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Lunch lectures at Axis Communications next week

Wednesday March 6.

12:15 Lunch sandwich is served

» 13:00-15:00 Radar lectures with speakers from Axis AB and
Acconeer AB, two local companies with radar activities.

» Companies interested in students who know radar.

The lunch and the lectures are held at Axis Communications AB in
Lund. It is at the main Axis building at Emdalavagen 14 (15
minute walk from LTH). Sign up on the sheet circulated at this
lecture or send Daniel an email!
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Learning outcomes of this lecture

In this lecture we will

Introduce matched filters

See how pulse compression can improve range resolution
Study the linear frequency modulated waveform

See how the ambiguity function can be used to analyze
waveforms

v

vV vy

FIGURE 1-1 =
Major elements

of the radar
transmission/
reception process.

Receiver
Protector
Switch Detection
and
Measurement
Results

Receiver
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Radar waveforms

FIGURE 20-1 »
Modern radars
select from and
employ many
waveform
modulations.

Radar Waveforms

CW Radars Pulsed Radars
Fixed Fixed
Frequency Frequency
Frequency Phase Intra-Pulse Inter-Pulse
Modulated Modulated Modulation Modulation
cw Ccw
| Frequency ‘ ‘ Phase ‘ | Frequency ‘ | Phase |

nlinear Polyphase

Many different waveforms are used in radars, taking many system
requirements and constraints into account: bandwidth, power,
Doppler tolerance, sidelobes, range resolution etc.
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General time-invariant filtering

After filtering the received signal x,(t) through any linear,
time-invariant filter h(-) the signal is

y(t) = / h(t — a)zs(a) da
—00
With a time delayed received signal x,(t) = x(t — tq) we have

y(t) = /00 h(t — a)z(a — tq) da

—00
The amplitude |y ()| can be estimated using the Schwartz
inequality

o< (f - a) " (" ot da>1/2

= (energy of filter)'/2 . (energy of signal)'/?

where the values of ¢ or ty do not matter in the last expression.



Matched filter

With knowledge of the transmitted signal x(¢), we can choose the
matched filter
h(t) = z*(=t)

With this particular choice, we have the output
y(t) = / h(t — a)z(a — tq) da = / ¥ (a—t)r(a—tq) da

This is maximized at ¢t = t4 (demonstrating the optimality of the
matched filter since the maximum is attained)

o0 (e.9]

maxy(0) = y(ta) = [ Jola~to)Pda= [ fo(@)[da

—00 —00

which is proportional to the energy of the pulse waveform z(t).
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Matched filter as maximizing SNR

Convolution in time domain corresponds to multiplication in
frequency domain, or

Y(w) = H(w)X;(w) = H(W)X(w)e_JWtd

/ H(w) X (w)e 1) g
27r

With white noise N (w) = Ny, the total received noise power is

N o0
w0 =50 [ @
Hence the SNR at t =t4 is

ly(ta)? 125 H(@)X (@) dwf?
w2t No (W)Pdw

which is maximized for H(w) = X*(w) or h(t) = z*(—1).

SNR =
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Example: rectangular pulse

For the simple rectangular pulse (setting tq = 0)

() =A, —L<t<?
2 2
the matched filter is

ht)=A, ——<t<i
2 2
and the filtered response is
—7<t<0
0<t<r

FIGURE 20-2 = The
simple pulse of
duration 7 has a
match filtered
response of
duration 27.

-7 0 7 Time Delay
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Generic response

FIGURE 20-3 = A
generic match
filtered response
includes the Mainlobe
mainlobe and Width
sidelobes.

0 Time Delay

For general waveforms, the filtered response is typically described
in terms of mainlobe and sidelobes.
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Resolution

The Rayleigh resolution criterion is that the peak of one target is
at the null of the second target.

FIGURE 20-4
Individual responses
from two point
targets separated by
the Rayleigh
. resolution.

Amplitude

-37/2 -7 —7/2 0 7/2 T 37/2
Time Delay

The above figure corresponds to the matched filter response of
rectangular pulses.
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Fourier uncertainty principle

The widths of a signal of zero mean in time and frequency domain
can be defined by
f°° 2ly(t)]* dt

“oe ()2 dt

f w2|Y )|2 dw
w) 2 dw

The product of these widths is bounded below as

™
DtDw > \/;

with equality for Gaussian signals. This motivates that resolution
in time (range) is inversely proportional to frequency bandwidth.

D:

5R—Klﬁ

k ~ 1, definitions of resolution and bandwidth often chosen to
conform with this formula.
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Phase difference between two targets

Two targets separated by the Rayleigh resolution can present
radically different responses depending on phase difference.

FIGURE 20-5 » ' i
Combined response . :
for two point targets : :
with phase
difference equal

to 0°.

Amplitude

-37/2 -7 -7/2 0
Time Delay

FIGURE 20-6 =
Combined response
for two point targets
with phase
difference equal to
180°.

Amplitude

-37/2 -7 -7/ 2 0 7/2 T 37/2

Time Delay 15 /57
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LFM waveform

A baseband linear frequency modulated waveform (LFM) is

2
t T T
x(t) = Acos |nTB | — , ——<t<—
T 2 2
1.0 FIGURE 20-7
0.8 Time-domain
0.6 response, within the
pulse, of a linear
0.4
° frequency
5 02 modulated (LFM)
2 0 waveform with a
Z 02 time-bandwidth
—04 product equal to 50.
0.6
-0.8
-1.0
0.5 0 05

Normalized Time t/7

The waveform is characterized by the time-bandwidth product 7B
and normalized time ¢ /7.
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Instantaneous frequency

The instantaneous phase is ¢(t) = 77 B(t/7)?, and
instantantaneous frequency is

1 d B T T
f =By Tl
2 dt T 2 2
FIGURE 20-8
Instantaneous g I
frequency versus '
time for an LFM g :
waveform. é g :
2 H
iF :
e :
zl' Time ;.
2 2
_B 1
2

The linear change motivates the term linear frequency modulation.
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LFM spectrum

The LFM spectrum has a relatively flat spectrum across bandwidth
B. Flatness and roll-off improves as time-bandwidth product 7B
increases.

5 FIGURE 20-9 =
Comparison of the
0 spectra of LFM
ﬁmwwmww waveforms with
time-bandwidth
products of 20 (light

curve) and 100 (dark
curve).

b

Amplitude (dB)
5

|
—
5

20 /‘Vf\v — Time-Bandwidth = 20 v/\Uﬂ

v J — Time-Bandwidth = 100 M \/\/\

-1 -05 0 05
Normalized Frequency f/B
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Matched filter response

The matched filter response for the LFM waveform is

e o= Be]

G (1—@) WTB% ’

y(t) = / ~ o0 — t)a(e) da = (1

—00

FIGURE 20-10 0
Match filtered
response for a -10
50 MHz, 1 usec LFM -13.2
waveform. 20
=
3
3
g 30
e
5 —40

-1 -0.5 0 0.5 1
Time (xs)

The peak is much more narrow than total pulse width 7!
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Range resolution

For large values of 7B, the first null occurs at t ~ 1/B. With
range R = ct/2, the Rayleigh resolution in range is

SR = —
2B

5 FIGURE 20-11
Mainlobe and first 3

0 sidelobes for the

_% LFM waveform
match filtered
-10 response with a

time-bandwidth

m/\ 100.
-4 -2 -1 05 0 05 1 2 3 4

Normalized Time tB

The —4 dB pulsewidth is 1/B. The width of the main lobe is
compressed by a factor of about 1/LB =7B.

product equal to
=20
-25
-30
-35 5
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Dispersive filters

Filters having frequency dependent group delay
dg(w) T

= —w
dw 27 B
can both stretch and compress waveforms. One implementation is

surface acoustic wave (SAW) technology:

tgd:*

L

The device couples electromagnetic energy to acoustic waves,
where the coupling is strongest when the distance between the
metal fingers correspond to A/2 for the acoustic wave. Chirping is
obtained by different acoustic propagation lengths. Works up to
about 3 GHz, high insertion loss.
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Digital filters

With a digitized signal, the matched signal can be implemented
using the Fast Fourier Transform (FFT) of the analytic signal
[n] = zi[n] + jrq[n]:

yln] = FET"{H[] X[]}n], X[k] = FFT{z[]}

Inphase 1) ayln] FIGURE 20-12
Fast convolution is
Signal Processor one way to

implement digital

Zo(t) zg[n]

Error correction is obtained by transmitting a pilot pulse and
recording the received (distorted) signal, taking into consideration
imperfections in the transmit/receive chain.

pulse compression.
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Sidelobe reduction

Sidelobes of the compressed pulse can be reduced by weighting the
filter in amplitude. The cost is an increased mainlobe width.

5 FIGURE 20-13 = A
0 —40dB, 7 = 4,
5 Taylor-weighted LFM
waveform
—_ -10 compressed
@ -15 response (solid
3 20 curve) has
£ 5 significantly reduced
g 30 sidelobes versus an
unweighted LFM
35 waveform response
-40 (dashed curve).
—45
50
-15 -10 -5 0 5 10 15
Normalized Delay tB

26 /57



Reduced resolution

When increasing the sidelobe suppression, the resolution is

decreased.

TABLE 20-2 = 4 dB Resolution Associated with a Taylor Weighting Function

Peak Sidelobe Ratio (dB)

—20 —25 —30 —35 —40 —45 —-50 —55 —60
n 4 dB Resolution Normalized by ¢/2B
2 1.15 1.19 1.21
3 1.14 1.22 1.28 1.33
4 1.12 1.22 1.29 1.36 1.42 1.46
5 1.11 1.20 1.29 1.36 1.43 1.49 1.54
6 1.10 1.19 1.28 1.36 1.43 1.50 1.56 1.61
7 1.09 1.19 1.28 1.36 1.43 1.50 1.56 1.62 1.67
8 1.08 1.18 1.27 1.35 1.43 1.50 1.57 1.63 1.68
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Sidelobe suppression, time-bandwidth product

The theoretical sidelobe reduction is achieved when the weighting
is applied to a rectangular spectrum. A real LFM has some
additional spread, which is reduced as 7B — cc.

FIGURE 20-14

A comparison of
time-sidelobe
responses for
time-bandwidth
products of 20 (solid
curve) and 100
(dashed curve) when
applying a —40 dB
Taylor weighting.

Amplitude (dB)

Normalized Delay tB
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Matlab demo, http://radarsp.com

FRSP Demos/FRSP GUI Demos/FRSP LFM-GUI

1

Amplitude
—— |

M ‘ 2\

T.me 1sec)

Magpnitude of Chirp Frequency Response

1 08 06 04 02 0 02 04 06 08
Frequency (Hz)/(Radians) 107

Magnitude

-pi o b

LEM —
Swept Bandwidth 10 MHz ‘Window Maximum dB 40

[ — View sddtionsl plots

Minimum dg -10
Pulse Length 10| microseconds w——

® teehre Percentage of total time wwm

oversampiing Rate |28 ] times bandwicth  Downchirp
chie eTpredct = b (0 Plot Using Log Scale 0 Normalize Values.
put Chirp Slg

Received Signal with Matched Filter

20

Amplitude (dB)

1 08 06 -04

02 0 0z 04 06 08 1
ClUnwrap phase 5
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4

3
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1
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2o
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1 05 0 [
Frequency (Hz)/(Radians) x107

i o pi
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Ambiguity function

Taking into account the possibility of both time delay and Doppler
shift, the received signal is

2 (t) = 2™l (t — tgq)

Centering the waveform over t4 = 0 and applying the matched
filter and normalizing x with its energy, we find the ambiguity
function

2 z(a)e?™av* (o — t) da
At = = Tr@)Pda

This function satisfies

/ / At fo)Pdtdfa =1 and |A(t, f2)] < |A(0,0)] =

31/57



Ambiguity for a simple rectangular pulse

For an unmodulated pulse,

at)= —=, —-=-<it<

-
VT 2

the ambiguity function can be calculated as

It] sin |7 fqT —@
A(t, fa) = (1 - é) W[qu_ (1< %>>}, ltf <

N[ 3

Depends on normalized time ¢/7 and normalized Doppler shift fq7.
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Ambiguity for a simple rectangular pulse

Ambiguity function simple pulse
Normalized Doppler shift fq7

0.5

5

7 05 0
Normalized Doppler shift fq7 Normalized delay ¢/7

-
Normalized delay t/7 05 1

Similar to Fig 20-15 in the book. Using a matlab script, you can
plot the figure in 3D and rotate.

33/57



Ambiguity function for LFM waveform

For a linear frequency modulated pulse

B
o(t) = ——exp (i), [H<r
VT T

the ambiguity function can be calculated as
gyl (-2) (5]
T ﬁTB(l—lTﬂ) (%—i—%) ,

Depends on normalized time delay ¢/7 and normalized Doppler
shift fq/B, with time-bandwidth parameter 7B.

[t| <7

At fo) = |(
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Ambiguity function for LFM waveform, 78 = 20

Ambiguity function, 7B = 20
Normalized Doppler shift fq/B

A

. ... . Normalized delay t/7 4 05 0 0.
Normalized Doppler shift fq/B Normalized delay /7

5 1

Similar to Fig 20-16. Can also be plotted with the matlab script in
3D and rotated.

The ridge along the diagonal means delay/range can be mistaken
for Doppler shift.
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different 7B

Ambiguity function for LFM waveform

05

Ambiguity function, 7B = 2

s S o o s 5 © o

a/vf s EEQGQ, vma.:w:,:oz

Ambiguity function, 7B =1

@/ s opddoqt porpeuioy

Normalized delay ¢/7

Normalized delay ¢/7

05

Ambiguity function, 7B =8

w

<

C e ® o3 oy oo oy v oo @ v
s s S ° ¢ ¢ ¢ ¢
a/Pf s werddo(q peziewIoN

3

Ambiguity function, 7B =4

/7 s wpddoq ponpeution
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Range-Doppler coupling

From the formula

iy B (-8 (6 +2)]
T I ’
T 7TTB<1—?) (%d-i-%)
we see that a non-zero Doppler shift fq can be interpreted as
» Time shift At = —fq7/B
» Amplitude reduction by (1 — |At|/7) = (1 — |fa/B|)

This leads to shifts in peak location, peak amplitude, and
decreased resolution due to peak widening.

lt| <7

atego) = |(
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Degradations in presence of Doppler shift

FIGURE 20-17 =
Time shift in the
peak of an LFM
waveform's match
filtered response
as a function of
Doppler shift.

FIGURE 20-18 =
Reduction in peak
amplitude as a
function of Doppler
shift.

Shift in Peak Location

Normalized by Pulse Width

secsceoscse g
s ZER8 &R &

Amplitude

—1 dB Resolution, Normalized to B

g5 &

B

04 06 08 1
Fractional Doppler Shift

10
09
08
07
06
05

04

03
02

04 06 08 1
Fractional Doppler Shift

02

04 0.6 08
Fractional Doppler Shift

FIGURE 20-19 =
Increase in —4 dB
mainlobe width as a
function of Doppler
shift.
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Matched filter response in presence of Doppler shift

Amplitude (dB)

=3

L
1)

0% FDS

25% FDS

02

03

04
Normalized Delay t/7

0.6

0.9

10

FIGURE 20-20 =
Individual LFM
match filtered
responses for
fractional Doppler
shifts of 0%, 25%,
50%, and 75%
illustrate both
reduction in peak
levels and
broadening of the
mainlobe.
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Degradation of side lobes

The effect of applying an amplitude taper to control sidelobes is
reduced in presence of Doppler shift.

FIGURE 20-21 = 5

Match filtered 15% FDS 0% FDS
response for a 0

—40 dB Taylor -5

weighted LFM

waveform with a
time-bandwidth
product of 200 and

Amplitude (dB)

a fractional Doppler -20

shift of 0% (dark -25

curve) and 15% 30

(light curve). Both

curves have been -35

normalized to the 40

peak of their —40 -30 -20 -10 0 10 20 30 40
responses. Normalized Delay tB
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Phase modulation

Instead of modulating the frequency, the phase can be controlled,
typically in a digital way:

1.0 FIGURE 20-25
Baseband (bottom)
. 05 and RF modulated
E (top) phase coded
S 0 waveform of length
g N=11.
0.5
10 2 4 6 8 10
1.0
% 0.5
g 0
0.5
-1.0
0 2 4 6 8 10
Normalized Delay /7,
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Matched filter

N Tnhip

Magnitude

1.0
0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

Tr:hip

-6

-2 0 2 4
Normalized Delay ¢/7

FIGURE 20-23 »
Biphase coded
waveforms consist
of chips exhibiting
2 possible phase
states.

FIGURE 20-24 =
Match filtered
response for the
Barker phase
coded waveform
(Figure 20-23)
maintains equal
peak sidelobes of
level 1/N.
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Different phase codes

» Biphase codes
» Two phase states (+/—)
» Minimum peak sidelobes (MPS)
» Barker codes: achieve a 1: N peak sidelobe to mainlobe ratio
» Maximum length sequence (MLS): length ¢ = 2™ — 1, peak
sidelobes ~ 1/v/¢
» Polyphase codes (not treated in this lecture)

» More than two phase states: more degrees of freedom
» Frank, P1, P2, P3, P4

44 /57



Thumb-tack ambiguity function

Careful design of the phase codes can result in a thumb-tack like
ambiguity function.

FIGURE 20-29 =
The ambiguity

=— surface associated
with some phase
coded waveforms is
a thumb tack.

A number of filter banks can be used to search the Doppler space,
applying the matched filter at the output of each filter. Enables
simultaneous estimation of range and Doppler.
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Barker codes

TABLE 20-4 = A List of the Known Biphase Barker Codes

Code Length Code Sequence Peak Sidelobe Level, dB
2 +—++ —6.0
3 +4+— -9.5
4 ++ -t - -12.0
5 +++—+ —14.0
7 t+t+——+— —~16.9
11 ++ -+ ——+— —20.8
13 +++++-—++—+—+ -223
FIGURE 20-30 10
Compressed 0.9
response for the ’
longest Barker 0.8
biphase code: 0.7
13 chips. <!
p E 0.6
% 05
= 04
0.3
0.2
0.1
0
-10 -5 0 5 10

Normalized Delay (B
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Minimal peak sidelobe (MPS)

Magnitude (dB)

25

—40

0 30 40
Normalized Delay tB

FIGURE 20-31 =
Compressed
response for a
48-length Minimal
Peak Sidelobe
(MPS) code
achieves a 3:48

peak sidelobe ratio.
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Examples of minimal peak sidelobe (MPS). ..

TABLE 2046 = Example Biphase MPS Godes through Length 105

TABLE 20-6 = (Continued)

Gode Longtn __Peak Sideiobs oo Longth
> . . 5 T NotRepord [
3 i | 5 i NotRepord CACIANIES G
i | ' 5 i NotRepored ORBANCBITBCOE
5 I i 2 i NotRepord OLSRSASEDRACEF
. ; i 5 i Not Rpored (PACES$SCORDOSF
H i ! 5 i NotRepored CHDIISAIDCER
5 > s © i NotReportd OABDROCI Sk
5 2 0 G i NotRepord BASCCTOEASSD
w0 > S & i NotReport BD6GSHCHNISD
i ; ; & i NotRapord TS GSTCER
i ) i & i 55 SSrrBocsssisss
i : | & i NotRepord
" ) 5 6 i NotReported
i ; M @ J NotRepored
16 B 00 o i Not Repored
" : v o i NotRepored
" 2 i % i NotRaport
o : ! » . NotRpord
o Ko
» H 3 2 | Nk
2 [ i NotRapot
2 3 m % : Neheponct
2 : s 7 . NotRepont
» H N » i NotRepord
20 N 22 ) 4 Not Reported
n 3 w ® i NoKeponed
» : m B . Nokeponcd
30 3 L] 8 s eported
3 3 1 W 3 NotRapot
32 3 42 85 s Not Reported
s ) 1 W 5 Not Repored
9 3 NotRepord
35 3 m 88 5 Not Reported D54A9326C2CHR6FB6F3880
5 3 161 W 3 NotRepord ISEOSME IDBCHACDACHA
7 3 2 90 5 Not Reported. 3326D87C3A91 DASAFAS421 |
38 3 " 9 s eported
39 3 30 2 5 Not Reported. & 35 \ASTFO
o 3 57 o H Not Reported 187B2ECRSO2FBAFSSBCCECES
41 3 15 o4 s Not Reported 319D96T6CAFEADDOSS2SESTS
a 3 4 o5 5 Not Reported 69566B2ACCCEBCICEODEN0S
43 3 2 9% 5 Not Reported ‘CF963FDO9B1381657ASA098E.
a4 3 15 o 5 Not Reported.
45 3 4 98 5 Not Reported.
o 3 i 4 3 NotRepord
i 3 I 100 5 Not Rpored
P H . 1ot H NotRepord
49 p NotRepored 102 3 Not Rpored
5 i NotRepored 10 H NotRepord
] 3 NotReported 104 5 NotReportt
2 . NotReported 105 3 NotRepord
5 : NotRepored
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Maximal length sequences

Magnitude (dB)
&

FIGURE 20-33 »

The compressed
response for a

127-length MLS.

I !IIMNI

l'm !

-100

50

0 50 100
Normalized Delay ¢B
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Comparison LFM and biphase MLS, waveform

0 FIGURE 20-34 =
Comparison of a
~10 | compressed LFM

waveform (black
curve) (TB = 1000)
with a compressed
biphase MLS coded
waveform (gray
curve) (TB = 1023).

Magnitude (dB)

Normalized Delay tB

Higher average sidelobe levels in MLS, higher peak sidelobe in
LFM.
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Comparison LFM and biphase MLS, spectrum

FIGURE 20-35 =
Comparison of the
spectra of an LFM
waveform (black
curve) with a
1023-length MLS
coded waveform
(gray curve).

Magnitude (dB)

Normalized Frequency f/B

The wide spectrum of MLS can be attributed to the abrupt
changes in phase. Can create an electromagnetic interference
problem.
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Conclusions

v

v

v

v

Matched filters maximize SNR for a given waveform

The resulting pulse compression improves range resolution
The LFM is a generic waveform, sidelobes can be improved by
tapering

Phase coding can produce very narrow ambiguity peaks, but
with a wide spectrum
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Discussion

Why is
y(ta))? 100 H (W)X (w) dw]?
n2(t)  No ™ |H(w)?dw

maximized by H(w) = X*(w)?

SNR =
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Discussion

Why is

y(ta)l* _ |5 Hw)X (@) dw]?
n2(t) No S w)Pdw
maximized by H(w) = X*(w)?

SNR =

Answer: The Schwartz inequality

[ Hex@ s < ([ meraw) - ([~ xepaw)

implies
SNR < / )2 dw

with equality for the choice H(w) = X*(w).
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Discussion

Given the matched filter response for the LFM waveform is

00 sin _ rTBL
y(t) z/_oox*(a—t)x(a)doz: (1— |7t_—|> ([1<_ ES?TTBfT}’ It| <7

where in the graph below can you find the value of 77B in dB?

FIGURE 20-10 0
Match filtered
response for a ~10
50 MHz, 1 usec LFM -132
waveform. _ 20
g
2
-g 30
)
5 —40

|
@
S

|
=)
S

|
—
!
o
=3
o

0.5 1
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Discussion

Given the matched filter response for the LFM waveform is

[¢]

y(t) = /_Z 7*(a — t)z(a) da = (1 - E_|> Sin(E(_L;?::;} ,olt<r

where in the graph below can you find the value of 77B in dB?

FIGURE 20-10 0

Match filtered
response for a ~10
50 MHz, 1 usec LFM -132
waveform. _ 20
g
@
-g 30
)
5 —40

|
@
S

|
=)
S

-1 -0.5 0 0.5 1
Time (us)
Answer: For |t/7| ~ 1, we have |y(t)| =~ 1/(n7B) ~ —44dB in
this graph.
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Discussion

I x(oa)ejQ"fdo‘ *(a—t) da

™ 2(@Pda satisfies

The ambiguity function A(t, fq) =

/ / At fo)Pdtdfa =1 and |A(t, f2)] < |A(0,0)] =

Given the above and a pulse shape with finite support,

|A(t, f4)]> =0 when |t| > 7 and |f4] > B
what average value of |A(t, fq)|? do you expect for |t| < T and
|fal < B? How should 7 be chosen to minimize the average

ambiguity?

56
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Discussion

> z(a)el?2™fdg* (a—t) da e
o (f) ‘2504 ) satisfies

The ambiguity function A(t, fq) =

/ / At f)Pdtdfg =1 and |A(t, fa)] < |A(0,0)] =

Given the above and a pulse shape with finite support,
|A(t, f4)]> =0 when |t| > 7 and |f4] > B

what average value of |A(t, fq)|? do you expect for |t| < T and
|fal < B? How should 7 be chosen to minimize the average
ambiguity?

Answer: Since the integral of |A|? equals 1, we should have the
average value (|A|?) = 1/(47B). To minimize this, increase the
pulse length 7.

Interpretation: If you try to decrease |A|?> somewhere, it needs to
increase somewhere else.

56
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Discussion

Nrc,u-‘TJ

+ + + -

H—>
Tch’ip

FIGURE 20-23
Biphase coded
waveforms consist
of chips exhibiting
2 possible phase
states.

With each chip consisting of a fixed frequency carrier wave
cos(2m fot + ¢), with pulse length 7cpip, what is the chip bandwidth
Bepip and time-bandwidth product 7B with 7 = N7, and

B = Bepip?
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Biphase coded
waveforms consist
of chips exhibiting
2 possible phase
states.

With each chip consisting of a fixed frequency carrier wave
cos(2m fot + ¢), with pulse length 7cpip, what is the chip bandwidth
Bepip and time-bandwidth product 7B with 7 = N7, and

B = Bepip?

Answer: Bchip = I/Tchipr B = NTchichhip = N. Hence, the
time-bandwidth product only depends on the number of chips, V.
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