LUND

UNIVERSITY

Wireless Communications Channels
Lecture 5: Wideband Characterization

EITN85: Harsh Tataria (e-mail: harsh.tataria@eit.lth.se)
Department of Electrical and Information Technology, Lund University

What have we covered thus far?

U Recap: Considered the effect of multipath propagation on
the received amplitude and phase, as well as its temporal
variations.

U Key assumption: Small system bandwidth (narrowband
systems only). As a consequence, multiple directions can not
be resolved by the RX and seem that they arrive almost at the
same time.

U Most current and future systems however will leverage large
bandwidths.

U Desirable to describe channel variations over a larger
bandwidth range — the topic for the current lecture.

] Wideband characterization of channels and real world
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Propagation Impact on Wideband Systems

Impact interpreted in two different ways:

O The transfer function of the channel varies over the
bandwidth of interest (a.k.a. the frequency selectivity

of the channel).

O Impulse response of the channel is not a Delta function;
the arriving signal has a longer run time than the

transmitted signal (a.k.a. delay dispersion).

[ Question: What is the relationship between the above? ]

Wireless Communication
Channels

LUND

3 UNIVERSITY

Delay Dispersion: A Simple Case

Scatterer 1
Scatterer 2

Note: The delays
are resolvable at
the RX, at a given
time instance of
the channel
impulse response.
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Delay Dispersion: A Simple Case

Power delay profile of
the channel
Maximum excess
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Power delay profile over time

The General Description
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Consequence of Wideband Channels

x(t, 7) ht D) y(t, 1)

So, what about this?
What can we infer from a system view point?
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Narrowband vs. Wideband Channels
Bandwidth Dependency

“High” BW “Medium” BW “Low” BW
[n(e)] i ()| (<)
T T T
Much b.etter resolvability Narrowband if% » Trnax
of multipath components
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Power delay profile vs. frequency

correlation function

Py (&)
o p,0)

Fourier
transform

Ji (<)

Diffe;ent components fade differently across
frequency. Half power width = twice
coherence bandwidth (more in next slide)
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Condensed parameters

Coherence bandwidth

Given the frequency correlation of a channel, we can define the

coherence bandwidth B:
P (&)
== 2, (0)

What does the coherence
bandwidth tell us?

It shows us over how large
a bandwidth we can assume
so that the channel is fairly
constant.

Radio systems using a
bandwidth much smaller
than B will not notice

the frequency selectivit

Af of the channel.
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Condensed parameters
Power delay profile (cont.)

We can infer many useful parameters from the power delay profile
Total power (time integrated):
P = J-_ZP(T)dZ'
Average mean delay (first moment of the PDP)
_ro TP(T)dT

" P
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Average RMS delay spread (second moment of the PDP)
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Narrow vs. wideband frequency response
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Widely used “rules-of-thumb”

e
c= D,
.
¢ = 16nD,

time over which the time
correlation function is above 0.5

_0.423
c Ds
less restrictive and widely used
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T
B _1
=55,

band over which the frequency
correlation function is above 0.5

1

~ 505,
band over which the frequency
correlation function is above 0.9

Bc
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Frequency resp (dB)

n8 8 8 8 8 8

Time variant channel transfer function

Measurement in the lab with a
vector network analyzer

*Center frequency 3.2 GHz
*Measurement bandwidth 200
MHz, 201 frequency points
*60 measurement positions,
spaced 1 cm apart
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Time variant channel impulse response
What are the delays?
How is the signal
affected for different
delays?
)
E How does it change
o with time?
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Delay cross spectral density

How is the power for
10 different delays
correlated in time?
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Spreading function of the channel

How is the power
distributed in the

o

20 \ ““‘:
S SOSSSS
S Doppler and delay
-40 NN V¢ "ﬂ“’"’:’:"‘: - domains?
«‘ ‘ RN\ O e e e ¥ W H
YANAN W S OSSOSO SO S
/ % \"‘ A \‘i{\‘\\ FSSSISESSSSSX
A NSNS,
-60 ' s ""\"\\. S
N\ S BSOS S SO S S s
W N e e B e
VNG =
= | O SO SO S S
y NS S AN S
SR TN R s SSs
et (IR A g
S S SSSSS ' N SIS
e — 2 NN TSSO S
SO SSSOS A ' OSSNSO SO S S
OSSOSO VAN ,/“¢( SO
SIS SOSSN WX OSSOSO
S
S S SO SSCS OSSO S S S S
SO SN S S OSSN OSSOSO o
o
St == S 1538
S =2 Py
S S =
R e S :,; = 3
SO S S S S COS S SSCS S SO SIS ARSCS S XSS
S I S S A S A S S S SIS SISO S S =
NS OS e SO ST SOS SIS SSIAKNISISSSISSXSS S 6
ST STS N SOCS e < S S SSOSSES 2
<

LUND

18 UNIVERSITY

Wireless Communication
Channels

18

2021-01-26



Measurements in an industrial UWB channel

4.9 GHz bandwidth

49 TX-RX positions 49

7*7 Virtual MIMO system
Antenna array elements
separation 5cm

TX-RX Separations 3,6,10,12m
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APDP for Bm BS NLOS location B For NLOS B
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Huge bandwidth — possible to identify single multipath componenets
Need a large number of fingers in a special type of receiver (so called RAKE re
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UWRB channels

Delay spread is mainly dependent on distance to the scatterers, since it
influences the resolvability of the system to identify potential multipath

components.

For NLOS A
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