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Wireless Communications Channels
Lecture 3: Fading

EITN85: Harsh Tataria (e-mail: harsh.tataria@eit.lth.se)                                                                        
Department of Electrical and Information Technology, Lund University
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Fading – Statistical description of the 
wireless channel

Why statistical description

 Large scale fading

 Small scale fading:

 without dominant component

 with dominant component

 Statistical models

 Measurement example
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Why “statistical” description?

 Complex, unknown environment

 Can not describe everything in detail

 Maxwell’s equations far too complex in real scenarios

 Large variations depending on the TX, RX and 
interacting object locations 

 Need a statistical measure since we can not describe   
every point everywhere

“There is a x% probability that the 
amplitude/power will be above the level y”
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The WSSUS model: Assumptions
A very common channel model is the WSSUS-model: Statistical 
properties remain the same over the considered time (or area)

Recall: the channel is composed of a number of different
contributions (incoming waves), the following is assumed:

 The channel is Wide-Sense Stationary (WSS), meaning
that the correlation of the channel is invariant over time. 

 The channel is built up by Uncorrelated Scatterers (US),
meaning that the frequency correlation of the channels is
invariant over frequency. (Contributions with different delays 
are uncorrelated.)
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What is large scale and small scale?
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Large-scale fading: Basic principle
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Large-scale fading: 
Log normal distribution

A normal distribution
in the dB domain.
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Confirmed by propagation channel measurements over the 
past 50 years. 
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If these are considered
random and independent,
we should get a normal
distribution in the
dB domain.

Large-scale fading: Why log-normal?
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Many diffraction points adding extra attenuation to the pathloss.
This is, however, only one of several possible explanations.

Net attenuation:
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Example: Shadowing from people
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Two persons communicating with each other using cell phones,  
signal sometimes blocked by randomly moving humans

Example: Shadowing from humans
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line-of-sight

obstructed LOS
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Small-scale fading: Two waves

Wave 2

Wave 1

ETX(t)=A cos(2fct)

ERX1(t)=A1 cos(2fct-2/l*d1)
k0=2/l
E=E1 exp(-jkod1)

ERX2(t)=A2 cos(2fct-2/l*d2)
E=E2 exp(-jkod2) E1

E2

TX

RX
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Small-scale fading: Two waves

Wave 1 + Wave 2

Wave 2

Wave 1

TX

RX
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Small-scale fading: Doppler shifts

c

rv


0f f  

Frequency of received signal:

 0 cosrvf
c

  

where the doppler shift is

Receiving antenna moves with
speed vr at an angle θ relative
to the propagation direction
of the incoming wave, which
has frequency f0.

The maximal Doppler shift is

max 0

v
f
c
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Doppler shift 

• f0=5.2 109 Hz, v=5 km/h, (1.4 m/s)       24 Hz

• f0=900 106 Hz, v=110 km/h, (30.6 m/s)        92 Hz

max 0

v
f
c

 

How large is the maximum Doppler frequency at 
pedestrian speeds for 5.2 GHz WLAN and at highway 
speeds using GSM 900?
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Small-scale fading
Two waves with Doppler
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The two components have different Doppler shifts!
The Doppler shifts will cause a random frequency 
modulation

TX

RX
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Small-scale fading
Many incoming waves
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Many incoming waves with
independent amplitudes
and phases

Add them up as phasors
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Small-scale fading
Many incoming waves
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Re and Im components are
sums of many independent
equally distributed
components

Re(r) and Im(r) are
independent

2Re( ) (0, )r N 
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Small-scale fading
Rayleigh fading

No dominant component
(non line-of-sight)

2D Gaussian
(zero mean)

Tap distribution
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Small-scale fading
Rayleigh fading
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Small-scale fading
Rayleigh fading – outage probability

• What is the probability that we will receive an amplitude 20 dB 
below the rrms?

• What is the probability that we will receive an amplitude below 
rrms?
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Small-scale fading
Rayleigh fading – fading margin
To ensure that in most cases we receive enough power, we 
transmit extra power by including the so-called “fading margin”
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Small-scale fading
Rayleigh fading – fading margin 

How many dB fading margin, against Rayleigh fading, do we need to
obtain an outage probability of 1%?
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Small-scale fading
Rayleigh fading – signal and interference

Both the desired signal and the 
interference undergo fading

For a single user inteferer and 
Rayleigh fading:

where                 is the mean signal to 

interference ratio
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Small-scale fading
Rayleigh fading – signal and interference

What is the probability that the instantaneous SIR will be below 0 dB if 
the mean SIR is 10 dB when both the desired signal and the interferer 
experience Rayleigh fading?
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Small-scale fading:
One dominating component
In case of Line-of-Sight (LOS) one component dominates.

• Assume it is aligned with the real axis

• The recieved amplitude has now a Ricean distribution 
instead of a Rayleigh

– The fluctuations are smaller

– The phase is dominated by the LOS component

– In real cases the mean propagation loss is often smaller due 
to the LOS

• The ratio between the power of the LOS component and the 
diffuse components is called Ricean K-factor

2Re( ) ( , )r N A  2Im( ) (0, )r N 
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Small-scale fading
Ricean fading

A dominant component
(line of sight)

2D Gaussian
(non-zero mean)

Tap distribution

A

Line-of-sight (LOS)
component with
amplitude A.
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Small-scale fading
Ricean fading, phase distribution

The distribution of the 
phase is dependent on 
the K-factor
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Small-scale fading: Nakagami distribution
In many cases the received signal can not be described as a pure 
LOS + diffuse components

The Nakagami distribution is often used in such cases

with m it is possible to adjust the dominating power

increasing m
{1 2 3 4 5}
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Some special cases
Rayleigh fading

Rice fading, K=0

Rice fading with K=0 becomes Rayleigh

Nakagami, m=1

Nakagami with m=1 becomes Rayleigh
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