

EITN85: Xuhong Li (Email: xuhong.li@eit.lth.se)
Department of Electrical and Information Technology, Lund University

Recap: Last Lecture

Contents

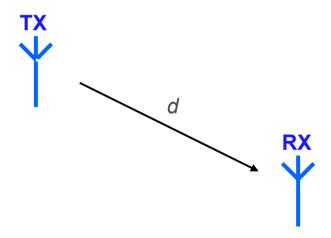
Propagation mechanisms:

- ☐ Free space attenuation
- □ Reflection and transmission
- □ Diffraction
- □ Diffuse scattering
- Waveguiding

Examples from real world propagation scenarios

Free space attenuation

- Assume TX and RX antennas in free space and would like to derive the received power as a function of link distance and transmit power
 - Assume omnidirectional antennas for now

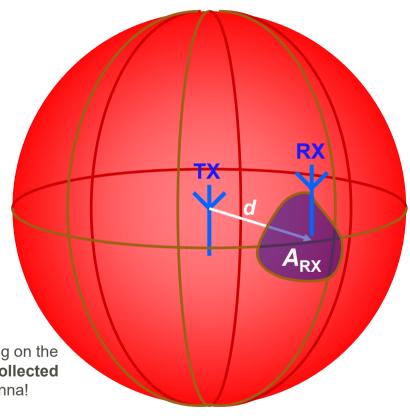


Free space attenuation

- Assume TX and RX antennas in **free space** and would like to derive the received power as a function of link distance and transmit power (omnidirectional antennas)
- Energy conservation: integral of power density over any closed surface = transmit power
- If TX antenna radiates isotropically, then power density on surface is $P_{\rm TX}/(4\pi d^2)$. Then,

$$P_{\rm RX}(d) = P_{\rm TX} \frac{1}{4\pi d^2} A_{\rm RX}$$

Power impinging on the area which is **collected** by the RX antenna!



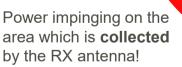
Shpere of radius d

Free space attenuation

- Assume TX and RX antennas in **free space** and would like to derive the received power as a function of link distance and transmit power
- Energy conservation: integral of power densityover any closed surface = transmit power
- If TX antenna radiates isotropically, then power density on surface is $P_{\rm TX}/(4\pi d^2)$. Then,

$$P_{\rm RX}(d) = P_{\rm TX} \frac{1}{4\pi d^2} A_{\rm RX}$$

□ Product of TX power and gain is known as: effective isotropic radiated power (EIRP)



Shpere of radius d

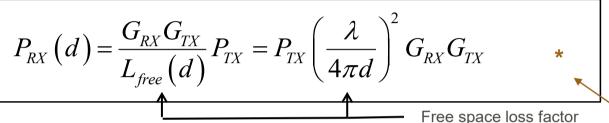
RX

 A_{RX}

Relationship between effective area and antenna gain: $G_{\rm RX} = \left(\frac{4\pi}{\lambda^2}\right) A_{\rm RX}$

Free space loss: Friis' law

Received power, with antenna gains G_{TX} and G_{RX} :



RX power goes down as a function of frequency, for a fixed distance.

$$\begin{split} P_{RX|dB}\left(d\right) &= P_{TX|dB} + G_{TX|dB} - L_{free|dB}\left(d\right) + G_{RX|dB} \\ &= P_{TX|dB} + G_{TX|dB} - 10\log_{10}\left(\frac{4\pi d}{\lambda}\right)^2 + G_{RX|dB} \end{split}$$

Question: What happens if d is 0 in *?

Free space loss: Friis' law implications

$$P_{RX}(d) = \frac{G_{RX}G_{TX}}{L_{free}(d)}P_{TX} = P_{TX}\left(\frac{\lambda}{4\pi d}\right)^2 G_{RX}G_{TX}$$

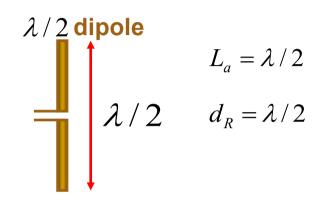
Free space loss: What and where is the far field?

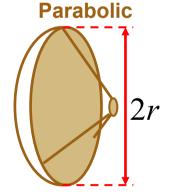
The free space loss calculations are only valid in the "far field" of the antennas.

Far-field conditions are assumed far beyond the "Rayleigh" distance:

$$d_R = \frac{2L_a^2}{\lambda}$$

where L_a is the largest dimension of the antenna.





$$L_a = 2r$$

$$d_R = \frac{8r^2}{\lambda}$$

Another rule of thumb is: "At least 10 wavelengths"

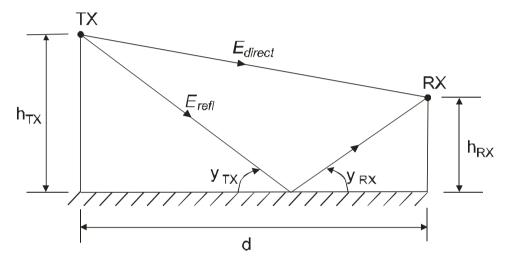
Quiz

Compute the Rayleigh distance of a square patch antenna receiving a signal with a gain of 10 dB.

The d^{-4} law -1

Instead of just considering a direct path, let's look at the following

scenario



the power behaves as

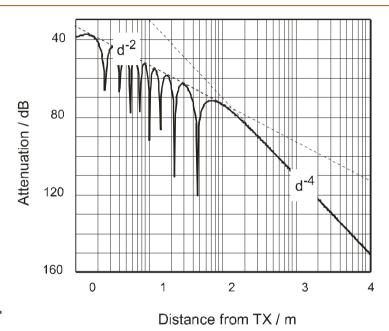
$$P_{\rm RX}(d) \approx P_{\rm TX} G_{\rm TX} G_{\rm RX} \left(\frac{h_{\rm TX} h_{\rm RX}}{d^2}\right)^2$$

for distances greater than

$$d_{\rm break} \gtrsim 4h_{\rm TX}h_{\rm RX}/\lambda$$

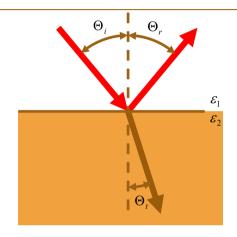
Continuation of Slide (10): How?

The d⁻⁴ law – II

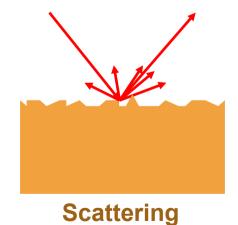


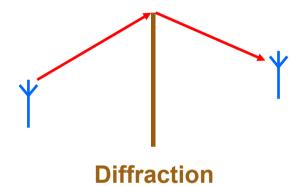
- However
 - n=4 is not a universal decay exponent
 - Theoretical model is not fulfilled in practice
 - Breakpoint is rarely where theoretically predicted
 - Second breakpoint at the radio horizon

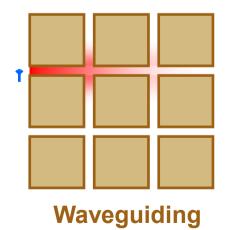
Fundamental propagation mechanisms



Reflection and transmission







Complex dielectric constant

Lets take a homogeneous planewave incident onto a dielectric half-space

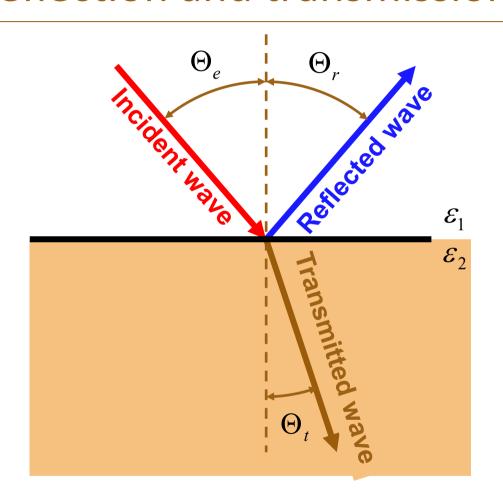
$$\delta_i = \varepsilon_i - j \frac{\sigma_{e,i}}{2\pi f_e}$$

dielectric constant, permittivity

Describes the dielectric material in one single parameter

Examples	Permittivity	conductivity
Concrete	6	10-2
Gypsum	6.5	10-2
Wood	23	10-11
Glass	5	10 ⁻¹²
Air	1	

Reflection and transmission



Reflected angle:

$$\Theta_{\rm e} = \Theta_{\rm r}$$
.

Transmitted angle:

$$\frac{\sin\Theta_{\rm t}}{\sin\Theta_{\rm e}} = \frac{\sqrt{\epsilon_1}}{\sqrt{\epsilon_2}}$$

What is Reflection and Transmission Dependent on?

TM and TE Component Behaviors

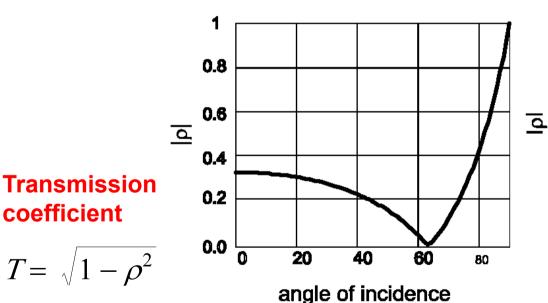
Reflection coefficient

coefficient

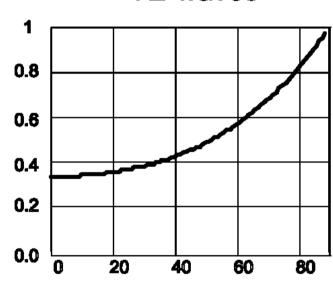
$$\rho_{TM} = -\frac{\sqrt{\delta_2 \cos \Theta_e} - \sqrt{\delta_1 \cos(\Theta_t)}}{\sqrt{\delta_2 \cos \Theta_e} + \sqrt{\delta_1 \cos(\Theta_t)}}$$

$$\rho_{\mathit{TM}} = -\frac{\sqrt{\delta_2} \cos \Theta_{\mathrm{e}} - \sqrt{\delta_1} \cos(\Theta_{\mathrm{t}})}{\sqrt{\delta_2} \cos \Theta_{\mathrm{e}} + \sqrt{\delta_1} \cos(\Theta_{\mathrm{t}})} \quad \rho_{\mathit{TE}} = \frac{\sqrt{\delta_1} \cos(\Theta_{\mathrm{e}}) - \sqrt{\delta_2} \cos(\Theta_{\mathrm{t}})}{\sqrt{\delta_1} \cos(\Theta_{\mathrm{e}}) + \sqrt{\delta_2} \cos(\Theta_{\mathrm{t}})}$$

TM-waves

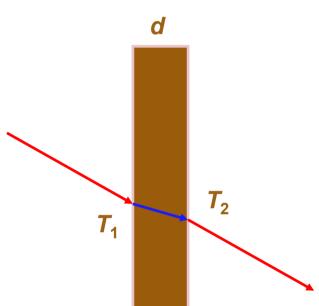


TE-waves



angle of incidence

Transmission through layered structures



Total transmission coefficient

$$T = \frac{T_1 T_2 e^{-j\alpha}}{1 + R_1 R_2 e^{-2j\alpha}}$$

total reflection coefficient

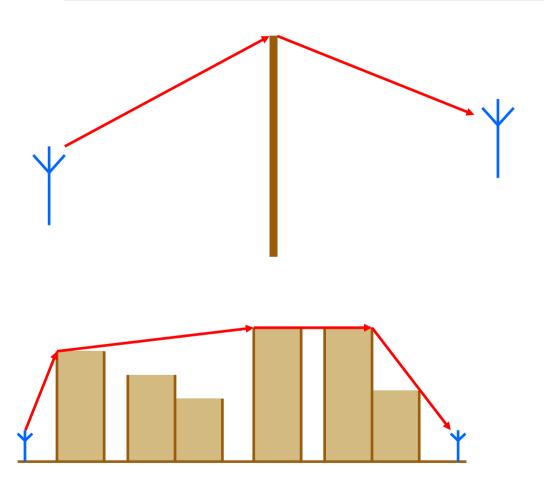
$$\rho = \frac{\rho_1 + \rho_2 e^{-j2\alpha}}{1 + \rho_1 \rho_2 e^{-2j\alpha}}$$

with the electrical length in the wall

$$\alpha = \frac{2\pi}{\lambda} \sqrt{\varepsilon_1} d_{\text{layer}} \cos(\Theta_t)$$

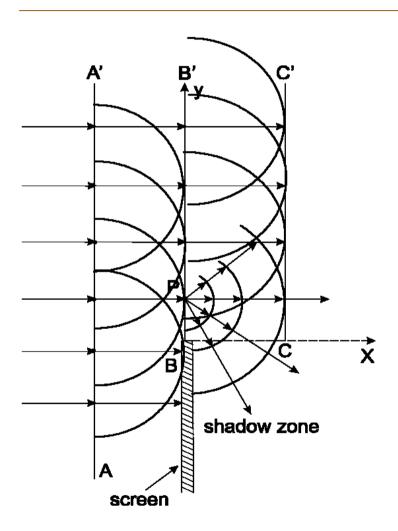
Wall with thickness d and two dielectrics

Diffraction: The principle



- Single or multiple edges
- makes it possible to go behind corners
- less pronounced when the wavelength is small compared to objects

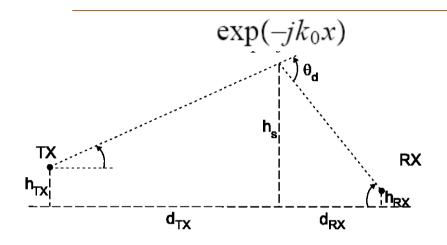
Diffraction: Huygen's principle



Each point of a wavefront can be considered as a source of a spherical wave

Bending around corners and edges

Diffraction coefficient



Total field

$$E_{\text{total}} = \exp(-jk_0x) \left(\frac{1}{2} - \frac{\exp(-j\pi/4)}{\sqrt{2}} F(v_F) \right) \qquad v_F = \alpha_k \sqrt{\frac{2d_1d_2}{\lambda(d_1 + d_2)}}$$

Fresnel integral

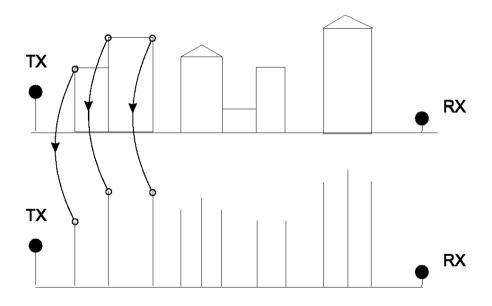
The Fresnel integral is defined

$$F(v_{\rm F}) = \int_{0}^{v_{\rm F}} \exp(-j\pi \frac{t^2}{2}) dt.$$

with the Fresnel parameter

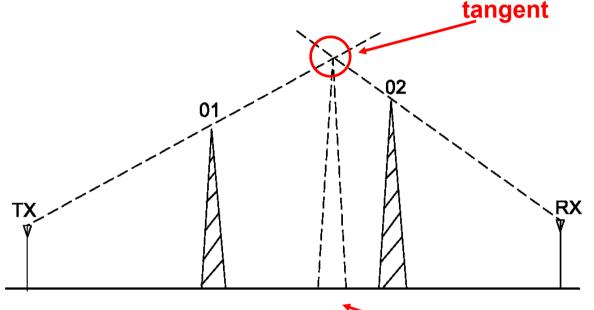
$$v_{\rm F} = \alpha_k \sqrt{\frac{2d_1d_2}{\lambda(d_1+d_2)}}$$

Diffraction in real environments



For real environments we can represent buildings and objects as multiple screens

Diffraction: Bullington's method



Replace all screens with one equivalent screen

Height determined by the steepest angle

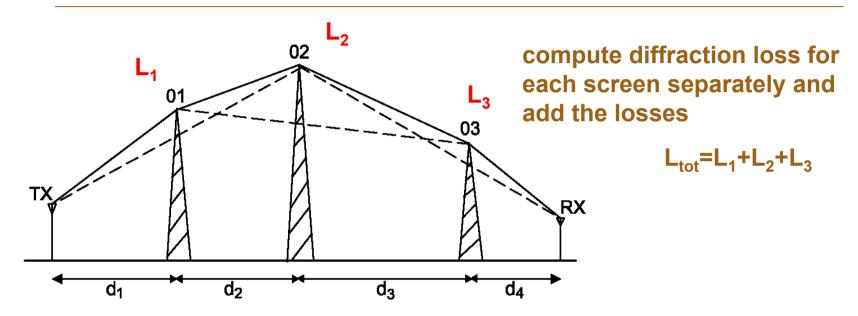
Simple but a bit optimistic

equivalent screen

$$E_{\text{total}} = \exp(-jk_0x) \left(\frac{1}{2} - \frac{\exp(-j\pi/4)}{\sqrt{2}} F(v_F)\right) \qquad v_F = \alpha_k \sqrt{\frac{2d_1d_2}{\lambda(d_1+d_2)}}$$

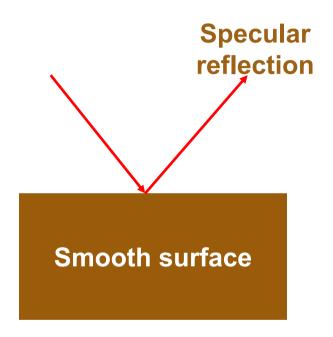
$$v_{\rm F} = \alpha_k \sqrt{\frac{2d_1d_2}{\lambda(d_1+d_2)}}$$

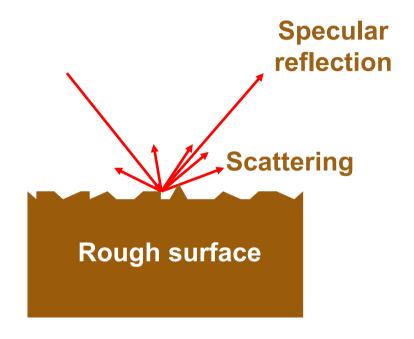
Diffraction – Epstein-Petersen Method



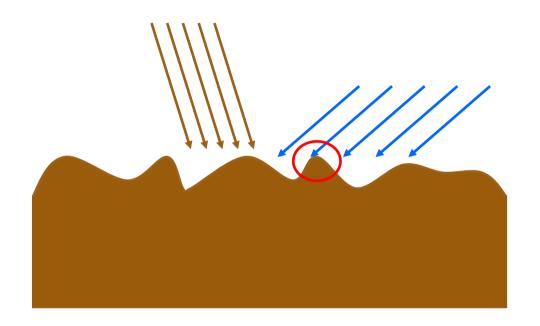
The same approach is used also for the ITU model, but with an empirical correction factor

Diffuse Scattering





Kirchhoff theory – scattering by rough surfaces



calculate distribution of the surface amplitude

assume no "shadowing" from surface

calculate a new reflection coefficient

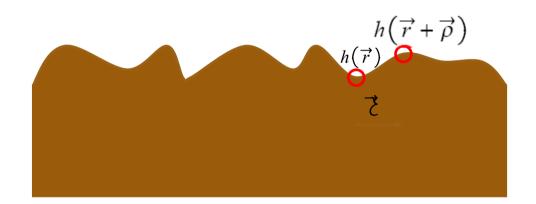
for Gaussian surface distribution angle of incidence

$$\rho_{\text{rough}} = \rho_{\text{smooth}} \exp \left[-2 \left(k_0 \sigma_h \sin \psi \right)^2 \right]$$

standard deviation of height

Pertubation theory – scattering by rough surfaces

$$\sigma_{\rm h}^2 W(\overrightarrow{\rho}) = E_{\overrightarrow{r}} \left\{ h(\overrightarrow{r}) h(\overrightarrow{r} + \overrightarrow{\rho}) \right\}$$



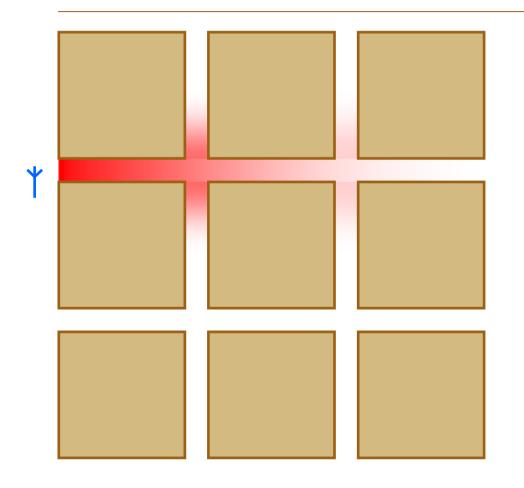
Include shadowing effects by the surface

includes spatial correlation of surface – how fast are the changes in height

based on calculation of an "effective" dielectric constant

More accurate than Krichhoff theory, especially for large angles of incidence and "rougher" surfaces

Waveguiding

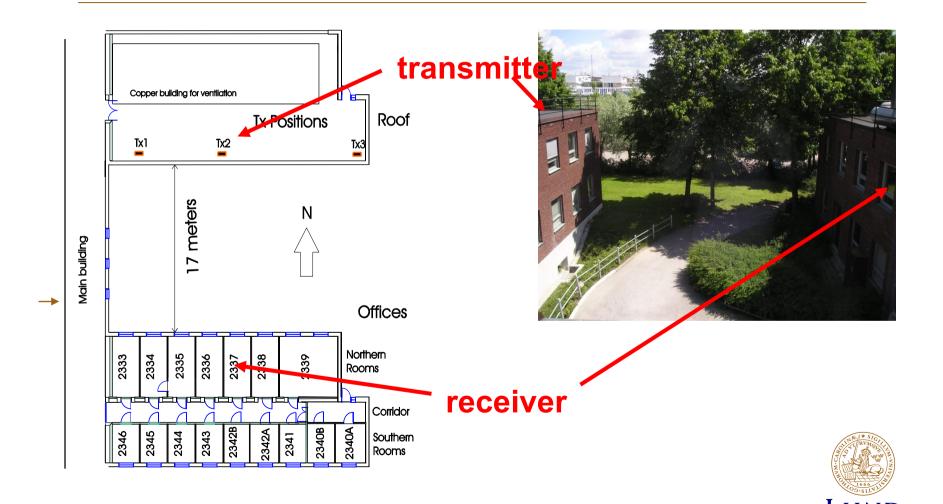


Waveguiding effects often result in lower propagation exponents

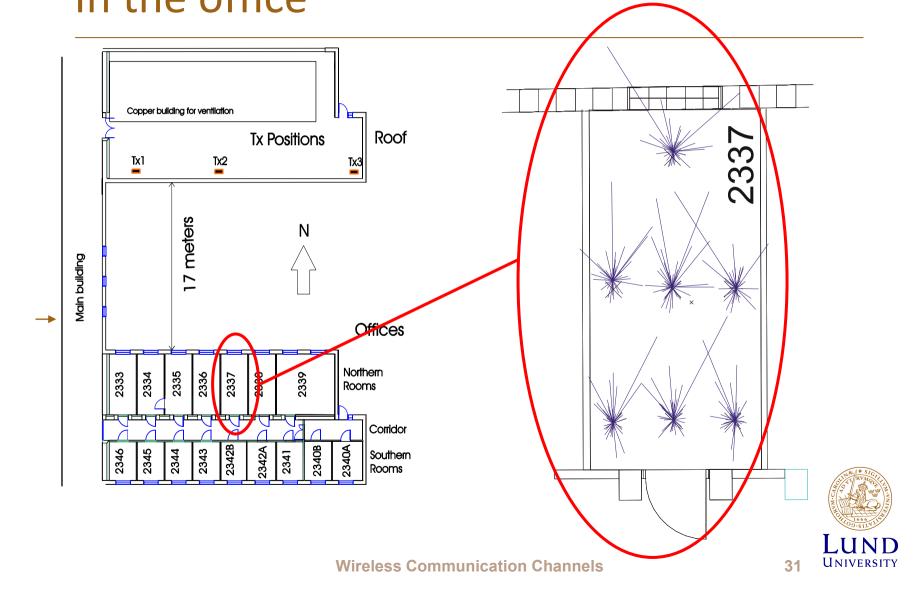
n = 1.5-5

This means lower path loss along certain street corridors

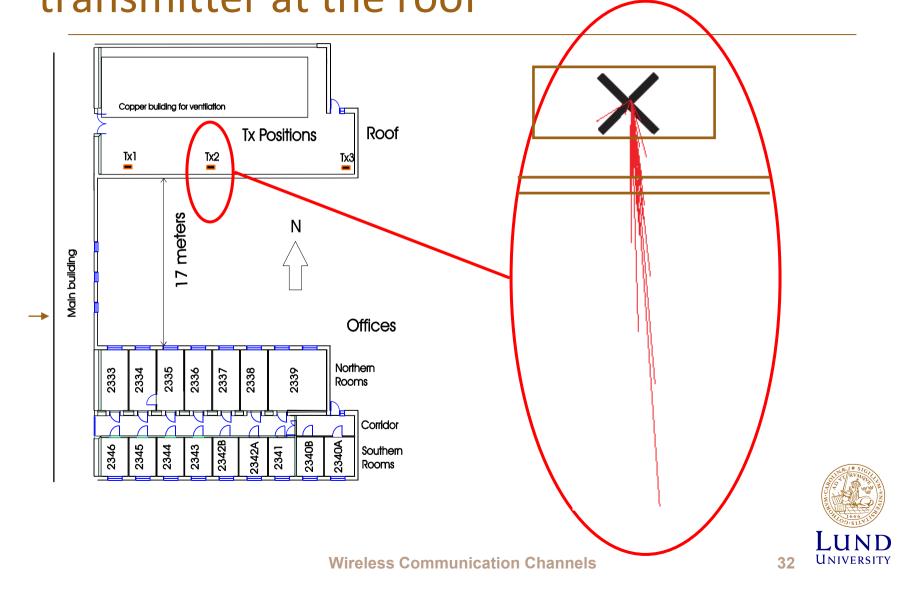
How does the signal reach the receiver Outdoor-to-indoor



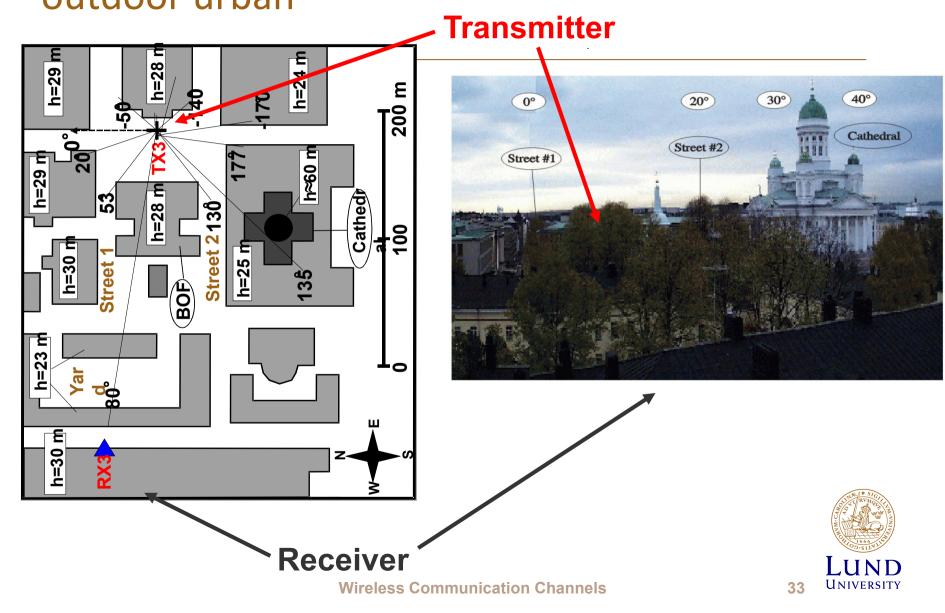
How does the signal reach the receiver In the office



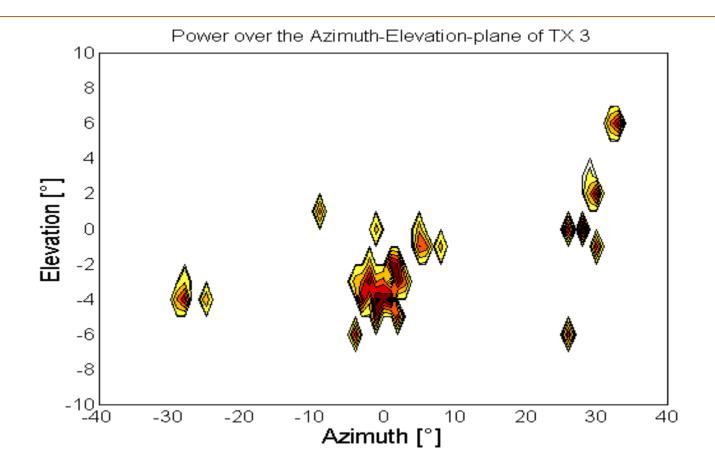
How does the signal leave the transmitter at the roof



How does the signal reach the receiver outdoor urban



Signal arrives from some specific areas



Diffraction, reflection, scattering, transmission

