several scatterers are subjected to an incident wave
Ege 7% B the backscattering is (complex addition)
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Two scatterers
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Two scatterers, RCS as function of angle

FIGURE 7-5 =
Relative radar cross
section of the
dumbbell target of
Figure 7-4 when

D =55 and

R =10,000 D.

FIGURE 7-6 =
Polar plot of the data
of Figure 7-5.

10/37



Outline

@ Radar cross section of complex targets

11/37



Randomly distributed targets

Put out a number of randomly distributed targets.

FIGURE 7-7 = Ly
Random distribution L — d -
of 50 scatterers 2 ° d o ° o Ly
used to obtain © ° e e
Figure 7-8. See text B * L ° °
for additional details. g !l ° R
g © @ ° T )
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With R; a random variable, the RCS

N 2
o= E oo 12k B
i=1

also becomes a random variable, with some probability density
function as angle or frequency varies. However, once the scatterers
are fixed the model (including o) is completely deterministic.
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Randomly distributed targets

The RCS as function of angle appears as a random variable, with
some probability density.

FIGURE 7-8 » s
Relative RCS of the
complex target of
Figure 7-7 at arange 20
of 10 km and radar
frequency of 215
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Equal scatterers

A large number of approximately equal scatterers with uniformly
distributed phase have exponentially distributed RCS:

soxp[=Z] 020
p(a)_{o o <0

where G is the mean. The amplitude voltage (¢ = /o) is Rayleigh

distributed:
Bexp -S| ¢>0
oo = {E v [-5]
0 ¢<O0

For any RCS distribution p, (o), the corresponding amplitude
distribution p.(<) is given by pc(s) = 2¢po(s?). This is seen from

o 2
- / po(0) dor 72 / po(s2)26 d
——

=p<(<)
where do = d(gQ) = 2¢dg.
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One dominating scatterer

When the situation has one dominating and many small scatterers,
the RCS can be modeled by a fourth-degree chi-square distribution
(easier to handle analytically than the true Rician distribution):

4o 20
_JFew[-F] 020
p(o) =
0 <0
=4
g
[=]
=
IE
E
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450

FIGURE 7-10 »
Comparison of a
fourth-degree
chi-square PDF and
the histogram of
linear-scale RCS
data for one
dominant scatterer
with many small
scatterers. See text
for details.
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TABLE 7-1 = Common Statistical Models for Radar Cross Section

Model Name PDF for RCS o Comment
Nonfluctuating, p(o)=8p(oc—3&) Constant echo power, ¢.g. calibration
Marcum, var (o) =0 sphere or perfectly stationary reflector
Swerling 0, or with no radar or target motion.
Swerling 5
Exponential p (o) = —exp [ ] Many scatterers, randomly distributed,
- . & ) e - )
(chi-square of var (o) = &2 none dominant. Used in Swerling case 1
degree 2) and 2 models.
. N 4o —20 o N
Chi-square of p(o)= —exp|— Approximation to case of many small
degree 4 Uiz 5 e scatterers + one dominant, with RCS of
var (o) = / dominant equal to | ++/2 times the sum
of RCS of others. Used in Swerling case
3 and 4 models.
m—1 -
Chi-square of plo)= L_ {@] exp [ ‘_mj] Generalization of the two preceding
'mé L& & . o e )
degree 2im, . cases. Weinstock cases correspond to
Weinstock var (0) = 5“/"1 0.6 < 2m < 4. Higher degrees corre-
spond to presence of a more dominant
single scatterer.
Weibull pla)=CBo lexp [—Bacl Empirical fit to many measured target
=T (l + l/C) B-1< and clutter distributions. Can have longer
2c 5 “tail” than previous cases.
var(@) = B=C [T (14+2/C) = T2 (1+1/C)]
1 2 2
Log-normal plo)= exp|—In" (¢/g 25° Empirical fit to many measured target
e[ on) /2]

var (@) = o exp (5°) [exp (s7) — 1]

and clutter distributions. “Tail” is longest
of previous cases. oy, is the median value
of g.
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Graphical comparison of the distributions

FIGURE 7-12 = 15
Comparison of five E;
models for the eibull
probability density _% y— Log normal
function of radar g i q Jegree =4
cross section with % 1 /
the same mean g
(except for the K )
exponential) and E l
variance. See text @ 05 [ N \
for additional details. k| K
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Matlab demo

see http://radarsp.com

RCS -
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Note: Red line designates calculated decorralation angle (c/2LF)
Black line designates first local minimum
Green line designates drop under 25% of the autocorrelation at zero
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RCS decorrelation

Decorrelation occurs when the observation of RCS is significantly
changed by an alteration of time, frequency, or angle. To estimate

when this occurs, consider the situation below.

FIGURE 7-13 = ™
Geometry for 5
calculation of RCS 1
correlation length in
frequency and
aspect angle.

M M 2
o= § \/OfiefJZk-Ri =09 § : efJZkle sin 6
i=—M i=—M

i=—

sin?[(2M + 1)kAz sin 6]
sin?(k Az sin 0)
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RCS decorrelation

Introduce the total length L = (2M + 1) Az of the collection of
scatterers:

sin?(kL sin 0)
00 57 A N

sin®(kAx sin )
The first zero corresponds to kL sinf = m, implying the correlation
lengths (using k = 27/A = 27 f/c and sinf ~ 6 for small 6)

Af = 2L sme (frequency decorrelation)
A .
A= 2L (angle decorrelation)

Lsin @ is the projected length of the target in boresight.

The book derives these values differently (from an autocorrelation
function), but the results are the same. However, different
definitions of decorrelation may apply in different applications.
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RCS correlation properties, width of target

Autocorrelation in angle for a rectangular target 5m x 10 m. Note

that a wider target has shorter correlation length.

FIGURE 7-14 =
Decorrelation in
angle of RCS of
target from

Figure 7-8. See text
for details.
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RCS correlation properties, frequency agility

Variation in RCS due to frequency agility for 5m x 10 m target.

FIGURE 7-15 = 40 —
Variation in RCS due
to frequency agility
for a constant
viewing angle. See
text for details.
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Frequency agility can be used to decorrelate contributions from
clutter and atmospheric effects.

23/37



Outline

O Target fluctuation models

24 /37



Detection framework

A radar with azimuth beamwidth 63 and pulse repetition frequency
PRF is rotating at angular speed Q2rad/s. This provides

0
N = EBPRF main beam samples per 360° sweep

77 FIGURE 7-16 »
‘w Rotating antenna
rationale for
A Swerling model
decorrelation
assumptions.
Echoes from a given
target are collected
Q in blocks. Each
rotation of the
antenna results in a
new block, and each
block contains
multiple pulse
returns.

Radar
25 /37



Swerling models

Extreme cases for decorrelation. The non-fluctuating case is
sometimes listed as the Swerling 0 or Swerling 5 case.

TABLE 7-3 = Swerling Models

Decorrelation

Probability Density

Function of RCS Scan-to-Scan Pulse-to-Pulse
Exponential Case 1 Case 2
Chi-square, degree 4 Case 3 Case 4

» The exponential distribution models many equal scatterers.

» Chi-square degree 4 models one dominant scatterer
surrounded by many small.

» Scan-to-scan decorrelation may occur for long scan times.

» Pulse-to-pulse decorrelation may occur for frequency agile
systems.

www.radartutorial.eu
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Different decorrelations, scan or pulse

4 FIGURE 7-17 =
| ‘ Notional sequences
35 of Swerling target
samples. Results
3 from three scans
with 10 pulses per
K] 25 scan are shown.
E B (a) Swerling case 1.
g (b) Swerling case 4.
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Example: choice of model

Consider the following scenario:
> Target: 10 m long, complex aircraft.
> Frequency: 10 GHz.
> Range: 30 km.
» Cross-range velocity: 200m/s.
Choice of model:

» The complex nature of the aircraft with no clear dominating
scatterer suggests an exponential PDF.

» Decorrelation angle: Af = ﬁ = 1.5mrad = 0.86°. This

corresponds to a flight time At = RAf/v = 225 ms.
> If dwell time Ty < 225 ms we expect coherence during
pulse-to-pulse and choose Swerling 1.

> If dwell time Ty > 225 ms the signal is decorrelated within the
PRI, and we choose Swerling 2.

28 /37



Outline

@ Doppler spectrum of fluctuating targets
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Doppler shift

A target traveling at radial velocity v cos ) towards the radar
causes a frequency shift f — f + fq. After demodulation (removal
of carrier frequency f), the baseband signal will ideally be

y[m] _ Ae_j27rfme

where fq is easily detected by a Fourier transform of the data y[m)].

However, amplitude fluctuations may change this (A — A[m]).
FIGURE 8-1 =

Yy
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radial component of
relative velocity
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Doppler spectrum of fluctuating targets

FIGURE 7-18 = 10

Effect of amplitude ‘ ‘ ‘
fluctuations on
target Doppler
spectrum.

(a) 20-pulse Rayleigh
fluctuating
amplitude sequence.

(b) Spectrum of the
fluctuating and

nonfluctuating data. 11
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More on Doppler processing in next lecture!
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Conclusions

Interference causes fluctuations in RCS with viewing angle
and frequency, which may be modeled as random.

Typical probability densities have been reviewed.

An interactive matlab program is available for investigating
effects of number of scatterers, frequency, range etc.

Decorrelations in angle and frequency have been quantified.

The bounding cases of Swerling models have been presented.
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Discussion

Why do you think there are different sizes of the trihedrals in the
picture?
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Discussion

Why do you think there are different sizes of the trihedrals in the
picture?

Answer: What matters is the size of the scatterer in terms of
wavelengths. The different sizes target different wavelengths.
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Discussion

What is the implication of a long tail in the probability distribution?
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Discussion

What is the implication of a long tail in the probability distribution?
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Answer: with a long tail (slow decrease), there is a higher
probability for extreme events.
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Discussion

With the frequency response below, what approximate mean (dB)
RCS would a frequency agile system detect, switching between the
different frequency bins? 0dB, 10dB, 20dB, 30dB, or 40dB?

FIGURE 7-15 = 40 —
Variation in RCS due

to frequency agility 35

for a constant

A 30
viewing angle. See

text for details.
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Discussion

With the frequency response below, what approximate mean (dB)
RCS would a frequency agile system detect, switching between the
different frequency bins? 0dB, 10dB, 20dB, 30dB, or 40 dB?

FIGURE 7-15 40
Variation in RCS due
to frequency agility
for a constant
viewing angle. See
text for details.

35

30

25

20

Relative RCS (dB)

15

10

5

0

|

L
10

10.037

10.074
RF Frequency (GHz)

Answer: Around 20dB (more exactly 18 dB).

10.111

10.148
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Discussion

With a decorrelation time of AT, pulse repetition interval PRI,
and dwell time Tq = n, PRI, what is the condition for a Swerling 1

situation (scan-to-scan decorrelation), and a Swerling 2 situation
(pulse-to-pulse decorrelation)?
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Discussion

With a decorrelation time of AT, pulse repetition interval PRI,
and dwell time Tq = n, PRI, what is the condition for a Swerling 1
situation (scan-to-scan decorrelation), and a Swerling 2 situation
(pulse-to-pulse decorrelation)?

Answer:

» Swerling 1: Ty > AT (or NTgq > AT, with N being the
number of scan positions for a search radar)

» Swerling 2: PRI > AT
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