Home exam Electrodynamics EITN80, 2018

The solutions has to be handed in before 3 pm, May 23.

For grade 3 at least 50% has to correct. For grade 4 at least 66% has to be correct and for grade 5 at least 83% has to be correct. For grade 4 and 5 one need to explain the solutions at an oral exam.

1

A rectangular waveguide has cross section $6\,\mathrm{cm}\times2.5\,\mathrm{cm}.$ The boundary of the cross-section is $\Gamma.$

- a) What are the cut-off frequencies for the five lowest waveguide modes?
- b) What are the phase and group speeds of the fundamental mode at the frequency 4 GHz?
- c) Assume that you like to use a coaxial cable to send in power to the waveguide and that you like to excite the fundamental mode. You drill a hole in the waveguide and attach the outer conductor of the coaxial cable to the surface of the hole. Suggest one position on Γ to drill the hole if you let the inner conductor of the coaxial cable be extended along a straight line.
- d) Suggest one position on Γ to drill the hole if you let the inner conductor of the coaxial cable be extended and bent into a half circle. The tip of the inner conductor should be attached to the inner surface of the waveguide. You should also describe how the half circle is aligned.
- e) Assume that the fundamental mode propagates in the positive z-direction in the waveguide. The frequency is 4 GHz and the amplitude of the mode is such that the largest value of the electric field in the waveguide is 100 V/m. Determine the time average of the power transported in the waveguide.

$\mathbf{2}$

- A waveguide has elliptic cross section with half axes a = 4 cm and b = 2 cm.
 - a) Use Comsol to determine the seven lowest cut-off frequencies for the modes.
 - b) Use Comsol to determine if each of the seven modes is a TE or a TM-mode.

3

A resonance cavity is a circular cylinder with radius a = 10 cm. The frequency of the TM₀₁₀ mode is f_{010} and the frequency of the TE₁₁₁ mode is $f_{111} = 1.1 f_{010}$.

- a) Determine the height h of the cylinder.
- b) Determine f_{010}

Determine the four lowest resonance frequencies of a cavity that has a cross section of a quarter of a circle. The radius of the circle is a = 10 cm and the height is h = 5 cm.

Use Comsol to determine the five lowest resonance frequencies of a resonance cavity that has the shape of a prolate spheroid, see figure. The prolate spheroid is an axially symmetric object. With the z-axis as symmetry axis the cross section in the xz-plane (and in the yz-plane) is an ellipse with major axis along the symmetry axis. The half axes of the ellipse are a = 10 cm and b = 4 cm.

Help: If you use the axially symmetric solver then the default value of the azimuthal index is m = 0. You need to check also m > 0 in order to find all of the five frequencies. Click on **Electromagnetic waves**, frequency domain and you will find the Azimuthal mode number.

6

A proton travels in the xy-plane with constant speed v = 0.9c, where c is the speed of light. In the region where the proton travels there is a constant magnetic flux density $\boldsymbol{B} = B_0 \hat{\boldsymbol{z}}$, where $B_0 = 1$ T.

- a) Determine the radius R of the circle that the proton travels along.
- b) Introduce a coordinate system with its origin in the center of the circle and its z-axis along **B**. Let t = 0 when the proton passes (x, y, z) = (R, 0, 0). Determine the retarded time t_r when t = 0, for the field point $\mathbf{r} = (0, 0, R)$.
- c) Determine the electric field \boldsymbol{E} at $\boldsymbol{r} = (0, 0, R)$ as functions of t. You can write the solution as $\boldsymbol{E} = \alpha_1 \hat{\boldsymbol{z}} + \alpha_2 \boldsymbol{v}(t_r) + \alpha_3 \boldsymbol{w}(t_r)$, where \boldsymbol{v} is the velocity and \boldsymbol{w} the position at time t_r . Give explicit expressions of t_r , $\boldsymbol{w}(t_r)$, $\boldsymbol{v}(t_r)$, α_1 , α_2 and α_3 .
- d) Determine the static electric field $\boldsymbol{E}_{\text{stat}}(0,0,R)$ of a line charge $\rho_{\ell} = \frac{q}{2\pi R}$ along the circle with radius R. Is there any similarity between this field and the field in c)?
- e) Run your Matlab code and check that you get the same electric fields as in c). Enclose the graph of the three components of \boldsymbol{E} as a function of t for t in the interval $0 < t < 10\pi R/v$, where v = 0.9c is the speed of the particle.

4

 $\mathbf{5}$

- f) Use your Matlab code to determine $\boldsymbol{E}(R, 0, R, t)$. Enclose the graph of the three components of \boldsymbol{E} as a function of t for t in the interval $0 < t < 10\pi R/v$, where v = 0.9c is the speed of the particle.
- g) Use your Matlab code to determine $\boldsymbol{E}(10R, 0, 0, t)$. Enclose the graph of the three components of \boldsymbol{E} as a function of t for t in the interval $0 < t < 10\pi R/v$, where v is the speed of the particle.

7

An inertial system \bar{S} travels with velocity $\boldsymbol{v} = v\hat{\boldsymbol{x}}$ relative a system S. In S there is a ladder with length L = 5 m that has one end at (x, y, z) = (0, 0, 0) and the other at $(x, y, z) = (5, 5, 0)/\sqrt{2}$. What is the length \bar{L} of the ladder, measured from \bar{S} ?

8

An inertial system \bar{S} travels with velocity $\boldsymbol{v} = v\hat{\boldsymbol{x}}$ relative a system S. In S there is a coaxial waveguide with radius a = 1 cm of the inner conductor and radius b = 2cm of the outer conductor. The symmetry axis is along the z-axis in S. In S the outer conductor is grounded and the inner conductor has voltage V = 10 V.

- a) Determine the electric field in S as a function of x, for a < x < b, along the positive x-axis and as a function of y, for a < y < b, along the positive y-axis.
- b) What does the cross section of the coaxial waveguide look like in \overline{S} ? Draw a figure and describe its geometry.
- c) Determine the electric and magnetic fields in \overline{S} along the lines that in S are the positive x- and y-axis.
- d) In S the electric field is perpendicular to the inner and outer conductor. Does that also hold for all parts of the conductors in \overline{S} ? If not try to explain why.

9

A long straight conductor carries a current of 30 A. The symmetry axis of the conductor is the z-axis. One centimeter from the symmetry axis there is a sharp needle. At time t = 0 an electron is emitted from the tip of the needle, and hence its position is $\mathbf{r}(0) = (1 \text{ cm}, 0, 0)$. The velocity of the electron is then $\mathbf{v}(0) = (\beta c, 0, 0)$, where c is the speed of light.

You should use your Matlab program to determine the trajectory (x(t), y(t), z(t))of the electron for t > 0. It turns out that the electron will travel outwards and then return if β is small enough. The needle does not affect the trajectory.

a) First plot the trajectory during the time interval $0 \le t \le 500$ ns for $\beta = 0.0001$, 0.001 and 0.01.

b) Increase the time interval and β and check how large β you can reach so that the electron still turns and come back towards the conductor.

Plot the trajectories in two-dimensional plots with (x(t), 0, z(t)). You may check that the accuracy is ok by also plotting the speed v of the particle as a function of time. It should not differ more than 5% from the initial value, in order for the trajectory curve to be accurate enough.

Comment: Don't spend too much time on finding the maximum β . An approximate value is enough.

10

Two beams of protons are parallell with the z-axis and travel with velocity $\mathbf{v} = \beta c \hat{\mathbf{z}}$ relative a system S. The distance between the symmetry axes of the beams is a, their charge per unit length, seen from S, is ρ_{ℓ} , and the radius of the beams is much smaller than a. Let one of the beams be at (x, y) = (0, 0) and the other at (x, y) = (a, 0)

- a) Determine the force per unit length, measured in S, on the beam at (x, y) = (a, 0) as a function of β . What happens when $\beta \to 1$?
- b) A system \bar{S} is also traveling with velocity $\boldsymbol{v} = \beta c \hat{\boldsymbol{z}}$. What is the line charge density $\bar{\rho}_{\ell}$ in \bar{S} ?
- c) Determine the force per unit length on the beam at (x, y) = (a, 0) as a function of β in \overline{S} .