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Lunch lectures at Axis Communications next week

I Wednesday March 6.
I 12:15 Lunch sandwich is served
I 13:00–15:00 Radar lectures with speakers from Axis AB and

Acconeer AB, two local companies with radar activities.
I Companies interested in students who know radar.

The lunch and the lectures are held at Axis Communications AB in
Lund. It is at the main Axis building at Emdalavägen 14 (15
minute walk from LTH). Sign up on the sheet circulated at this
lecture or send Daniel an email!
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Learning outcomes of this lecture

In this lecture we will
I Introduce matched filters
I See how pulse compression can improve range resolution
I Study the linear frequency modulated waveform
I See how the ambiguity function can be used to analyze

waveforms
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Radar waveforms

Many different waveforms are used in radars, taking many system
requirements and constraints into account: bandwidth, power,
Doppler tolerance, sidelobes, range resolution etc.
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General time-invariant filtering

After filtering the received signal xr(t) through any linear,
time-invariant filter h(·) the signal is

y(t) =

∫ ∞
−∞

h(t− α)xr(α) dα

With a time delayed received signal xr(t) = x(t− td) we have

y(t) =

∫ ∞
−∞

h(t− α)x(α− td) dα

The amplitude |y(t)| can be estimated using the Schwartz
inequality

|y(t)| ≤
(∫ ∞
−∞
|h(t− α)|2 dα

)1/2

·
(∫ ∞
−∞
|x(α− td)|2 dα

)1/2

= (energy of filter)1/2 · (energy of signal)1/2

where the values of t or td do not matter in the last expression.
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Matched filter

With knowledge of the transmitted signal x(t), we can choose the
matched filter

h(t) = x∗(−t)

With this particular choice, we have the output

y(t) =

∫ ∞
−∞

h(t− α)x(α− td) dα =

∫ ∞
−∞

x∗(α− t)x(α− td) dα

This is maximized at t = td (demonstrating the optimality of the
matched filter since the maximum is attained)

max
t
|y(t)| = y(td) =

∫ ∞
−∞
|x(α− td)|2 dα =

∫ ∞
−∞
|x(α)|2 dα

which is proportional to the energy of the pulse waveform x(t).
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Matched filter as maximizing SNR

Convolution in time domain corresponds to multiplication in
frequency domain, or

Y (ω) = H(ω)Xr(ω) = H(ω)X(ω)e−jωtd

⇒ y(t) =
1

2π

∫ ∞
−∞

H(ω)X(ω)ejω(t−td) dω

With white noise N(ω) = N0, the total received noise power is

n2(t) =
N0

2π

∫ ∞
−∞
|H(ω)|2 dω

Hence the SNR at t = td is

SNR =
|y(td)|2

n2(t)
=
|
∫∞
−∞H(ω)X(ω) dω|2

N0

∫∞
−∞ |H(ω)|2 dω

which is maximized for H(ω) = X∗(ω) or h(t) = x∗(−t).
Discussion
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Example: rectangular pulse

For the simple rectangular pulse (setting td = 0)

x(t) = A, −τ
2
≤ t ≤ τ

2
the matched filter is

h(t) = A, −τ
2
≤ t ≤ τ

2
and the filtered response is

y(t) =

{
A2(τ + t) −τ ≤ t ≤ 0

A2(τ − t) 0 ≤ t ≤ τ
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Generic response

For general waveforms, the filtered response is typically described
in terms of mainlobe and sidelobes.
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Resolution

The Rayleigh resolution criterion is that the peak of one target is
at the null of the second target.

The above figure corresponds to the matched filter response of
rectangular pulses.
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Fourier uncertainty principle

The widths of a signal of zero mean in time and frequency domain
can be defined by

Dt =

√∫∞
−∞ t

2|y(t)|2 dt∫∞
−∞ |y(t)|2 dt

Dω =

√∫∞
−∞ ω

2|Y (ω)|2 dω∫∞
−∞ |Y (ω)|2 dω

The product of these widths is bounded below as

DtDω ≥
√
π

2

with equality for Gaussian signals. This motivates that resolution
in time (range) is inversely proportional to frequency bandwidth.

δR = κ
c

2B

κ ≈ 1, definitions of resolution and bandwidth often chosen to
conform with this formula. 14 / 57



Phase difference between two targets

Two targets separated by the Rayleigh resolution can present
radically different responses depending on phase difference.
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LFM waveform

A baseband linear frequency modulated waveform (LFM) is

x(t) = A cos

[
πτB

(
t

τ

)2
]
, −τ

2
≤ t ≤ τ

2

The waveform is characterized by the time-bandwidth product τB
and normalized time t/τ .
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Instantaneous frequency

The instantaneous phase is φ(t) = πτB(t/τ)2, and
instantantaneous frequency is

fi(t) =
1

2π

dφ

dt
=
B

τ
t, −τ

2
≤ t ≤ τ

2

The linear change motivates the term linear frequency modulation.
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LFM spectrum

The LFM spectrum has a relatively flat spectrum across bandwidth
B. Flatness and roll-off improves as time-bandwidth product τB
increases.
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Matched filter response

The matched filter response for the LFM waveform is

y(t) =

∫ ∞
−∞

x∗(α− t)x(α) dα =

(
1− |t|

τ

) sin
[(

1− |t|τ
)
πτB t

τ

]
(
1− |t|τ

)
πτB t

τ

, |t| ≤ τ

The peak is much more narrow than total pulse width τ !
Discussion
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Range resolution

For large values of τB, the first null occurs at t ≈ 1/B. With
range R = ct/2, the Rayleigh resolution in range is

δR =
c

2B

The −4 dB pulsewidth is 1/B. The width of the main lobe is
compressed by a factor of about τ

1/B = τB.
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Dispersive filters

Filters having frequency dependent group delay

tgd = − dφ(ω)

dω
=

τ

2πB
ω

can both stretch and compress waveforms. One implementation is
surface acoustic wave (SAW) technology:

The device couples electromagnetic energy to acoustic waves,
where the coupling is strongest when the distance between the
metal fingers correspond to λ/2 for the acoustic wave. Chirping is
obtained by different acoustic propagation lengths. Works up to
about 3GHz, high insertion loss. 23 / 57



Digital filters

With a digitized signal, the matched signal can be implemented
using the Fast Fourier Transform (FFT) of the analytic signal
x[n] = xI[n] + jxQ[n]:

y[n] = FFT−1{H[·]X[·]}[n], X[k] = FFT{x[·]}

Error correction is obtained by transmitting a pilot pulse and
recording the received (distorted) signal, taking into consideration
imperfections in the transmit/receive chain.
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Sidelobe reduction

Sidelobes of the compressed pulse can be reduced by weighting the
filter in amplitude. The cost is an increased mainlobe width.
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Reduced resolution

When increasing the sidelobe suppression, the resolution is
decreased.
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Sidelobe suppression, time-bandwidth product

The theoretical sidelobe reduction is achieved when the weighting
is applied to a rectangular spectrum. A real LFM has some
additional spread, which is reduced as τB →∞.
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Matlab demo, http://radarsp.com

FRSP Demos/FRSP GUI Demos/FRSP LFM-GUI
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Ambiguity function

Taking into account the possibility of both time delay and Doppler
shift, the received signal is

xr(t) = ej2πfdtx(t− td)

Centering the waveform over td = 0 and applying the matched
filter and normalizing x with its energy, we find the ambiguity
function

A(t, fd) =

∫∞
−∞ x(α)e

j2πfdαx∗(α− t) dα∫∞
−∞ |x(α)|2 dα

This function satisfies∫ ∞
−∞

∫ ∞
−∞
|A(t, fd)|2 dtdfd = 1 and |A(t, fd)| ≤ |A(0, 0)| = 1

Discussion
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Ambiguity for a simple rectangular pulse

For an unmodulated pulse,

x(t) =
1√
τ
, −τ

2
≤ t ≤ τ

2

the ambiguity function can be calculated as

A(t, fd) =

(
1− |t|

τ

) sin
[
πfdτ

(
1− |t|τ

)]
πfdτ

(
1− |t|τ

) , |t| ≤ τ

Depends on normalized time t/τ and normalized Doppler shift fdτ .
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Ambiguity for a simple rectangular pulse
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Similar to Fig 20-15 in the book. Using a matlab script, you can
plot the figure in 3D and rotate.
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Ambiguity function for LFM waveform

For a linear frequency modulated pulse

x(t) =
1√
τ
exp

(
jπ
B

τ
t2
)
, |t| ≤ τ

the ambiguity function can be calculated as

A(t, fd) =

∣∣∣∣∣∣
(
1− |t|

τ

) sin
[
πτB

(
1− |t|τ

)(
fd
B + t

τ

)]
πτB

(
1− |t|τ

)(
fd
B + t

τ

)
∣∣∣∣∣∣ , |t| ≤ τ

Depends on normalized time delay t/τ and normalized Doppler
shift fd/B, with time-bandwidth parameter τB.
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Ambiguity function for LFM waveform, τB = 20
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Similar to Fig 20-16. Can also be plotted with the matlab script in
3D and rotated.

The ridge along the diagonal means delay/range can be mistaken
for Doppler shift.

35 / 57



Ambiguity function for LFM waveform, different τB
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Range-Doppler coupling

From the formula

A(t, fd) =

∣∣∣∣∣∣
(
1− |t|

τ

) sin
[
πτB

(
1− |t|τ

)(
fd
B + t

τ

)]
πτB

(
1− |t|τ

)(
fd
B + t

τ

)
∣∣∣∣∣∣ , |t| ≤ τ

we see that a non-zero Doppler shift fd can be interpreted as

I Time shift ∆t = −fdτ/B
I Amplitude reduction by (1− |∆t|/τ) = (1− |fd/B|)

This leads to shifts in peak location, peak amplitude, and
decreased resolution due to peak widening.
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Degradations in presence of Doppler shift
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Matched filter response in presence of Doppler shift
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Degradation of side lobes

The effect of applying an amplitude taper to control sidelobes is
reduced in presence of Doppler shift.
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Phase modulation

Instead of modulating the frequency, the phase can be controlled,
typically in a digital way:
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Matched filter

Discussion
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Different phase codes

I Biphase codes
I Two phase states (+/−)
I Minimum peak sidelobes (MPS)
I Barker codes: achieve a 1 : N peak sidelobe to mainlobe ratio
I Maximum length sequence (MLS): length ` = 2n − 1, peak

sidelobes ∼ 1/
√
`

I Polyphase codes (not treated in this lecture)
I More than two phase states: more degrees of freedom
I Frank, P1, P2, P3, P4
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Thumb-tack ambiguity function

Careful design of the phase codes can result in a thumb-tack like
ambiguity function.

A number of filter banks can be used to search the Doppler space,
applying the matched filter at the output of each filter. Enables
simultaneous estimation of range and Doppler.
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Barker codes
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Minimal peak sidelobe (MPS)
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Examples of minimal peak sidelobe (MPS). . .
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Maximal length sequences
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Comparison LFM and biphase MLS, waveform

Higher average sidelobe levels in MLS, higher peak sidelobe in
LFM.
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Comparison LFM and biphase MLS, spectrum

The wide spectrum of MLS can be attributed to the abrupt
changes in phase. Can create an electromagnetic interference
problem.
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Conclusions

I Matched filters maximize SNR for a given waveform

I The resulting pulse compression improves range resolution

I The LFM is a generic waveform, sidelobes can be improved by
tapering

I Phase coding can produce very narrow ambiguity peaks, but
with a wide spectrum
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Discussion

Why is

SNR =
|y(td)|2

n2(t)
=
|
∫∞
−∞H(ω)X(ω) dω|2

N0

∫∞
−∞ |H(ω)|2 dω

maximized by H(ω) = X∗(ω)?

Answer: The Schwartz inequality∣∣∣∣∫ ∞
−∞

H(ω)X(ω) dω

∣∣∣∣2 ≤ (∫ ∞
−∞
|H(ω)|2 dω

)
·
(∫ ∞
−∞
|X(ω)|2 dω

)
implies

SNR ≤ 1

N0

∫ ∞
−∞
|X(ω)|2 dω

with equality for the choice H(ω) = X∗(ω).

Go back
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Discussion

Given the matched filter response for the LFM waveform is

y(t) =

∫ ∞
−∞

x∗(α− t)x(α) dα =

(
1− |t|

τ

) sin
[(

1− |t|τ
)
πτB t

τ

]
(
1− |t|τ

)
πτB t

τ

, |t| ≤ τ

where in the graph below can you find the value of πτB in dB?

Answer: For |t/τ | ≈ 1, we have |y(t)| ≈ 1/(πτB) ≈ −44 dB in
this graph.

Go back
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Discussion

The ambiguity function A(t, fd) =
∫∞
−∞ x(α)ej2πfdαx∗(α−t) dα∫∞

−∞ |x(α)|2 dα
satisfies∫ ∞

−∞

∫ ∞
−∞
|A(t, fd)|2 dtdfd = 1 and |A(t, fd)| ≤ |A(0, 0)| = 1

Given the above and a pulse shape with finite support,

|A(t, fd)|2 = 0 when |t| > τ and |fd| > B

what average value of |A(t, fd)|2 do you expect for |t| < τ and
|fd| < B? How should τ be chosen to minimize the average
ambiguity?

Answer: Since the integral of |A|2 equals 1, we should have the
average value

〈
|A|2

〉
= 1/(4τB). To minimize this, increase the

pulse length τ .

Interpretation: If you try to decrease |A|2 somewhere, it needs to
increase somewhere else.

Go back
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Discussion

With each chip consisting of a fixed frequency carrier wave
cos(2πf0t+ φ), with pulse length τchip, what is the chip bandwidth
Bchip and time-bandwidth product τB with τ = Nτchip and
B = Bchip?

Answer: Bchip = 1/τchip, τB = NτchipBchip = N . Hence, the
time-bandwidth product only depends on the number of chips, N .

Go back
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