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Wireless Communications Channels
Lecture 6: Channel Models

EITN85: Harsh Tataria (e-mail: harsh.tataria@eit.lth.se)                                                                        
Department of Electrical and Information Technology, Lund University

Lecture contents

• Different modelling methods

• Okumura-Hata path loss model

• COST 231 model

• Indoor models

• Wideband models

• COST 207 (GSM/2G model)

• ITU-R model for 3G

• Directional channel models

• Multiple antenna (MIMO) models

• Ray tracing & Ray launching
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Modeling methods

 Stored channel impulse responses

 Channel sounder based; thus realistic

 Different from system-level field trials 

 Reproducible and thus reliable

 Difficult to cover all scenarios 

 Deterministic channel models

 Based on Maxwell’s equations 

 Site specific and computationally demanding

 Stochastic channel models

 Describes distribution of the field strength over an area

 Mainly used for design and system comparisons

Narrowband models
Review of properties

• Narrowband models contain ”only one” attenuation, 
which is modeled as a propagation loss, plus large-
and small-scale fading.

• Path loss: Often proportional to 1/dn, where n is the 
propagation exponent (n may be different at different 
distances).

• Large-scale fading: Log-normal distribution (normal 
distr. in dB scale)

• Small-scale fading: Rayleigh, Rice, Nakagami
distributions ... 
(of amplitudes and not in dB-scale)
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Standard models for path loss 
Okumura’s measurements

Extensive measurement campaign in Japan in the 1960’s.

Parameters varied during measurements:

Results from these measurements are displayed in 
figures 7.12 – 7.14 in the appendix.
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Frequency
Distance
Mobile station height
Base station height
Environment

100 – 3000 MHz
1 – 100 km
1 – 10 m
20 – 1000 m
medium-size city, large city, etc.

PL = 𝐀 + 𝐁 logଵ଴ 𝑑 + 𝐂

Dependent on 
the below factors
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Okumura’s measurements
excess loss
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These curves 
are only for 
hb=200 m and 

hm=3 m

900 MHz and
30 km distance

FIGURE 7.12 in appendix
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The Okumura-Hata model
Background

In 1980 Hata published a parameterized model, based on 
Okumura’s measurements.

The parameterized model has a smaller range of validity 
than the measurements by Okumura:
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Frequency
Distance
Mobile station height
Base station height

150 – 1500 MHz
1 – 20 km
1 – 10 m
30 – 200 m
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The Okumura-Hata model
How to calculate prop. loss
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The COST 231-Walfish-Ikegami model

The Okumura-Hata model is not suitable for micro cells 
or small macro cells, due to its restrictions on distance 
(d > 1 km).

The COST 231-Walfish-Ikegami model covers much 
smaller distances, is better suited for calculations on 
small cells and covers the 1800 MHz band as well.
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Frequency
Distance
Mobile station height
Base station height

800 – 2000 MHz
0.02 – 5 km
1 – 3 m
4 – 50 m
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The COST 231-Walfish-Ikegami model
How to calculate prop. loss

0 msd rtsL L L L  
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to street
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multiscree

n

Details about calculations can be found in the appendix.
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Motley-Keenan indoor model
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distance dependent
path loss sum of attenuations 

from walls, 1-20 
dB/wall

sum of attenuation from the 
floors (often larger than wall 
attenuation)

For indoor environments, the attenuation is heavily 
affected by the building structure, walls and floors play 
an important rule

site specific, since it is valid for a particular case
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Wideband models

Tapped delay line model often used

Often Rayleigh-distributed taps, but might include LOS and 
different distributions of the tap values

Mean tap power determined by the power delay profile

        
1

, exp
N

i i i
i

h t t j t     


 

11

12



2021-01-28

7

Wireless Communication 
Channels

13

Power delay profile

Often described by a single exponential decay

though often there is more than one “cluster”
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Arrival time

If the bandwidth is high, the time resolution is large so we might resolve 
the different multipath components

• Need to model arrival time

• The Saleh-Valenzuela model:

Double-exponential
ray power:

cluster arrival 
time (Poisson) ray arrival 

time (Poisson)
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Wideband models
COST 207 model for GSM

The COST 207 model specifies:

• FOUR power-delay profiles for different
environments.

• FOUR Doppler spectra used for different
delays.

It does NOT specify propagation losses for the 
different environments!
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Wideband models
COST 207 model for GSM
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Wideband models
COST 207 model for GSM

Four specified 
Doppler spectra
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 ,s iP  

max max0

max max0 max max0

CLASS GAUS1

GAUS2 RICE

0.5 si  0.5 s 2 si   

2 si  Shortest
path in

rural areas

 ,s iP  

 ,s iP   ,s iP  

CLASS

Wireless Communication 
Channels

18

GAUS2GAUS1

Wideband models
COST 207 model for GSM
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Transfer function, Typical urban

Wideband models
ITU-R model for 3G

The ITU-R model specifies:

• SIX different tapped delay-line 
channels for three different 
scenarios (indoor, pedestrian, 
vehicular).

• TWO channels per scenario (one 
short and one long delay spread).

• TWO different Doppler spectra 
(uniform & classical), depending on 
scenario.

• THREE different models for 
propagation loss (one for each 
scenario).

The standard deviation of the 
log-normal shadow
fading is specified for each 
scenario.

The autocorrelation of the log-
normal shadow
fading is specified for the 
vehicular scenario.
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HT2018
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Wideband models
ITU-R model for 3G

ns

HT2018
Wireless Communication 
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Directional channel models

The spatial domain can be used to increase the spectral 
efficiency of the system

– Smart antennas

– MIMO systems

Need to know directional properties

– How many significant reflection points?

– Which directions?

– Model incoming angle (direction of arrival) and 
outgoing angle (direction of departure) to scatterers

Model independent of specific antenna pattern
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Double directional impulse response

ht, r TX , r RX,,,  
1

Nr

ht, r TX, r RX,,, 

TX position RX position

delay direction-of-departure

direction-of-arrival

ht, r TX, r RX,,,  |a|e j  

number of multipath components 
for these positions
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Double directional impulse response
with slightly different notation:

Time and location
is omitted here!
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Physical interpretation

l
W

Y
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Angular spread


l 

double directional delay power spectrum

angular delay power spectrum

angular power spectrum

power

DDDPS, ,P s ,,,d

ADPS,DDDPS ,,GMS d

APSAPDS,d

P APSd
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Assign positions for scatterers 
according to given distributions

Derive impulse response given 
the scatterers and distributions 
for the signal properties.

Used in the COST 259
model, COST 273, 
COST 2100, WINNER
3GPP/3GPP2

Geometry-Based Stochastic Channel Model 
(GSCM)

28

Geometry-Based Stochastic Channel Model 
(GSCM)

BS

MS 1

Cluster

Local cluster

Local cluster

Cluster

MS 2

Create an ”imaginary” map for radio wave scatterers
(clusters)

Wireless Communication 
Channels

Courtesey: 
K. Haneda, Aalto Uni.
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The MIMO channel
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Deterministic modeling methods 
Solve Maxwell’s equations with boundary conditions

Problems:

• Data base for environment

• Computation time

“Exact” solutions

• Method of moments

• Finite element method

• Finite-difference time domain (FDTD)

High frequency approximation

• All waves modeled as rays that behave as in geometrical optics

• Refinements include approximation to diffraction, diffuse 
scattering, etc.
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Ray launching
TX antenna sends out rays in different directions

We follow each ray as it propagates, until it either

– Reaches the receiver, or

– Becomes too weak to be relevant

Propagation processes

– Free-space attenuation

– Reflection

– Diffraction and diffuse scattering: 

each interacting object is source 

of multiple new rays

Predicts channel in a whole area (for one TX location)
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Ray tracing

Determines rays that can go from 
one TX position to one RX 
position

– Uses imagining principle

– Similar to techniques 
known from computer 
science

Then determine attenuation of all 
those possible paths
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Example: Ray tracing
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Required base
station power to 
connect to a 
WCDMA cell 
phone. Example
from Stuttgart. 

Courtesey: Awe-
communications

Example: Ray tracing
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Coverage for a 
WCDMA cell phone. 
Example from 
Stuttgart. 

Courtesey: Awe-
communications
Propagation Models
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