
EITN90 Radar and Remote Sensing
Lab 1

January 27, 2019

1 Learning outcomes

This lab demonstrates the basic operation of a simple scanning radar, capable of range
measurements only. After completing this lab, you will

• see how a simple scanning radar/sonar system can be constructed using commercial
off-the-shelf electronic components, and how bottle-necks can be identified

• understand how controlling the specular scattering can be used to reduce the sig-
nature of objects

• understand how a high pulse repetition frequency can introduce false echoes

• understand how a finite beam width of the sensor affects the radar image

2 Equipment

In this lab we will use a ranging sensor based on ultrasound waves. The principle is the
same as for electromagnetic waves: the distance to an object is given by the time ∆T for
an echo to return to the sensor,

R =
v∆T

2
(1)

where v = 343 m/s is the speed of sound in air. A photograph of the system can be seen
in Figure 1. It consists of three parts:

• An ultrasound sensor HC-SR04, operating at 40 kHz.

• A stepper motor with a driver circuit board.

• A control unit based on the Arduino platform.

The parts have been assembled using connection cables without soldering. They are
placed in a custom made 3D-printed frame. The sensor is mounted on the stepper motor
using a 3D-printed holder. Data sheets for the different parts are available next to this
document. Please don’t disconnect or change any of the wiring during the lab.

The arduino control unit can be programmed in a language similar to C/C++. Con-
necting the unit to a regular computer using a USB cable, supplies the unit with its +5 V

1



Figure 1: Equipment for a scanning radar (sonar).

2



supply voltage. USB is also used to transfer programs to the unit and to communicate
with the unit over the serial interface. The easiest way to program the unit and use the
serial interface is using the arduino software1, but we will also use matlab to read the
data from the serial interface later. In this lab, there are ready-made scripts to use, which
are discussed under each respective experiment below. If something gets out of hand, you
can simply unplug the USB cable to powerdown the control unit. There is also a reset
button on the arduino board if the program on the unit freezes.

The cost for the different parts is around 70 kr for the sensor, 80 kr for the stepper
motor, and 100 kr for the control unit. Add to this some cost for connection cables and
3D-printing.

3 Experiment 1 — Ranging and unambiguous range

In our first experiment we are going to focus only on the ranging capability of the sensor.
We will also go through how the control unit can be programmed.

3.1 The script

The script below can be downloaded from the course web site and is used to control the
sensor:

• range.ino

Download the script and open it in the arduino application on your computer. In the
beginning of the script there are a number of parameters, setting the behavior of the
system. Make sure you read through the code and understand what it does. You do
not need to understand the full syntax of the programming language, we will only make
minor changes to the code, i.e., modify parameters.

When the script is first uploaded to the control unit, it goes through an initialization
phase where first the function setup() is executed, and it then goes into an eternal loop
function loop(). In the initialization, we typically need to explain to the control unit
how the different pins are to be used. In this experiment, we will use the distance sensor
without rotating it. The initialization of the motor is therefore omitted here.

Before moving on, please go through the tasks below:

• Compute the wavelength λ of the ultrasound wave.

• Compute the duration in time of one full ultrasound burst (8 cycles). Compute the
corresponding distance.

• One measurement cycle is controlled by the function Measure(). Go through this
code in detail, and compare with the description of the sensor in the datasheet.

• In the function Measure(), the number 58.3 is used to convert the time measured
to a distance. Do your own calculations and show how to find this number.

• Test the program for compiling errors by clicking the icon with a check mark to the
farthest left. You should see a progress bar, and some text output in the window
below the code.

1available at: https://www.arduino.cc/en/Main/Software

3



3.2 Measurements

Connect the control unit to your computer with a USB cable. When you have controlled
that the program compiles without errors (check mark icon), you can upload the script
using the icon with a right-pointing arrow next to the check icon.

The script is programmed to transmit the calculated distance reading to the computer
using the serial interface. To observe the data sent by the system, you can use the Serial
Monitor of the arduino software. To open it press the rightmost icon with a magnifing
glas (or press Ctrl-Shift-M). This will open a window where you can see the data sent
on the serial port. With the system powered up and script uploaded, you should see a
sequence of numbers being output.

• Place an object at close range (e.g. 10 cm) in front of the sensor. Verify that the
range presented corresponds to the physical distance between the object and the
sensor. Can you verify the resolution claimed in the datasheet of 3 mm?

• Draw a diagram detailing the events in Measure(), including the typical times
spent on each stage (initialization of the pulse, waiting for echo, communication
with the computer, cf. the timing diagram in the datasheet). You can measure the
time using the function micros() and then send the measurements to the computer
using the serial interface. An example of timing measurements can be seen where
the echo time is measured inside the code. Do the timings change when the distance
to the object changes? What range does the communication time correspond to?

• Change the position of the object. What is the maximum distance you can detect?
Can you relate the readings to the timing parameters in your diagram from task 2?

• How do you need to modify the code to obtain accurate distance readings up to 1
meter?

• Try to achieve detection with ambiguous range (object appearing closer than it
actually is)?

• Set up two objects at different distances, both of which are illuminated by the
sensor. Which one corresponds to the number displayed on the serial port?

Feel free to do your own experiments with the setup. You can investigate the ambigu-
ity of the measurement, or the interference of multiple sensors. Or you can try to modify
the code to also measure velocity.

4



4 Experiment 2 — Images and beam pattern

We will now start using the motor in the system. By rotating the sensor, we can take
measurements at different angles, and build up a classical radar range image.

4.1 The script

A different script will be used, which includes control of the motor:

• scanningradar.ino

A stepped motor has several inputs. These inputs are given digital levels, which need to
be cycled through in order to make the motor turn, according to the schedule below:

One full forward and backward cycle of this is implemented in the two functions StepForward()
and StepBackward(). The loop() function is modified so as to scan back and forth within
an angular sector of 90◦ (controlled by the variable ScanAngle). The Measure() function
is modified to take an argument n corresponding to the current angle of measurement. It
now also outputs two numbers to the serial port: the angle and the range.

• Go through the code and make sure you understand the changes.

• Test the program for compiling errors.

• Turn the sensor manually to a good starting position. It will start to scan clockwise.
The starting position is a bit difficult to adjust when the step motor is active, but
it can be done with the help of the reset button of the arduino unit and the short
delay it introduces, ask the lab leader.

In order to make a radar image, we need to read the angle and range information written
by the control unit to the serial port, store these in a data structure, plot the range as
function of angle, and update the plot as the sweep goes on. This is done by the matlab
script radar.m.

4.2 Measurements

Connect the control unit to your computer with a USB cable. When you have checked
that the program compiles without errors (see above), you can upload the script using
the icon with a right-pointing arrow next to the check icon.

To observe the data sent by the system, go to the menu Tools — Serial Monitor (or
press Ctrl-Shift-M). This will open a window where you can see the data sent on the
serial port. With the system powered up and script uploaded, you should see a sequence
of pairs of numbers being output, separated by a comma. This is the angle and range,
being output by the Measure() function.

5



Figure 2: Grid for drawing the beampattern

In order to read the data into matlab, you need to first close the Serial Monitor
(otherwise you will have two programs trying to read (and discard) the same data on the
serial port). Start up matlab and the script radar.m. You should now see a stream of
numbers being output in the command window, and a figure with the radar data being
updated as the radar scan goes on.

• Insert a large, flat object facing the sensor (for instance a book cover or a wall), so
there is a strong echo present for a large part of the sweep. What differences can
you see between the image of this object and the real physical object?

• Place two or more objects at different distances and angles. Determine the minimum
separation distance.

• As can be seen in the datasheet for the sensor, it detects objects within a certain
angle, which distorts the image. Determine this angle by inserting an object that
can be thought of as a point scatterer (or rather line scatterer, we only need it to
be thin in the plane of the scan). The angular width of this object on the radar
screen will correspond to the full beamwidth of the sensor. Try your measurements
at different distances and draw the measurements in a grid like the one produced
by the matlab script (cf. Fig. 2).

5 Comparison with a real radar surveillance system

The system investigated in this lab has some similarities with airport surveillance radar
systems. Since the speed of sound is 343 m/s and the speed of light is 3 · 108 m/s, the

6



Figure 3: Example of an airport surveillance radar antenna, the ASR-9 (source:
Wikipedia).

scale difference between the systems (in terms of range with other parameters similar)
is roughly a factor of 106. Airport surveillance radar typically make continuous 360◦

rotations of the radar antenna, which has a narrow beamwidth in azimuth and wider in
elevation. This can be seen from the shape of the reflector in Figure 3, which has larger
aperture in azimuth than in elevation.

The following data is given for the ASR-9 system in Figure 3.

• Frequency 2.8 GHz (S band)

• PRF 1 kHz

• Pulsewidth 1.0µs

• Rotation speed 12.5 RPM

• Beamwidth azimuth 1.4◦, elevation 5◦

• Power 1.1 MW

Using this information, the datasheet for the acoustic sensor, and whatever additional
measurements you may need with the system, complete the table below.

Table 1: Comparison with a real radar system
HC-SR04 ASR-9

Principle Ultrasound Radar
Propagation Speed
Carrier frequency
Pulse width
Bandwidth
Resolution
PRF
Unambiguous range
Rotation Speed

Once you completed all tasks, discuss your results with the lab leader to
be approved for the lab.

7


