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Learning outcomes of this lecture

In this lecture we will

» Give an introduction to machine learning and simple
implementations.

» See how supervised learning has been used in radar target
classification problems.

» Consider a case study and live demonstration for gesture
recognition.
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Some radar data representations
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FIGURE 1-32 =

1 m resolution SAR
image of the
Washington, D.C.,
mall area. (Courtesy
of Sandia National
Laboratories. With
permission.)
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Interpretation of the data may require a skilled operator.
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Machine Learning

Machine learning

A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its perfor-
mance at tasks in T, as measured by P, improves with experience E.
(Tom Mitchell, 1997)

The ML approach focuses on the data rather than how the data is
generated. Four main problems are in focus:

» Classification

> Regression

v

Clustering

» Dimensionality reduction
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Solving different ML-problems with scikit-learn

https:/ /scikit-learn.org

scikit-learn
W algorithm cheat-sheet

classification

regression

clustering

dimensionality
reduction
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https://scikit-learn.org

Different classifiers

Classification example: training data in 2D, blue or red dots
distributed in three different ways.

]IIIII

Different ML approaches provide different predictions (the red and
blue colored backgrounds).

In the following, we focus on support vector machines (SVM) for
simplicity of presentation, but there are several alternatives.
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Linear Support Vector Machine (SVM)
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A linear support vector machine finds the widest linear separation
of labeled training data (a hyperplane in higher dimensions).



SVM mathematics

Training data: {(z1,%1),...,(Zn,yn)}, where z; € R? is the
observation and y; € {—1, 1} is the classification. The parameters
w € R% and b € R are determined by a convex optimization
problem:

Hard margin Soft margin
(training data is separable) (training data not separable)
minimize - W w minimize §wTw+C'ZCi

i=1
subject to yz‘(mei -b)>1-¢
¢G>0, 1=1,2,...,n

subject to y;(w'a; —b) > 1

Classification of new data is made using the decision function:
f(x) = sign(wTx — b). SVMs are considered robust and able to
learn from small sets of data.
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Kernel trick

When data is not separable by a hyperplane, replace the scalar
product T2’ with a product in a higher dimensional space, like
)T

k(z,2") = p(2) p(a’), where p(z) = (a,b,a® +b7)

This can allow for finding a separating hyperplane in the higher
dimension. A typical kernel is the radial basis function kernel,

k(z,2') = exp Nz =2 i
’ 202
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Preprocessing

In order to make the data more amenable to ML techniques, some
preprocessing is usually required:

» Mean removal

v

Scaling

Normalization

v

Binarization

v



Unified framework for automatic target recognition (ATR)

v

Identify the target set: what will be observed?

v

Select the feature set: what is important?

v

Observe the feature set: measure accurately

Test the feature set: train and use a classifier

v
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Unified framework for automatic target recognition (ATR)

v

Identify the target set: what will be observed?

» Broad classes of targets (humans, rabbits, cars, bikes. . .)
» Variations within classes (adults, children, minivans, trucks. ..)

v

Select the feature set: what is important?

v
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v
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Unified framework for automatic target recognition (ATR)

> |dentify the target set: what will be observed?
» Broad classes of targets (humans, rabbits, cars, bikes. . .)
» Variations within classes (adults, children, minivans, trucks. ..)
> Select the feature set: what is important?
» Maximize the similarity of objects in the same class while
maximizing the dissimilarity of objects in different classes.
> Observe the feature set: measure accurately
> Test the feature set: train and use a classifier
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Unified framework for automatic target recognition (ATR)

> Identify the target set: what will be observed?
» Broad classes of targets (humans, rabbits, cars, bikes. . .)
» Variations within classes (adults, children, minivans, trucks. ..)
> Select the feature set: what is important?
» Maximize the similarity of objects in the same class while
maximizing the dissimilarity of objects in different classes.
> Observe the feature set: measure accurately
» Processing to increase SNR: averaging, background removal,
pulse compression. . .
» Test the feature set: train and use a classifier

» Supervised learning: each training observation is given a
ground truth from the operator.

» Unsupervised learning: the training data are clustered into
classes, which are then used as ground truth.

> Reinforced learning: learn from new data through feedback.
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@ ML in remote sensing
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ML in remote sensing

ISPRS Journal of Photogrammetry and Remote Sensing 66 (2011) 247-259

=
Contents lists available at ScienceDirect

PHOTOGRAMMETRY
AND REMOTE SENSING

ISPRS Journal of Photogrammetry and Remote Sensing T,

e

journal homepage: www.elsevier.com/locate/isprsjprs

Review article
Support vector machines in remote sensing: A review

Glorgos Mountrakis *, Jungho Im, Caesar Ogole
of Envir ntal Resources Engi SUNY College of Environmental Science and Forestry, 1 Forestry Dr, Syracuse, NY 13210, USA

Review paper summarizing many uses of ML in remote sensing.
Results from a few papers are shown in the following, using
multispectral data in each pixel to classify the terrain.
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MULTISPECTRAL CLASSIFICATION OF LANDSAT IMAGES: A COMPARISON OF
SUPPORT VECTOR MACHINE AND NEURAL NETWORK CLASSIFIERS

Nivedita Candade, Research Assistant
Dr. Barnali Dixon, Assistant Professor
University of South Florida, St. Petersburg
140 Seventh Ave South, St. Petersburg, FL 33701.
Phone: 727 553 4863
ncandade@mail.usf.edu

bdixon@stpt.usf.edu

Original image characteristics
Projection: UTM Zone 17N
Spheroid: WGS 84

Datum: WGS 84

Unit: meters

Pixel size: 30m

Systematic Correction
GeoTIFF format

Figure 3. Standard False-Color
composite.Combination of bands 2,3 and 4.

Table 2. Description of Landsat TM bands

Band Color Wavelength  Applications
(um)
Band 1 Blue 0.45-0.52 Separation of soil and vegetation
Band 2 Green 0.52-0.60 Reflection of vegetation
Band 3 Red 0.63-0.69 Chlorophyll absorption
Band 4 Near IR 0.76-0.90 Delineation of water boundaries
Band 5 Mid-IR 1.55-1.75 Vegetative moisture
Band 6 Far IR 10.4-12.5 Hydrothermal mapping
Band 7 Thermal 2.08-2.35 Plant heat stress
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Classification results

Table 4. Neural Network, SBP

Table 5. SVM- Polynomial kernel, degree 3, c=1000

User's

citrus pasture sod _timber urban water wetland Total Accuracy (%)

User's
citrus pasture sod_timber urban water wetland Total Accuracy (%)

citrus 743 227 0 0 0 0 264 1234 6 citrus 1211 4 0 18 0 0 11234 98
pasture 0 100 24 2 0 0 0 126 7 pasture 0 853 5 0 0 0 126 67
sod 0 06 0 0 0 0 68 100 sod 0 068 0 0 0 0 68 100
timber 0 0 0 9%6 0 0 0 966 100 timber 0 0 0 9% 0 0 0 966 100
urban 0 0 0 0 15 0 0 15 100 urban 0 0 0 0 15 0 0 15 100
water 0 0 0 0 0 82 0 892 100 water 0 00 0 0 82 0 892 100
wetland 0 10 0 0 0 13131314 100 wetland 2 000 3 0 0 13091314 100
Total 743 328 92 968 15 892 1577 4615 Total 1213 89 104 992 15 892 1310 4615
Producer's Producer's
Accuracy (%) 10069 74 100 100 100 83 Accuracy (%) 1009665 97 100100 100
Overall accuracy= 88.7% Overall accuracy= 98.48%
Table 6. RBF kernel, nu=0.01 Table 7. Linear kernel, c=1000
User's ot
citrus _pasture sod _timber urban water wetland Total Accuracy (%) citrus _pasture Sod timber urban water wetland Total Accuracy (%)
itrus 1049 0 0 22 0 0 161234 85 citrus 10: 0 2 0 152 1234 85
pasture 0 16 1 5 o 0 0 126 bos pusture o 112 6 8 0o o0 0 126 89
od 0 068 0 o0 o 0 6 100 sod 0 068 0o 0o 0 0 6 100
tber o 0 0 %6 o o 0 96 100 timber 0 0 0 96 0 0 0 966 100
urban 0 0o 0 0 15 0 0 s 100
urban 0 o0 0Is 0 o 100 water 0 0 0 0 0 82 0 892 100
water 0 0000 8 0 892 100 wetland 0 0 0 0 0 13141314 100
wetland 0 0 0 0 0 0 DBl41314 100 Total 1054 112 74 1002 15 892 1466 4615
Total 1049 116 69 997 15 892 1477 4615 Producer’s
Producer's Accuracy (%) 100 10092 96100 100 90
Accuracy (%) 100100 99 97 100 100 89

The training data consisted of 350 samples, 50 pixels per class.

Overall accuracy=95.77%

The SVMs learn with few number of samples.
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b. RBF kernel

c. Linear kernel

d. Neural network

Figure 5. Classified maps using ANN and SVM classifiers

Table 8. Area coverage of the models in %

citrus pasture sod

timber urban water wetland

NN-classifier 13 305 13.67 2281 3.11 072 16.12

SVM-poly 15

22 1483 3283 3.64 074 11
SVM-RBF 15.18 2159 13.78

307 3.5 093 1425

SVM-linear 1557 2794 7.36 30.59 3.45 093 14.16
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IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 6, JUNE 2004

1335

A Relative Evaluation of Multiclass Image
Classification by Support Vector Machines

Giles M. Foody, Member, IEEE, and Ajay Mathur

0.69-0.75um s
70

Data was aquired

150

in 11

bands, only 3 used for processing.

oA Predicied Classes 1
Actil = | Sugarbeet [ Whear [ Barley | Carot | Poato | Grass | Total
Sugarbeet 3 0 7 0 o7
Whest 3 % 3 [ 5
Barley 0 o T 0 50
Camot 0 1 0 o 5
Fouto 0 2 0 2 1 26
Grss 0 0 0 i i7
Toul CON T 3 3 15 [0
Overallsccuracy = 90.00%
or Predicted Classes 1
Actual > | Sugarbeet | Wheat Carot[ Poio [ Grass | T
Sugarbeet
Woeat
Tarley [
Camot
Pouto
Gnss ] 7
Toul 100 E 3 21 320
Overallaccuracy = 9031%
90 W Predicted 1
80 ey Potat Grass Tot
0.60-0.63um [ o |
o Barley
Grass. 0 I
+
Carrot Total 3 6 1 320
x  Grass Overall accuracy = 91.88%
*  Potato Predicted Classes
Voew [ Pariey | Carot | Poaio [ G| Ton
Sugar beet
e Wheat
Fouto
spectral  f= ;
Toul 4 3 3 0
Overallaccuracy = 93.75%
Tig. 3. Error matrices for the classifications derived from the DA, DT, NN, and

SVM classifications trained with the largest training set (containing 100 cases
of each class). For clarity, the main diagonal that indicates correct allocations
has been highlighted.
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© ML in target recognition

20 /41



IEEE Access

Multidiscplinary ; Rapid Review ; Open Access Journal

Received August 30, 2016, accepted September 16, 2016, date of publication September 21, 2016,
date of current version October 15, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2611492

Automatic Target Recognition in
Synthetic Aperture Radar Imagery:
A State-of-the-Art Review

KHALID EL-DARYMLI', (Member, IEEE), ERIC W. GILL2, (Senior Member, IEEE),
PETER McGUIRE2?, DESMOND POWER3, (Membetr, IEEE),
AND CECILIA MOLONEY? (Member, IEEE)

!Northern Radar Inc., St. John's, NL A1B 3E4, Canada
2Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada
3C-CORE, St. John's, NL A1B 3X5, Canada

Thorough review of target recognition techniques, not only ML.
Too much to go through here in detail.
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Support Vector Machines L
for SAR Automatic Target
Recognition @

QUN ZHAO, Member, IEEE

JOSE C. PRINCIPE, Fellow, IEEE
University of Florida

Fig. 3. (a) Ilustration of pose. (b) SAR images of target T72,
BTR70, BMP2 taken at different aspect angles.

TABLE III
Misclassification Rates and Confuser Rejection Rates (%)

Confuser
BMP2 BTR70  T72  Average Rejection

Template 11.58 2.04 10.14 9.60 5347

Perceptron 971 0.00 5.84 6.67 2710 Flg.‘ 4. C}asslfler topology is depxcled.‘Fusl a pose f:sUmalor is
applied to image and determines approximate pose of target, then

OH 8.69 051 378 542 38.50 assifier s chosen according to result of pose estimat

SVM 4.94 0.00 7.04 513 63.80 classifier is chosen according to result of pose estimation.
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Confusion Matrices (Counts) of Classifiers and Confuser Rejection

TABLE IV

when P, =09
a

BMP2 BTR70 T72 Rejection
BMP2 483 59 9 36
BTR70 4 188 en 0 4
T72 43 16 427 96
281 111 83 38 42
D7 16 4 3 251

(a) Template matching

BMP2 BTR70 T72 Rejection
BMP2 436 16 41 83
BTR70 0 194 0 2
T72 18 16 502 51
281 9 105 100 60
D7 29 68 88 89

(b) perceptron

BMP2 BTR70 T72 Rejection
BMP2 443 9 42 88
BTR70 0 193 1 2
T72 16 6 519 46
281 9 50 117 98
D7 53 9 99 113

(¢) optimal hyperplane

BMP2 BTR70 T72 Rejection
BMP2 511 14 15 47
BTR70 0 195 0 1
T72 31 10 453 88
281 57 24 10 183
D7 53 0 27 145

(d) support vector machine
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SAR Target Recognition Based on Deep Learning

Sizhe Chen, Haipeng Wang

Key Laboratory for Information Sciences of Electromagnetic Waves (MoE)

Fudan University, Shanghai, China
Email: hpwang@fudan.edu.cn

Unsupervised Feature Leaming

Random Mean subtraction
patches and ZCA
sampling whitening

encoder

]
|
1
1
Sparse auto- |}
\
\
|
1
1

Convolution
kernel and bias

SAR image

Convolutions

Pooling
dataset _ T
. [ g
Supervised Softmax ! [
Training classifier |1 [
[P
Tassification Results
Testset | pymr | meosr | wmmer | wreo | p7 | ot | e | mn | s | zsumsy | Clesification
accuracy (%)
BvP2 157 9 2 9 0 4 o | 4 6 4 80.5
BROM 9 20 o 5 | o 3 [ 5 0 802
BIR60. 0 11 168 4 4 4 1 2 1 0 86.1
BIR0 3 4 3 w0 4 0o | o 1 0 923
v 0 0 0 IEID [ s 7 519
251 1 9 s s o | wo [ 7 [ [ 2 [ @3
T62 2 1 5 0 4 7 242 3 7 2 88.6
m 3 3 i i 0 8 2 s | 9 i 85.1
731 5 6 5 7 1 12 3 9 226 0 82.4
ZSU234. 1 1 3 0 4 1 2 7 6 249 90.8
averuge classification rate: $4.7%

(10) ZIL131 ©9) 78U234
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@O ML in micro-Doppler analysis
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ML in micro-Doppler analysis

Complex live targets like a waving hand, running horse, flying
helicopter etc, present many different velocity components in
a Doppler spectrum.

Recording the Doppler spectrum as a function of time
provides a 2D spectrogram a(fq,t).

The analysis of a(fg,t) is called micro-Doppler analysis.

ML techniques can be used to identify features in the
spectrograms and do classification.
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IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 5, MAY 2009

Human Activity Classification Based on
Micro-Doppler Signatures Using a
Support Vector Machine

Youngwook Kim, Member; I[EEE, and Hao Ling, Fellow, IEEE
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IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 13, NO. 1, JANUARY 2016

Human Detection and Activity Classification Based
on Micro-Doppler Signatures Using Deep
Convolutional Neural Networks

Youngwook Kim, Senior Member, IEEE, and Taesup Moon, Member, IEEE

A
N Ao }M‘.\

Fig. 4. Outdoor measurements. (a) Human. (b) Dog. (¢) Horse. (d) Car.
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Fig. 5. Sample spectrograms. (a) Human. (b) Dog. (¢) Horse. (d) Car. 28 / 41
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@ Case study: gesture recognition with an FMCW radar
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Gesture recognition

In 2015, Google released a 60 GHz radar platform (Soli) for
gesture recognition. Here, we will see that similar functionality can
be achieved using the 24 GHz radar system from the lab.

30/41


https://atap.google.com/soli/

Demonstration

raspberry pi with AD/DA card

The same radar equipment as used in the lab last Friday has been
augmented with a simple gesture recognition program.
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Principal operation of the radar system

I
transmitting |
antenna

Al

- [o0°]

! receiving

| antenna
Qo 3 ( % )

FMCW operation, stepped frequency.
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Signal model

After down-conversion, we form the analytical signal from | and Q:

s(t) = I(t) + jQ(t) = (A -4rfotfa)R/etd)y ol 2mfat—Am AL (t)F/c)

—A
Sample the up-chirp and down-chirp signal at At and take the
Fourier transform:

Alein2n(faAt=2BR/(Ne)  yp_chirp
Sp = . _ = §, = FFT[s,]

Alein?m(fadt+2BR/(Ne)  down-chirp
Combine M signals into one data frame:

O L0 O RO B )

W T ooy W
one frame = 0 0 N 0 0 N
M) (M ' (M) M) (M . (M)
LS((] ) éé ) o '55\7 up-chirp LSE] ) 5((] ) o 'SEV down-chirp

Only the amplitudes of these 2M x N complex numbers are used,
and each frame is normalized with its peak value.
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Choosing system parameters

vV VvYyys.y

v

Carrier frequency fo = 24 GHz.

Bandwidth B = 425 MHz.

Sampling time At = 0.34ms.

Doppler shift fq = 2?”“fo = 11;“1/5 2'%'&809 Hz = 1][;“1/5160 Hz.
Sampled received signal s, = A'e"2T(F N Hadt) (yp- and
down-chirp).

Phase shift relative to 27 at full scale n = N:

2BR _2:425-10°-05
Ne 3-108 -
Doppler: N fqAt =N -160-0.34- 1073 = 0.054N

The choice N = 32 makes range and Doppler almost equally
balanced with more than 27 phase change.
Dwell time Ty = NAt =32-0.34-1073s = 0.011s.

Range: N

» Collecting M = 16 dwells in one frame gives aquisition time

Tt =2MTq4 =2-16-0.011 = 0.35s, in the order of the time
of a typical gesture.
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Data processing

Each raw data frame goes through the following processing:
» Background subtraction.
» Estimation and subtraction of a ramp signal.
» Fourier transform (FFT).
» Taking the amplitude and normalizing by the maximum
amplitude in the frame.
A number of frames are used for training the SVM, which is
subsequently used to classify gestures performed.
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Gestures

down—cirp

up-chirp up-chirp

down-chirp

up-chirp

down-chirp
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Additional gestures evaluated

» Static: a hand at different altitudes above the sensor
(separated roughly by the resolution ¢/(2B) = 35 cm).

» Circle: clockwise or counter-clockwise rotation of index finger
in non-radial motion (should be difficult to distinguish).

» Soli gestures:

Button Dial Slider

Each gesture was repeated until 100 frames had been recorded.
For 1 <n <29, n frames were chosen for training and 70 frames
for evaluation. The selection was random, and the outcome
averaged over 100 selections.
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https://atap.google.com/soli/

Results for different sets of gestures

Solid = true, dotted = false Solid = true, dotted = false
100 E;p.—- 100 oisscestbistosaoteetin)
0.75 0.75
—— 0 —— 0
2o — 1 2oL — 1
K] 0.50 2 K] 0.50 2
—— 3 ——3

0 10 20 30 0 10 20 30
Number of training frames Number of training frames

Thumb Static

Solid = true, dotted = false Solid = true, dotted = false

g :{7 .
Zos0) o ==1

<4 A
pods Sauy !
Sraa, — 2
*aa

.
0.25 B R R R R iiclolter T
7&.-.-“ LAk
0.00 s
0 10 20 30 0 10 20 30
Number of training frames Number of training frames

Circle Soli
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Discussion of the gesture recognition system

The system can distinguish between movements with
significantly different Doppler spectrograms.

The system performs well for thumb up/mid/down, and static
poses separated by the resolution.

The system performs less well for non-radial motion, and
micro-motions like the Soli gestures.

With one single sensor, the gestures need to be adapted to
the sensor; with several sensors, more relaxed requirements for
the gestures are expected.
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Conclusions

Some ML approaches to radar signal analysis have been
reviewed, with particular emphasis to supervised learning using
SVMs.

Terrain classification in SAR images has been performed
based on multispectral data in each pixel.

Target classification in SAR images may require an initial pose
estimation. Open data is scarce.
Gesture classification in Doppler spectrogram is a field of

current research and implementation, expected to emerge in
consumer products.
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