

Wireless Communications Channels Lecture 2: Propagation Mechanisms

EITN85: Meifang Zhu(e-mail: meifang.zhu@eit.lth.se) Department of Electrical and Information Technology, Lund University

Recap: Last Lecture

Contents

Propagation mechanisms:

- □ Free space attenuation
- Reflection and transmission
- Diffraction
- □ Diffuse scattering
- □ Waveguiding

Examples from real world propagation scenarios

Free space attenuation

 Assume TX and RX antennas in free space and would like to derive the received power as a function of link distance and transmit power
Assume omnidirectional antennas for now

Free space attenuation

- Assume TX and RX antennas in free space and would like to derive the received power as a function of link distance and transmit power (omnidirectional antennas)
- Energy conservation: integral of power density over any closed surface = transmit power
- □ If TX antenna radiates isotropically, then power density on surface is $P_{\text{TX}}/(4\pi d^2)$. Then,

$$P_{\rm RX}(d) = P_{\rm TX} \frac{1}{4\pi d^2} A_{\rm RX}$$

Power impinging on the area which is **collected** by the RX antenna!

Free space attenuation

□ If TX antenna does not radiates isotropically, then power density on surface is $P_{TX}G_{TX}/(4\pi d^2)$. Then,

$$P_{\rm RX}(d) = P_{\rm TX} G_{TX} \frac{1}{4\pi d^2} A_{\rm RX}$$

- Product of TX power and gain is known as: effective isotropic radiated power (EIRP)
- □ Relationship between effective area and antenna gain: $G_{\text{RX}} = \left(\frac{4\pi}{\lambda^2}\right) A_{\text{RX}}$

Free space loss: Friis' law

Received power, with antenna gains G_{TX} and G_{RX} :

Question: What happens if *d* is 0 in *?

Free space loss: Friis' law implications

$$P_{RX}\left(d\right) = \frac{G_{RX}G_{TX}}{L_{free}\left(d\right)}P_{TX} = P_{TX}\left(\frac{\lambda}{4\pi d}\right)^2 G_{RX}G_{TX}$$

8

Free space loss: What and where is the far field?

The free space loss calculations are only valid in the "far field" of the antennas.

Far-field conditions are assumed far beyond the "Rayleigh" distance:

$$d_{R} = \frac{2L_{a}^{2}}{\lambda}$$

where L_a is the largest dimension of the antenna.

Another rule of thumb is: "At least 10 wavelengths"

Quiz

Compute the Rayleigh distance of a square patch antenna receiving a signal with a gain of 10 dB.

The d⁻⁴ law – l

Instead of just considering a direct path, let's look at the following scenario

11

Continuation of Slide (10): How?

12

The d⁻⁴ law – II

• However

- n=4 is not a universal decay exponent
- Theoretical model is not fulfilled in practice
- Breakpoint is rarely where theoretically predicted
- Second breakpoint at the radio horizon

Fundamental propagation mechanisms

Wireless Communication Channels

UNIVERSITY

Complex dielectric constant

Lets take a homogeneous planewave incident onto a dielectric half-space

dielectric constant, permittivity

Describes the dielectric material in one single parameter

Examples	Permittivity	conductivity
Concrete	6	10 ⁻²
Gypsum	6.5	10 ⁻²
Wood	23	10 ⁻¹¹
Glass	5	10 ⁻¹²
Air	1	

Reflection and transmission

Reflected angle:

$$\Theta_{e} = \Theta_{r}$$

Transmitted angle:

$$\frac{\sin\Theta_{t}}{\sin\Theta_{e}} = \frac{\sqrt{\varepsilon_{1}}}{\sqrt{\varepsilon_{2}}}$$

16

What is Reflection and Transmission Dependent on?

17

TM and TE Component Behaviors

Transmission through layered structures

Wall with thickness d and two dielectrics

19

Diffraction: The principle

- Single or multiple edges
- makes it possible to go behind corners
- less pronounced when the wavelength is small compared to objects

20

Diffraction: Huygen's principle

Each point of a wavefront can be considered as a source of a spherical wave

Bending around corners and edges

Diffraction coefficient

The Fresnel integral is defined

$$F(v_{\rm F}) = \int_{0}^{v_{\rm F}} \exp\left(-j\pi \frac{t^2}{2}\right) dt.$$

Total field

$$E_{\text{total}} = \exp(-jk_0 x) \left(\frac{1}{2} - \frac{\exp(-j\pi/4)}{\sqrt{2}} F(v_F) \right)$$

Fresnel integral

with the Fresnel parameter

$$v_{\rm F} = \alpha_k \sqrt{\frac{2d_1d_2}{\lambda(d_1+d_2)}}$$

