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Fading — Statistical description of the
wireless channel

U Why statistical description

U Large scale fading

U Small scale fading:
0 without dominant component
U with dominant component

Q) Statistical models

LUND

UNIVERSITY

2021-01-22



Why “statistical” description?

U Complex, unknown environment

U Can not describe everything in detail

0 Maxwell’s equations far too complex in real scenarios

U Large variations depending on the TX, RX and
interacting object locations

U Need a statistical measure since we can not describe

every point everywhere

“There is a x% probability that the
amplitude/power will be above the level y”
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The WSSUS model: Assumptions

A very common channel model is the WSSUS-model: Statistical
properties remain the same over the considered time (or area)

Recall: the channel is composed of a number of different
contributions (incoming waves), the following is assumed:

U The channel is Wide-Sense Stationary (WSS), meaning
that the correlation of the channel is invariant over time.

U The channel is built up by Uncorrelated Scatterers (US),
meaning that the frequency correlation of the channels is

are uncorrelated.)

invariant over frequency. (Contributions with different delays
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What is large scale and small scale?
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Small-scale fading
Many incoming waves
Many incoming waves with Add them up as phasors
independent amplitudes
and phases
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Small-scale fading
Many incoming waves

Re and Im components are
sums of many independent &
equally distributed 3
components == ¢,
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Small-scale fading
Rayleigh fading

No dominant component
(non line-of-sight)

Tap distribution ! Amplitude distribution

2D Gaussian
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Small-scale fading
Rayleigh fading

Rayleigh distribution

pdf (r)= %exp [— 2};_2 j

0 rmin rrms = \/EO- r

Probability that the amplitude
is below some threshold r,;,:

Tmi

in 2
Pr(r<rmin)= j pdf(r)dr =1—exp{—rmin
0

rms
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Small-scale fading
Rayleigh fading — outage probability
* What is the probability that we will receive an amplitude 20 dB
below the r.,s?
Pr(r<ry)=1 —exp(— i ) =1-exp(=0.01) = 0.01
* What is the probability that we will receive an amplitude below
rrms?
v 2
Pr(r <r. ) = l—exp(—L‘“zj =1-exp(-1)=0.63
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Small-scale fading
Rayleigh fading — fading margin

To ensure that in most cases we receive enough power, we
transmit extra power by including the so-called “fading margin”
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Small-scale fading
Rayleigh fading — fading margin

How many dB fading margin, against Rayleigh fading, do we need to
obtain an outage probability of 1%?

2
Pr(r<ry )= l—exp(—rm%J =1%=0.01

rms

Some manipulation gives
2 2
1-0.01= CXP(—KI‘%\J = ln(099) - _ rminz
7

rrms rms

2 2
= Din_— _1n(0.99)=0.01 = M ="=_=1/0.01=100
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Small-scale fading
Rayleigh fading — signal and interference

Both the desired signal and the o
interference undergo fading -
For a single user inteferer and 035
Rayleigh fading: 7
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pdf for 10 dB mean signal to
interference ratio
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where o =—% is the mean signal to
O-l

interference ratio
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Small-scale fading
Rayleigh fading — signal and interference

What is the probability that the instantaneous SIR will be below 0 dB if
the mean SIR is 10 dB when both the desired signal and the interferer
experience Rayleigh fading?
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Small-scale fading:
One dominating component

In case of Line-of-Sight (LOS) one component dominates.
* Assume it is aligned with the real axis
2
Re(r) e N(4,6%) Im(r) e N(0,0?)

* The recieved amplitude has now a Ricean distribution
instead of a Rayleigh

— The fluctuations are smaller
— The phase is dominated by the LOS component

— In real cases the mean propagation loss is often smaller due
to the LOS

* The ratio between the power of the LOS component and the
difftuse components is called Ricean K-factor
Power in LOS component A4’

Power in random components  2¢”
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Small-scale fading
Ricean fading e
A dominant component T RX
Tap distribution (line of sight) Amplitude distribution
2D Gaussian Rice
(non-zero, mean) : )
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Line-of-sight (LOS) | P (r) =3 p( 20° J 0(0'2)
component with %
amplitude A.
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