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Why “statistical” description?

O Complex, unknown environment
O Can not describe everything in detail
O Maxwell’s equations far too complex in real scenarios

) Large variations depending on the TX, RX and
Interacting object locations

] Need a statistical measure since we can not describe
every point everywhere

“There is a x% probability that the
amplitude/power will be above the level y”
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The WSSUS model: Assumptions

Recall: the channel is composed of a number of different
contributions (incoming waves), the following is assumed:
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A very common channel model is the WSSUS-model: Statistical
properties remain the same over the considered time (or area) 4]z
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WSSUS model

O The channel is Wide-Sense Stationary (WSS), meaning
a. E(h(t)) = constant, for all t, the expectation of the channel is
constant over time

b. R, (t1,t;) = Ry(t; — t,), the correlation of the channel is
invariant over time.

O The channel is built up by Uncorrelated Scatterers (US),
meaning that the frequency correlation of the channels is
invariant over frequency. (Contributions with different delays are
uncorrelated.)

a. Rp(ty, ty; 71, 72) = Rp(ty — t3;71)6 (71 — 72)
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What is large scale and small scale?
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Small-scale fading
Many incoming waves

Many incoming waves with
independent amplitudes
and phases
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Add them up as phasors
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Small-scale fading
Many incoming waves

Re and Im components are
sums of many independent
equally distributed
components

Re(r) e N(0, %)

Re(r) and Im(r) are
Independent
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Small-scale fading
Rayleigh fading

No dominant component TWX

(non line-of-sight)

Tap distribution
2D Gaussian

Amplitude distribution
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Small-scale fading
Rayleigh fading

4 Rayleigh distribution

mln rrms \/_G r

Probability that the amplitude
IS below some threshold r

m|n

Finin 2
Pr(r<r,,)= jpdf( )dr =1— exp( rm'”]
0 Irrms
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Small-scale fading
Rayleigh fading — outage probability

 What is the probability that we will receive an amplitude 20 dB
below the r

rms

2
Pr(r<r,,)=1- exp[ i j 1-exp(-0.01) ~ 0.01
rrms

« What is the probability that we will receive an amplitude below

rrms?

2

Pr(r<r,,)=1-exp [— rm"‘z j =1-exp(-1) ~0.63
r

rms
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Small-scale fading
Rayleigh fading — fading margin

To ensure that in most cases we receive enough power, we
transmit extra power by including the so-called “fading margin”
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Small-scale fading
Rayleigh fading — fading margin

How many dB fading margin, against Rayleigh fading, do we need to
obtain an outage probability of 1%?

2

r.
Pr(r<r,) =1—eX|O£— rm'”zj =1%=0.01

rms

Some manipulation gives
2

1-0.01=exp L— Fmi ] = In(0.99) = - (imin
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Vems Mins
r° r °
= m"‘z =—In (0.99) =0.01 =M =-"=1/0.01=100
rrms If'min
=M dB — 20 s
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Small-scale fading

Rayleigh fading — signal and interference

Both the desired signal and the
Interference undergo fading

For a single user inteferer and
Rayleigh fading:
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(0 +r?)

interference ratio
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Small-scale fading
Rayleigh fading — signal and interference

What is the probability that the instantaneous SIR will be below O dB if
the mean SIR is 10 dB when both the desired signal and the interferer
experience Rayleigh fading?
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Small-scale fading:
One dominating component

In case of Line-of-Sight (LOS) one component dominates.

« Assume it is aligned with the real axis

2
Re(r)e N(A,&%) Im(r) e N(0,c?)
* The received amplitude has now a Ricean distribution
instead of a Rayleigh

— The fluctuations are smaller
— The phase is dominated by the LOS component

— In real cases the mean propagation loss is often smaller due
to the LOS

* The ratio between the power of the LOS component and the

diffuse components is called Ricean K-factor
« ___Power in LOS component _ A?

Power in random components  2o°

i e
o) =
NI

Ons1iN>

Wireless Communication Channels 15 UNIVERSITY



Small-scale fading
Ricean fading

<,

A dominant component TX RX

Tap distribution  (line of sight) Amplitude distribution
2D Gaussian
(non-zero,mean)

Rice

k =30

Line-of-sight (LOS)
component with
amplitude A.
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Small-scale fading

Ricean fading, phase distribution

The distribution of the
phase is dependent on
the K-factor

pdf(y)
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Small-scale fading: Nakagami distribution

In many cases the received signal can not be described as a pure
LOS + diffuse components

The Nakagami distribution is often used in such cases

pdf () = gy (35) """~ exp(— 5577

where I'(m) is the Gamma function
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pdf

Qsignal z;r";lpli;;dez
iIncreasing m
{12345}

with m it is possible to adjust the dominating power
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