

Wireless Communications Channels Lecture 2: Propagation Mechanisms

EITN85: Meifang Zhu (e-mail: meifang.zhu@eit.lth.se) Department of Electrical and Information Technology, Lund University

Recap:Last lecture

- Free space path loss
 - Friis's law
 - The d⁻⁴ law

Reflection and transmission

- Diffraction
 - Fresnel integral

Diffraction in real environments

For real environments we can represent buildings and objects as multiple screens

Diffraction: Bullington's method

Diffraction – Epstein-Petersen Method

The same approach is used also for the ITU model, but with an empirical correction factor

Diffuse Scattering

6

Kirchhoff theory – scattering by rough surfaces

calculate distribution of the surface amplitude

assume no "shadowing" from surface

calculate a new reflection coefficient

for Gaussian surface distribution angle of incidence

$$\rho_{\text{rough}} = \rho_{\text{smooth}} \exp\left[-2\left(k_0 \sigma_h \sin\psi\right)^2\right]$$

standard deviation of height

Pertubation theory – scattering by rough surfaces

$$\sigma_{\rm h}^2 W(\vec{\rho}) = E_{\vec{r}} \left\{ h(\vec{r}) h(\vec{r} + \vec{\rho}) \right\}$$

$$h(\vec{r} + \vec{\rho})$$

$$h(\vec{r}) \quad \vec{r}$$

Include shadowing effects by the surface

includes spatial correlation of surface – how fast are the changes in height

based on calculation of an "effective" dielectric constant

More accurate than Krichhoff theory, especially for large angles of incidence and "rougher" surfaces

Increase carrier frequency from 1GHz to 100GHz, will you see more scattering or less at an rough surface? Why?

Waveguiding

Waveguiding effects often result in lower propagation exponents

n =1.5-5

This means lower path loss along certain street corridors

Does friis law breaks?

Wireless Communication Channels

How does the signal reach the receiver **Outdoor-to-indoor**

How does the signal reach the receiver In the office

How does the signal leave the transmitter at the roof

How does the signal reach the receiver outdoor urban

Signal arrives from some specific areas

16

Diffraction, reflection, scattering, transmission

17

LUND UNIVERSITY

Wireless Communications Channels Lecture 3: Fading

EITN85: Meifang Zhu (e-mail: meifang.zhu@eit.lth.se) Department of Electrical and Information Technology, Lund University

Fading – Statistical description of the wireless channel

- □ Why statistical description
- □ Large scale fading
- Small scale fading:
 - without dominant component
 - with dominant component
- □ Statistical models
- Measurement example

Why "statistical" description?

- Complex, unknown environment
- Can not describe everything in detail
 - □ Maxwell's equations far too complex in real scenarios
- Large variations depending on the TX, RX and interacting object locations
- Need a statistical measure since we can not describe every point everywhere

The WSSUS model: Assumptions

Recall: the channel is composed of a number of different contributions (incoming waves), the following is assumed:

A very common channel model is the WSSUS-model: Statistical properties remain the same over the considered time (or area)

WSSUS model

- □ The channel is Wide-Sense Stationary (WSS), meaning
 a. E(h(t)) = constant, for all t, the expectation of the channel is constant over time
 b. R_h(t₁, t₂) = R_h(t₁ t₂), the correlation of the channel is invariant over time.
- The channel is built up by Uncorrelated Scatterers (US), meaning that the frequency correlation of the channels is invariant over frequency. (Contributions with different delays are uncorrelated.)

a. $R_h(t_1, t_2; \tau_1, \tau_2) = R_h(t_1 - t_2; \tau_1)\delta(\tau_1 - \tau_2)$

What is large scale and small scale?

Large-scale fading: Basic principle

Large-scale fading: Log normal distribution

Confirmed by propagation channel measurements over the past 50 years.

26

Large-scale fading: Why log-normal?

Many diffraction points adding extra attenuation to the pathloss. This is, however, only one of several possible explanations.

dB domain.

Example: Shadowing from people

Two persons communicating with each other using cell phones, signal sometimes blocked by randomly moving humans

28

Example: Shadowing from humans

29

Example: Extracting LSF from measurements

30

• Is shadowing depedent on the system bandwidth?

