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Wireless Communications Channels
Lecture 3: Fading

EITN85: Harsh Tataria (e-mail: harsh.tataria@eit.lth.se)                                                                        
Department of Electrical and Information Technology, Lund University
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Fading – Statistical description of the 
wireless channel

Why statistical description

 Large scale fading

 Small scale fading:

 without dominant component

 with dominant component

 Statistical models

 Measurement example
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Why “statistical” description?

 Complex, unknown environment

 Can not describe everything in detail

 Maxwell’s equations far too complex in real scenarios

 Large variations depending on the TX, RX and 
interacting object locations 

 Need a statistical measure since we can not describe   
every point everywhere

“There is a x% probability that the 
amplitude/power will be above the level y”
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The WSSUS model: Assumptions
A very common channel model is the WSSUS-model: Statistical 
properties remain the same over the considered time (or area)

Recall: the channel is composed of a number of different
contributions (incoming waves), the following is assumed:

 The channel is Wide-Sense Stationary (WSS), meaning
that the correlation of the channel is invariant over time. 

 The channel is built up by Uncorrelated Scatterers (US),
meaning that the frequency correlation of the channels is
invariant over frequency. (Contributions with different delays 
are uncorrelated.)
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What is large scale and small scale?
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Large-scale fading: Basic principle
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Large-scale fading: 
Log normal distribution

A normal distribution
in the dB domain.
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Confirmed by propagation channel measurements over the 
past 50 years. 
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If these are considered
random and independent,
we should get a normal
distribution in the
dB domain.

Large-scale fading: Why log-normal?
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2
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Many diffraction points adding extra attenuation to the pathloss.
This is, however, only one of several possible explanations.

Net attenuation:
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Example: Shadowing from people
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Two persons communicating with each other using cell phones,  
signal sometimes blocked by randomly moving humans

Example: Shadowing from humans
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line-of-sight

obstructed LOS
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Small-scale fading: Two waves

Wave 2

Wave 1

ETX(t)=A cos(2fct)

ERX1(t)=A1 cos(2fct-2/l*d1)
k0=2/l
E=E1 exp(-jkod1)

ERX2(t)=A2 cos(2fct-2/l*d2)
E=E2 exp(-jkod2) E1

E2

TX

RX
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Small-scale fading: Two waves

Wave 1 + Wave 2

Wave 2

Wave 1

TX

RX
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Small-scale fading: Doppler shifts

c

rv


0f f  

Frequency of received signal:

 0 cosrvf
c

  

where the doppler shift is

Receiving antenna moves with
speed vr at an angle θ relative
to the propagation direction
of the incoming wave, which
has frequency f0.

The maximal Doppler shift is

max 0

v
f
c

 
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Doppler shift 

• f0=5.2 109 Hz, v=5 km/h, (1.4 m/s)       24 Hz

• f0=900 106 Hz, v=110 km/h, (30.6 m/s)        92 Hz

max 0

v
f
c

 

How large is the maximum Doppler frequency at 
pedestrian speeds for 5.2 GHz WLAN and at highway 
speeds using GSM 900?
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Small-scale fading
Two waves with Doppler
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The two components have different Doppler shifts!
The Doppler shifts will cause a random frequency 
modulation

TX

RX
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Small-scale fading
Many incoming waves

1 1,r  2 2,r 

3 3,r 
4 4,r 

,r 
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Many incoming waves with
independent amplitudes
and phases

Add them up as phasors
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Small-scale fading
Many incoming waves

1r
1

2r 2
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Re and Im components are
sums of many independent
equally distributed
components

Re(r) and Im(r) are
independent

2Re( ) (0, )r N 
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Small-scale fading
Rayleigh fading

No dominant component
(non line-of-sight)

2D Gaussian
(zero mean)

Tap distribution
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Small-scale fading
Rayleigh fading
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Small-scale fading
Rayleigh fading – outage probability

• What is the probability that we will receive an amplitude 20 dB 
below the rrms?

• What is the probability that we will receive an amplitude below 
rrms?
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Small-scale fading
Rayleigh fading – fading margin
To ensure that in most cases we receive enough power, we 
transmit extra power by including the so-called “fading margin”
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Small-scale fading
Rayleigh fading – fading margin 

How many dB fading margin, against Rayleigh fading, do we need to
obtain an outage probability of 1%?
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Small-scale fading
Rayleigh fading – signal and interference

Both the desired signal and the 
interference undergo fading

For a single user inteferer and 
Rayleigh fading:

where                 is the mean signal to 
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Small-scale fading
Rayleigh fading – signal and interference

What is the probability that the instantaneous SIR will be below 0 dB if 
the mean SIR is 10 dB when both the desired signal and the interferer 
experience Rayleigh fading?
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Small-scale fading:
One dominating component
In case of Line-of-Sight (LOS) one component dominates.

• Assume it is aligned with the real axis

• The recieved amplitude has now a Ricean distribution 
instead of a Rayleigh

– The fluctuations are smaller

– The phase is dominated by the LOS component

– In real cases the mean propagation loss is often smaller due 
to the LOS

• The ratio between the power of the LOS component and the 
diffuse components is called Ricean K-factor
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Small-scale fading
Ricean fading

A dominant component
(line of sight)

2D Gaussian
(non-zero mean)

Tap distribution

A

Line-of-sight (LOS)
component with
amplitude A.
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Small-scale fading
Ricean fading, phase distribution

The distribution of the 
phase is dependent on 
the K-factor
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Small-scale fading: Nakagami distribution
In many cases the received signal can not be described as a pure 
LOS + diffuse components

The Nakagami distribution is often used in such cases

with m it is possible to adjust the dominating power

increasing m
{1 2 3 4 5}
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Some special cases
Rayleigh fading

Rice fading, K=0

Rice fading with K=0 becomes Rayleigh

Nakagami, m=1

Nakagami with m=1 becomes Rayleigh
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