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Rules for the ∇-operator

(1) ∇(ϕ+ ψ) = ∇ϕ+∇ψ
(2) ∇(ϕψ) = ψ∇ϕ+ ϕ∇ψ
(3) ∇(a · b) = (a · ∇)b+ (b · ∇)a+ a× (∇× b) + b× (∇× a)

(4) ∇(a · b) = −∇× (a× b) + 2(b · ∇)a+ a× (∇× b) + b× (∇× a) + a(∇ · b)− b(∇ · a)

(5) ∇ · (a+ b) = ∇ · a+∇ · b
(6) ∇ · (ϕa) = ϕ(∇ · a) + (∇ϕ) · a
(7) ∇ · (a× b) = b · (∇× a)− a · (∇× b)

(8) ∇× (a+ b) = ∇× a+∇× b
(9) ∇× (ϕa) = ϕ(∇× a) + (∇ϕ)× a

(10) ∇× (a× b) = a(∇ · b)− b(∇ · a) + (b · ∇)a− (a · ∇)b

(11) ∇× (a× b) = −∇(a · b) + 2(b · ∇)a+ a× (∇× b) + b× (∇× a) + a(∇ · b)− b(∇ · a)

(12) ∇ · ∇ϕ = ∇2ϕ = ∆ϕ

(13) ∇× (∇× a) = ∇(∇ · a)−∇2a

(14) ∇× (∇ϕ) = 0

(15) ∇ · (∇× a) = 0

(16) ∇2(ϕψ) = ϕ∇2ψ + ψ∇2ϕ+ 2∇ϕ · ∇ψ

(17) ∇r = r̂

(18) ∇× r = 0

(19) ∇× r̂ = 0

(20) ∇ · r = 3

(21) ∇ · r̂ =
2

r
(22) ∇(a · r) = a, a constant vector

(23) (a · ∇)r = a

(24) (a · ∇)r̂ =
1

r
(a− r̂(a · r̂)) =

a⊥

r

(25) ∇2(r · a) = 2∇ · a+ r · (∇2a)

(26) ∇u(f) = (∇f)
du

df

(27) ∇ · F (f) = (∇f) · dF
df

(28) ∇× F (f) = (∇f)× dF

df

(29) ∇ = r̂(r̂ · ∇)− r̂ × (r̂ ×∇)
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1 The Maxwell equations 1

1 The Maxwell equations

1.1

A time-harmonic linearly polarized plane wave propagating in the positive z−direction
in vacuum reads

E(z, t) = E0 cos(kz − ωt)x̂

a) Express the angular frequency ω in the wavenumber k and the speed of light c.

b) Determine the magnetic flux density B(z, t).

c) Determine the Poynting vector S(z, t) and its time average.

d) Show that the time average of the electric and magnetic energy densities are the
same.

e) Determine the complex electric field E(z) and complex magnetic flux density
B(z).

f) Determine the complex Poynting vector S(z) and show that it has the same value
as the time average of S(z, t).

1.2

A time-harmonic linearly polarized plane wave propagating in the positive z−direction
in vacuum reads

E(z, t) = E0 cos(kz − ωt)x̂

a) Add a wave E2(z, t) so that the total wave is a circularly polarized wave. There
are two ways to do this. Give both of them.

b) Determine the Poynting vector S(z, t) for the circularly polarized wave.

c) Determine the electric and magnetic energy densities, we(z, t) and wm(z, t) for
the circularly polarized wave.

1.3

The complex electric far-field from an electric dipole antenna located at the origin
and with dipole moment p = p0ẑ is given by

E(r, θ) = E0 sin θ
eikr

kr
θ̂
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where k = ω/c i the wavenumber.

a) Determine B(r, θ) by using the induction law. Apparently E and B satisfy the
induction law. Do they also satisfy Ampères law?

b) Show that E and B satisfy the plane wave rule B = c−1k̂ ×E.

c) Determine the time domain fields E(r, θ, t) and B(r, θ, t).

d) Determine the Poynting vector S(r, θ, t) and its time average.

e) Determine the time average of the radiated power from the dipole.

f) Does E(r, θ) satisfy ∇2E + k2E = 0? If not why?

g) Neglect all terms that drop off faster than r−1 in ∇2E. Is then ∇2E + k2E = 0
satisfied?

1.4

The electromagnetic fields from currents and charge distributions that vary slowly in
time can often be determined by a quasi static analysis based on a reduced version
of the Maxwell equations. There are two quasi static versions. The first is that one
skips the term ∂D

∂t
in the Ampère law but keeps the term ∂B

∂t
in the induction law.

This is done when the source is a known current distribution. The other version is
the other way around, one skips ∂B

∂t
and keeps ∂D

∂t
. This is done when the source is

a known charge distribution.

a) A circular plate capacitor with area A, distance d between the plates, and with
air between the plates, is connected to a time harmonic voltage source. The voltage
between the plates is V0 cosωt. Determine the electric field between the plates.

b) Determine the magnetic flux density between the plates.

c) Do E and B satisfy the full Maxwell equations?

d) Some approximation must have been made since the full Maxwell equations are
not satisfied. What is this approximation?

e) A magnetic circuit has an iron core with circular cross section, see figure. The
current in the coil is time harmonic which gives a magnetic flux density in the air
gap

B(t) = B0 sin(ωt)ẑ

The frequency f is so low that the wavelength λ = c/f is much larger than the
radius of the air gap. Determine the electric field in the air gap.

f) Do E and B satisfy the full Maxwell equations?

g) Some approximation must have been made since the full Maxwell equations are
not satisfied. What is this approximation?
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Figure 1: Magnetic circuit

The Maxwell equations: Answers and solutions

S1.1

a) ω = kc

b) The right hand rule gives B(z, t) = c−1k̂×E(z, t), where k̂ = ẑ. Then B(z, t) =
c−1E0 cos(kz − ωt)ŷ.

c) S = E × H . Then S(z, t) =
1

η0

E2
0 cos2(kz − ωt)ẑ. The time average is <

S(z, t) >=
1

2η0

E2
0 .

d) The electric energy density is wE(z, t) =
1

2
ε0|E(z, t)|2. Then wE(z, t) =

1

2
ε0E

2
0 cos2(kz−

ωt). The time average is

< wE(z, t) >=
1

4
ε0E

2
0

The electric energy density is wM(z, t) =
1

2
µ0|H(z, t)|2. Then wH(z, t) =

1

2
ε0E

2
0 cos2(kz−

ωt). The time average is

< wE(z, t) >=
1

4
ε0E

2
0

This is always the case with waves. A wave is a resonance where the energy switch
between two energy states.

e) The complex electric field and magnetic flux density are defined by E(z, t) =
Re{E(z)e−iωt}. Then E(z) = E0e

ikz and B(z) = c−1E0e
ikz.

f) The definition of the complex Poynting vector is S(z) =
1

2
E(z)×H∗(z), where ∗
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denotes complex conjugate. From e) we get S(z) =
1

2η0

E2
0 . This is the same value

as in c).

S1.2

a) If we add E2(z, t) = E0 sin(kz − ωt)ŷ then the total wave is a circular polarized
plane wave. We can also add E2(z, t) = −E0 sin(kz − ωt)ŷ.

b) The magnetic field is given by H(z, t) = η−1
0 ẑ × (E(z, t) + E2(z, t)). With

E2(z, t) = E0 sin(kz − ωt)ŷ then H(z, t) = η−1
0 E0(cos(kz − ωt)ŷ − sin(kz − ωt)x̂).

The Poynting vector reads

S(z, t) =
1

η0

E2
0 ẑ (1)

c) wE(z, t) = wM(z, t) =
1

2
ε0E

2
0 .

S1.3

a) The induction law gives B = −i
1

ω
∇×E. In spherical coordinates

∇× (Eθ(r, θ)θ̂) = φ̂
1

r

∂

∂r
(rEθ(r, θ))

This gives

B =
1

c
E0
eikr

kr
sin θφ̂

They do not satisfy the Ampères law since there is a term in the r̂-direction that
drop off as r−2 and does not cancel.

b) The plane wave rule with k̂ = r̂ also gives B =
1

c
E0
eikr

kr
sin θφ̂.

c) E(r, θ, t) = E0
cos(kr − ωt)

kr
sin θθ̂ and B(r, θ, t) = c−1E0

cos(kr − ωt)
kr

sin θφ̂.

d) S(r, θ, t) =
1

η0

E2
0 cos2(kr − ωt)

(kr)2
sin2 θr̂, and < S(r, θ, t) >=

1

2η0

E2
0

(kr)2
sin2 θr̂

e) Integrate the Poynting vector over a sphere with radius r. Then the time average
of the power is

P =

∫ π

0

∫ 2π

0

< S(r, θ, t) > ·r̂r2 sin θ dφ dθ
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Since
∫ π

0
sin3 θ dθ =

∫ π
0

(1− cos2 θ) sin θ dθ =
4

3
we get

P =
4π

3η0k2
E2

0

f) Since E(r, θ) only depends on r and θ, and is directed in the θ̂ direction∇2E(r, θ)
is reduced to, see formula in appendix 2 in the end of the book,

∇2E(r, θ) = −r̂
(

2

r2

∂Eθ
∂θ

+
2 cot θ

r2
Eθ

)
+ θ̂

(
∇2Eθ −

Eθ
r2 sin2 θ

)
(2)

where

∇2Eθ =
1

r2

∂

∂r

(
r2∂Eθ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Eθ
∂θ

)
(3)

It is straightforward to see that Helmholtz equation is not satisfied since there are
terms that drop off as r−2 and r−3 that do not cancel.

g) Yes. The only term of O(r−1) remaining in ∇2E is θ̂
1

r

∂2

∂r2
(rEθ) and this term

equals −k2E.

S1.4

a) We use the induction law but make the approximation that
∂B

∂t
≈ 0. Then

∇ ·E = 0 and E = −∇V . From that we conclude that

E = −V cosωt

d
ẑ

b) We use Ampères law for this. ∇ ×H = ε0
∂E

∂t
. Since the capacitor is axially

symmetric it must be that H(rc.t) = H(rc, t)φ̂. Stoke’s theorem then give

B(rc, t) = ε0µ0
V0rcω sin(ωt)

2d
φ̂

c) The induction law is not satisfied since ∇×E = 0 and
∂B

∂t
6= 0.

d) The approximation is that we use ∇ · E = 0 when we calculate E. However,
when the radius of the capacitor is much smaller than the wavelength λ = ω/c, then
it is a good approximation.

e) Axially symmetry says that E = E(rc, t)φ̂. The induction law gives

E(rc, t) = −ω
2
B0rc cos(ωt)φ̂
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f) No. The Ampères law is not satisfied since ∇×H = 0 but
∂E

∂t
6= 0.

g) We started with a magnetic field that is constant in space. This is an approxi-
mation since B should satisfy ∇2B + k2B = 0. However, when the radius of the
core is much smaller than the wavelength λ = ω/c, then it is a good approximation.
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z

S

Ω

Γ
n

Figure 2: Geometry for waveguide

2 Waveguides and cavities

There are different types of waveguides for electromagnetic waves. Transmission
lines, hollow waveguides and dielectric waveguides (e.g. optical fibers), are the most
common ones, but here we only consider hollow waveguides. These are metal tubes
where the waves propagate by bouncing between the walls. We first present basic
results for hollow waveguides with arbitrary cross sections. The derivations of these
results are given in the book Microwave theory which can be downloaded from the
home page.

Waveguides are structures that guide waves along a given direction. Figure 2 gives an
example of the geometry for a waveguide. The surface of the waveguide is denoted S
and the normal to the surface n̂. The surface is considered to be perfectly conducting
and we assume that there is air or vacuum inside the waveguide (εr = 1). Note that
the normal n̂ is a function of the coordinates x and y, but not of the coordinate z.
The cross section of the waveguide is denoted Ω and it has the generating curve Γ.
The analysis in this chapter is valid for waveguides with general cross section.

Specific z-dependence of the fields

The Maxwell equations in vacuum lead to the vector Helmholtz equations for E and
H ,

∇2E(r) + k2E(r) = 0 (4)

∇2H(r) + k2H(r) = 0. (5)

Decomposition

From now on we let the z−axis be parallel to the guiding structures. Then

r = ρ+ ẑz
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Also

∇2 = ∇2
T +

∂2

∂z2

where ∇2
T =

∂2

∂x2
+

∂2

∂y2
.

In a waveguide the complex electromagnetic fields can be decomposed into a trans-
verse and a longitudinal vector as

E(r) = ET(r) + ẑEz(r) (6)

H(r) = HT(r) + ẑHz(r) (7)

Boundary conditions

The sufficient boundary conditions on a perfectly conducting surface are,{
n̂×E(r) = 0

n̂ ·H(r) = 0
r on S (8)

since B = µ0µH for an isotropic material.

On the surface S these boundary conditions reduce to
Ez(r) = 0

∂Hz(r)

∂n
= 0

r on S (9)

where
∂Hz(r)

∂n
= n̂ · ∇THz(r). The two boundary conditions are sufficient for

determining the waves that can exist in a hollow waveguide.

TM- and TE-modes

In this section we solve the Maxwell equations in a waveguide with general cross-
section Ω and perfectly conducting walls S. The conditions in (9) separate the
z-component of the electric field, Ez, from the z−component of the magnetic field,
Hz. We look for solutions where either Ez or Hz is zero, ie.{

Hz(r) = 0 (TM-case)

Ez(r) = 0 (TE-case).

The first case is the transverse magnetic case (TM-case), where the magnetic field
lacks z−component. The other case is the transverse electric case (TE-case). The
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z1

z2

S
Ω

z

Γ

n̂

Figure 3: The source free region in the waveguide.

solutions to the two cases do not couple since there is no coupling via the differential
equations or the boundary conditions. We will later also discuss the conditions that
have to be satisfied in order to obtain waves with both Ez and Hz zero.

We let the region z1 < z < z2 be source free, ie. J = 0, see figure 3 and determine
the waves that can exist in this region.

We first describe our strategy for finding general solutions. The waveguide is as-
sumed to be filled with an isotropic, homogeneous material with material parameters
ε and µ. The z−components of the equations (4) and (5), and the boundary condi-
tions for Ez(r) and Hz(r) are summarized as{

∇2Ez(r) + k2Ez(r) = 0

Ez(r) = 0 r on S
z ∈ [z1, z2],ρ ∈ Ω (TM-case)∇

2Hz(r) + k2Hz(r) = 0

∂Hz

∂n
(r) = 0 r on S

z ∈ [z1, z2],ρ ∈ Ω (TE-case)

(10)

where the wave number is

k2 =
ω2

c2

On page 11 it shown that we can determine the entire vector field E and H from
(15) if we know Ez and Hz.

We use the method of separation of variables to solve the two boundary value prob-
lems in (10). The method is frequently used in mathematical physics and in our case
it leads to a complete set of functions in the transverse coordinates x and y. The
z−component of the electric (TM-case) or magnetic field (TE-case) is expanded in
this system. The other components follow from the relations between the transverse
and longitudinal components.
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TEM-modes

If Ω is not simply connected TEM-modes can exist. These are modes with both
Ez = 0 and Hz = 0. A waveguide with N surfaces can have N − 1 TEM-modes.
The most common type of a waveguide with a TEM-mode is the coaxial cable.
One can treat TEM-modes by solving the Maxwell equations, but it is easier to use
transmission line theory, where wave propagation is expressed in terms of currents
and voltages, rather than electric and magnetic fields. The transmission line theory
can be found in the book Microwave theory . We do not treat TEM-modes here.

The longitudinal components of the fields

We make the following ansatz{
Ez(r) = v(ρ)eikzz, (TM-case)

Hz(r) = w(ρ)eikzz, (TE-case)

where ρ = x̂+ ŷ.

We identify the following two eigenvalue problems for the hollow waveguide{
∇2

Tv(ρ) + k2
t v(ρ) = 0

v(ρ) = 0 ρ on Γ
(TM-case) (11)

and ∇
2
Tw(ρ) + k2

tw(ρ) = 0

∂w

∂n
(ρ) = 0 ρ on Γ

(TE-case) (12)

where

k2
t = k2 − k2

z . (13)

There are only non-trivial solutions v, or w, for discrete values of k2
t . We call these

values eigenvalues and the corresponding solutions eigenfunctions.

Here are some properties of the eigenvalues and eigenfunctions:

• All eigenvalues are positive and can be numbered such that 0 < k2
t1 ≤ k2

t2 ≤
k2
t3 ≤ . . ., where k2

tn →∞ as n→∞.

• There is only a finite number of eigenvalues that have the same values.

• We always let the eigenfunctions vn(ρ) and wn(ρ) be real valued
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• The eigenfunctions vn and vm, or wn and wm, that belong to different eigen-
values k2

tn and k2
tm in the TM- and TE-cases are orthogonal on Ω.

• Each of the sets of eigenfunctions, {vn(ρ)}∞n=1 and {wn(ρ)}∞n=1, constitutes a
complete set of functions in the plane.

The set of functions vn(ρ) is orthogonal and normalized (also called orthonormal-
ized) if∫

Ω

vn(ρ)vm(ρ) dS = δnm (14)

where δnm is the Kronecker delta.1

The transverse components ET and HT

In Chapter 4 of the book Microwave theory it is shown that the transverse compo-
nents of E and H can be expressed in Ez and Hz:

ET(r) =
i

k2
t

{kz∇TEz(r)− ωµ0ẑ ×∇THz(r)}

HT(r) =
i

k2
t

{kz∇THz(r) + ωε0ẑ ×∇TEz(r)}
(15)

This for a mode propagating in the positive z−direction. A mode that propagates
in the negative z−direction has z−dependence e−ikzz and then all kz in (15) change
sign.

Waveguide modes

The electromagnetic field that corresponds to a certain eigenwavenumber k2
tn is called

a waveguide mode. The modes for the TE-case are called TE-modes and the ones
for TM-modes are called TM-modes.

Cut-off frequency, phase speed and group speed

We define the cut-off frequency as

fc =
c

2π
kt (16)

Consider a mode with eigenwavenumber k2
tn. Since k2

zn = k2 − k2
tn we have three

cases:
1δnm = 1 if n = m and 0 otherwise
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• k < kt For these frequencies kz is imaginary. The mode attenuates (decays
exponentially) and we say that it is a non-propagating mode. The frequency

is below the cut-off frequency fc =
c

2π
kt.

• k = kt Then kz = 0. The frequency is equal to the cut-off frequency fc =
c

2π
kt.

• k > kt For these frequencies kz is real. The frequency is above the cut-off

frequency fc =
c

2π
kt. The mode propagates as a wave without attenuation.

For a propagating TM-mode we haveEz(r) = vn(ρ)eikznz and then the corresponding
time domain component is Ez(r, t) = Re{Ez(r)eiωt}. this gives

Ez(r, t) = vn(ρ) cos(ωt− kzz) (17)

The phase ωt− kzz is constant when z =
ω

kz
t. It means that the phase travels with

the phase speed

vp =
ω

kz
. (18)

Notice that this speed is always larger than the speed of light and goes to infinity
as f → fc. There is no contradiction with special relativity since one can show that
the power travels with the group speed, which is given by

vg =
kz
k
c. (19)

This speed is always lower than the speed of light and goes to zero when f → fc.

We now give examples of important cross-sections for which we can derive explicit
expressions of the vector basis functions.

Waveguide with rectangular cross-section

We start with the eigenfunctions for the rectangular waveguide. This is the most
common type of hollow waveguide. The geometry is depicted in figure 4. The surface
is simply connected and hence no TEM-mode exists. The convention is to let the
longest side of the rectangle be along the x-axis.

The eigenvalues that are to be solved are
∂2v(ρ)

∂x2
+
∂2v(ρ)

∂y2
+ k2

t v(ρ) = 0, ρ in Ω

v(ρ) = 0, ρ on Γ

(TM-case)
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x

y

a

b

Figure 4: The geometry for a waveguide with rectangular cross-section.

and 
∂2w(ρ)

∂x2
+
∂2w(ρ)

∂y2
+ k2

tw(ρ) = 0 ρ, in Ω

∂w

∂n
(ρ) = 0 ρ, on Γ

(TE-case).

The solution is based on the following one-dimensional eigenvalue problems:
∂2X(x)

∂x2
+ γX(x) = 0, 0 ≤ x ≤ a

X(x) = 0, x = 0, a

and 
∂2X̃(x)

∂x2
+ γX̃(x) = 0, 0 ≤ x ≤ a

dX̃

dx
(x) = 0, x = 0, a.

The solutions to these two problems are

Xm(x) = sin
(mπx

a

)
, m = 1, 2, 3, . . .

and

X̃m(x) = cos
(mπx

a

)
, m = 0, 1, 2, 3, . . . ,

respectively. These sets of functions are orthogonal and complete on the interval x ∈
[0, a]. The solution to the two-dimensional eigenvalue problems for the rectangular
waveguide are obtained as a product of these sets of one-dimensional eigenfunctions2,

2A common method to create complete sets of functions in two dimensions is to take the
product of one-dimensional systems, ie. if {fm(x)}∞m=1 and {gn(y)}∞n=1 are complete systems on
the intervals x ∈ [a, b] and y ∈ [c, d], respectively, then

{fm(x)gn(y)}∞m,n=1

is a complete set of functions in the rectangle [a, b]× [c, d].
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Eigenfunctions vmn, wmn Eigenvalues k2
t mn

TMmn vmn =
2√
ab

sin
(mπx

a

)
sin
(nπy

b

)
π2

(
m2

a2
+
n2

b2

)
TEmn wmn =

√
εmεn
ab

cos
(mπx

a

)
cos
(nπy

b

)
π2

(
m2

a2
+
n2

b2

)
Table 1: Table of normalized eigenfunctions to equations (11) and (12) for rect-
angular waveguides, see figure 4. The integers m and n can have values m,n =
0, 1, 2, 3, . . ., with the exception that m and n are not zero for TM-modes, and m
and n cannot both be zero for the TE-modes (εm = 2 − δm,0). The convention in
this book is always to have the long side of the rectangle along the x-axis, ie. a > b.
The mode with the lowest cut-off frequency is then the TE10 mode. This mode is
called the fundamental mode and is very important.

ie. 
sin
(mπx

a

)
sin
(nπy

b

)
, TM-case

cos
(mπx

a

)
cos
(nπy

b

)
, TE-case.

The eigenvalues in the two cases are the same k2
t = π2 (m2/a2 + n2/b2). The nor-

malized functions are
vmn =

2√
ab

sin
(mπx

a

)
sin
(nπy

b

)
, TM-case

wmn =

√
εmεn
ab

cos
(mπx

a

)
cos
(nπy

b

)
, TE-case

where the Neumann-factor is εm = 2− δm,0. The results are collected in table 1.

Example

The fundamental mode of a rectangular waveguide with a > b is the TE10 mode.

It has the cut-off frequency fc10 =
c

2a
and w10 =

√
2

ab
cos
(πx
a

)
. The normalized

electric field is

E10TE(x, ω) = ŷ
iωµ0

π

√
2a

b
sin
(πx
a

)
. (20)

If a > 2b then the second mode is TE20 that has cut-off frequency fc20 =
c

a
. If

b < a < 2b then TE01 is the second mode with cut-off frequency fc01 =
c

2b
. In
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m 1 2 0 1 2 3 3 4 0 1
n 0 0 1 1 1 0 1 0 2 2

fcmn (GHz) 3.19 6.38 6.81 7.52 9.33 9.57 11.7 12.8 13.6 14.0
kzmn (m−1)a 43.3 107i 119i 136i 179i 184i 233i 255i 274i 282i
kzmn (m−1)b 144.6 86.6 70.6 22.6 114i 122i 188i 215i 237i 246i

aThe frequency is f = 3.8 GHz.
bThe frequency is f = 7.6 GHz.

Table 2: Table of the lowest cut-off frequencies fcmn and the longitudinal wavenum-
ber kzmn for a rectangular waveguide with dimensions 4.7 cm × 2.2 cm. Only
TE-modes can have m- or n-values that are zero. For frequencies below the cut-off
frequency the longitudinal wavenumber kzmn is imaginary and the corresponding
mode is non-propagating. The attenuation of that mode is exp(−Im{kzmn}z).

order to maximize the bandwidth it is common to have rectangular waveguides

with a > 2b. Then the bandwidth is BW =
c

2a
and the fractional bandwidth is

bf = 2(c/2a)/(3c/2a) = 2/3 = 0.67.

Example

A rectangular waveguide has dimensions 4.7 cm × 2.2 cm. The cut-off frequencies
fcmn for the different modes are easy to calculate from (16) and table 1. The lon-
gitudinal wavenumbers kzmn , given by (13), are related to the frequency f and the
cut-off frequency fcmn in the following way

kzmn =
2π

c

√
f 2 − f 2

cmn .

The results are given in table 2. The bandwidth is BW = 3.19 Ghz and the fractional
bandwidth is bf = 1.

Waveguide with circular cross-section

The geometry of the circular waveguide with radius a is depicted in figure 5. The
geometry has only one simply connected surface and hence there is no TEM-mode.
It is best to solve the eigenvalue problem in cylindrical-(polar)coordinates. The
eigenvalue problems are given by∇2

Tv(ρ) + k2
t v(ρ) =

1

ρ

∂

∂ρ

(
ρ
∂v(ρ)

∂ρ

)
+

1

ρ2

∂2v(ρ)

∂φ2
+ k2

t v(ρ) = 0

v(a, φ) = 0

(TM-case)
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ρ
φ

a

x

y

Figure 5: Geometry for waveguide with circular cross-section.

and
∇2

Tw(ρ) + k2
tw(ρ) =

1

ρ

∂

∂ρ

(
ρ
∂w(ρ)

∂ρ

)
+

1

ρ2

∂2w(ρ)

∂φ2
+ k2

tw(ρ) = 0

∂w

∂n
(a, φ) = 0

(TE-case).

We solve these eigenvalue problems by the method of separation of variables. We
make the ansatz v(ρ, φ) = f(ρ)g(φ) and insert this into the differential equation.
After division with f(ρ)g(φ)/ρ2 we get

ρ

f(ρ)

∂

∂ρ

(
ρ
∂f(ρ)

∂ρ

)
+ k2

t ρ
2 = − 1

g(φ)

∂2g(∂φ2)

φ
.

The right hand side depends only on φ and the left hand side depends only on ρ.
That means that they both have to be equal to a constant. We denote this constant
γ and get

ρ
∂

∂ρ

(
ρ
∂f(ρ)

∂ρ

)
+
(
k2
t ρ

2 − γ
)
f(ρ) = 0

∂2g(φ)

∂φ2
+ γg(φ) = 0.

.

The solution to the eigenvalue problem in the variable φ is

g(φ) =

(
cosmφ
sinmφ

)
, m = 0, 1, 2, 3, . . .

Only integer values of m are allowed since the function must be periodic in φ with
period 2π, ie. only γ = m2, m = 0, 1, 2, 3, . . . are possible values. The corresponding
set of functions is complete on the interval φ ∈ [0, 2π). The solution to the equation
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Eigenfunctions vmn, wmn Eigenvalues k2
t mn

TMmn vmn =

√
εmJm(ξmnρ/a)√
πaJ ′m(ξmn)

(
cosmφ
sinmφ

)
ξ2
mn

a2

TEmn wmn =

√
εmηmnJm(ηmnρ/a)√

π (η2
mn −m2)aJm(ηmn)

(
cosmφ
sinmφ

)
η2
mn

a2

Table 3: Table of the normalized eigenfunctions for waveguides with circular cross-
section, see figure 5 for definition of geometry. (εm = 2 − δm,0). The first values of
the positive zeros ξmn to Jm(x) and the positive zeros ηmn to J ′m(x), ie. Jm(ξmn) = 0
and J ′m(ηmn) = 0, m = 0, 1, 2, 3, . . ., n = 1, 2, 3, . . . are listed in tables 4 and 5 on
page . The mode with the lowest cut-off frequency is the TE11 mode.

in the ρ-variable is a Bessel function, see section 8. Only solutions that are regular
in ρ = 0 are valid, ie.

f(ρ) = Jm(ktρ).

The boundary conditions vm(a, φ) = 0 and
dwm
dρ

(a, φ) = 0 for the TM- and TE-cases,

respectively, add extra conditions. For these boundary conditions to be satisfied,
the transverse wavenumber has to satisfy

kta =

{
ξmn, (TM-case)

ηmn, (TE-case),

where ξmn and ηmn, n = 1, 2, 3, . . ., are zeros to the Bessel function Jm(x) and to the
derivative of the Bessel function, respectively, ie. Jm(ξmn) = 0 and J ′m(ηmn) = 0.
Numerical values of the first of these zeros are given in appendix 8.

The sets of functions {Jm(ξmnρ/a)}∞n=1, {J ′m(ηmnρ/a)}∞n=1 are both complete on the
interval ρ ∈ [0, a] for every value of m. The complete set of functions in the circle is,
in analogy with the rectangular waveguide, given by the product of the sets of basis
functions. The normalized eigenfunctions (the normalization integrals are given in
appendix 8) are

vmn =

√
εmJm(ξmnρ/a)√
πaJ ′m(ξmn)

(
cosmφ

sinmφ

)
, TM-case

wmn =

√
εmηmnJm(ηmnρ/a)√

π (η2
mn −m2)aJm(ηmn)

(
cosmφ

sinmφ

)
, TE-case,

(21)

where εm = 2− δm,0. The results are collected in table 3.

Example

The fundamental mode is the TE11 mode. The cut-off frequency is given by fc11 =
cη11
2πa

where a is the radius of the cylinder and η11 = 1.841 is the first zero of J ′1(x). The
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second mode is the TM01 mode with cut-off frequency fc01 = cξ01
2πa

where ξ01 = 2.405
is the first zero of J0(x). The bandwidth is BW = fc01−fc11 = c

2πa
(2.405− 1.841) =

0.564
c

2πa
. The fractional bandwidth is bf = 2 0.564

1.841+2.405
= 0.265.

Analyzing waveguides with Comsol Multiphysics

Waveguides with arbitrary cross-sections can be analyzed with numerical methods
and in this book we use the finite element method. The specific calculations are
done with the commercial software package Comsol Multiphysics. We use Comsol
to find the cut-off frequencies for the TE- and TM-modes in a hollow waveguide
filled with a homogenous non-conducting material with permittivity ε. We also let
Comsol determine the electric and magnetic fields and the power flow density for
the lowest modes. In Comsol we do the following steps:

• We choose 2D> Radio frequency> Electromagnetic waves> Eigenfre-
quency study.

• We draw the cross section of the waveguide.

• In Study>Eigenfrequency we define how many modes that are to be deter-
mined and the cut-off frequency where Comsol starts to look for eigenfrequen-
cies.

• We let Comsol solve the eigenvalue problem. It then shows the electric field
in the cross section of the waveguide for the different modes. It also gives the
cut-off frequencies fc for the modes. From the cut-off frequencies we get the
corresponding kt from kt = ω/c = 2πfc/c. There are spurious solutions with
very low frequencies, or complex frequencies that Comsol presents. These have
a fuzzy field plot.

• To distinguish TE- from TM-modes we plot the z−component of the electric
field. If the plot is fuzzy with very small field values then the mode is a
TE-mode, otherwise it is a TM-mode.

• The fields that Comsol presents are not normalized. We use a normalization
such that

∫∫
Ω
|Ez(ρ)|2 dxdy = 1 for the TM-modes and

∫∫
Ω
|Hz(ρ)|2 dxdy = 1

for the TE-modes. To obtain this normalization we divide all field values
with

∫∫
Ω
|Ez(ρ)|2 dxdy for the TM-modes and

∫∫
Ω
|Hz(ρ)|2 dxdy for the TE-

modes. To integrate we right click on Derived values and choose integration
and surface integral.

• Notice that there are many options of surface graphs to choose from.
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5 cm

2 cm

6 cm

5 cm

1 cm

Figure 6: Geometry for the ridge waveguide and the power flow density for the
TM-mode with cut-off frequency 5.83 GHz.

Example

We analyze the ridge waveguide in figure 6. This is a waveguide with a large band-
width since the fundamental mode has a very low cut-off frequency. We use the
scheme for Comsol to obtain the modes. The TM modes have cut-off frequencies
fc = 3.88 GHz, 3.88 GHz, 5.83 GHz, 5.83 GHz, 6.43 GHz, 6.43 GHz and the TE
modes have cut-off frequencies fc = 0.663 GHz, 2.51 GHz, 2.51 GHz, 2.86 GHz, 3.14
GHz. In figure 7 we see the active power flow density for one of the TM-mode with
the cut-off frequency 5.83 GHz. The other mode with the same cut-off frequency
has its power flow in the right part of the waveguide. This mode is very close to
the TM12 mode in a 5 cm × 6 cm rectangular waveguide. The TM12 mode has
cut-off frequency fc = 5.831 GHz which is very close to the cut-off frequency 5.827
GHz obtained for the mode in figure 6. The fractional bandwidth is defined by
bf = 2(fupper − flower)/(fupper + flower), and the ridge waveguide has bf = 1.16. This
is to be compared with bf = 0.67 for the rectangular waveguide with a > 2b.
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Figure 7: The power flow density for the fundamental mode of the ridge waveguide,
ie. the TE-mode with cut-off frequency 0.663 GHz. The power flow is concentrated
to the narrow section. Notice that the electric field is very strong at edges.



2 Waveguides and cavities 21

2.1

Assume a rectangular air filled waveguide with dimension a × b, where b < a and
a = 0.3 m. Determine the largest b such that the fundamental mode is the only
propagating mode in the interval (f0, 2f0), where f0 is the cut-off frequency for the
fundamental mode.

2.2

Sketch the electric field in the xy−plane for the fundamental mode of a rectangular
waveguide. Use vectors where the length of the vector indicates the field strength.

2.3

The electric field of a TEm0-mode is E(x, z) = Em sin
(mπx

a

)
eikzzŷ. Determine H

by using the induction law.

2.4

Sketch the magnetic field in the xy−plane for the fundamental mode of a rectangular
waveguide.

2.5

Determine the surface current density on the surfaces x = 0 and x = a for the
fundamental mode of a rectangular waveguide.
Hint: The surface current density of a perfect conductor is given by JS = n̂ ×H ,
where n̂ is the outward directed unit normal vector to the surface.

2.6

Assume a rectangular airfilled waveguide with dimension a× b, a = 0.3 m, b = 0.15

m. The wavelength in the z-direction is defined by λz =
2π

kz
. Use c = 3 · 108 m/s.

a) Determine kz for m = 1, 2, 3 for the TEm0 modes when f = 704 MHz.

b) Determine λz for the TE10 mode at f = 704 MHz.
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c) Determine λz for the TE10 mode at f = 500 MHz.

d) Let f = 704 MHz. Assume that the amplitude of the TE20 mode is 10 V/m at
z = 0. Determine z such that the amplitude is 5 V/m.

e) How many of the TEmn and TMmn modes are propagating at 2 GHz?

2.7

The phase speed in the z-direction is defined by vf =
ω

kz
and the group speed by the

derivative vg =

(
dkz
dω

)−1

. Assume that the TE10-mode propagates in a rectangular

airfilled waveguide with dimension a × b, a = 0.3 m, b = 0.15 m. Use c = 3 · 108

m/s.

a) Determine vf and vg for f = 704 MHz.

b) Determine vf and vg for f = 500 MHz.

c) Determine vf and vg when f →∞ MHz.

d) Use Matlab to plot vg as a function of frequency in the interval [500 MHz, 5
GHz].

2.8

A TE10 mode withE = E0 sin(πx/a)eikzzŷ is propagating in the positive z−direction
for z < 0. At z = 0 the waveguide is terminated by a perfectly conducting plate.
Determine the total electric field in the waveguide.

2.9

Determine the three lowest cut-off frequencies for the waveguides described below
by using the analytic formulas and confirm your solutions by determining the cut-
off frequencies with COMSOL. Give the ten lowest cut-off frequencies obtained by
COMSOL for each waveguide. Check the accuracy in the COMSOL solutions and
give a rough estimate of the error.

a) A rectangular waveguide with a = 8 cm and b = 3 cm.

b) A circular waveguide with radius R = 5 cm.
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c) A waveguide with a cross section as a half circle with radius R = 5 cm.

2.10

A waveguide has a cross section in the shape of a quarter circle with radius R.
Determine expressions for the cut-off frequencies and Ez and Hz for all TE- and
TM-modes for the waveguide. You don’t have to normalize Ez and Hz.

2.11

Use COMSOL Multiphysics to determine the five lowest modes of the waveguide in
the previous problem when the radius is 2 cm. Check the cut-off frequencies with
the analytic expressions.

2.12

Use COMSOL Multiphysics to determine the five lowest modes of a waveguide with
elliptic cross-section and where the ellipse has a semi-axis of 5 cm and 3 cm. Is there
any of the modes that resembles the fundamental mode of a circular waveguide?
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Waveguides and cavities: Answers and solutions

S2.1

b = 0.15 m.

S2.2

See figure

S2.3

H =
iE0

ωµ0

(
ikz sin

(mπx
a

)
, 0,−mπ

a
cos
(mπx

a

))
eikzz

S2.4

Same figure as in problem 2 but with all arrows rotated 90 degrees.

S2.5

JS
iE0π

ωµ0a
eikzzey
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S2.6

a) m = 1 gives kz = 10.3798 m−1, m = 2 gives kz = i14.8744 m−1 (for a wave in
positive z−direction) and m = 3 gives kz = i27.7409 m−1.

b) 0.605 m

c) ∞

d) z = (−Im(kz))
−1 ln 2 = 4.66 cm.

e) 7 TE-modes (10, 01, 20, 11, 30, 21, 31) and 3 TM-modes (11, 21, 31)

S2.7

a) vf =
ω

kz
and vg =

kzc

k
gives vf = 4.26 · 108 m/s and vg = 2.11 · 108 m/s.

b) vf =∞ and vg = 0.

c) vf = vg = c = 3 · 108 m/s when f →∞.

d)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

0

0.5

1

1.5

2

2.5

3
x 10

8

f/Hz

v
g

/(
m

/s
)

S2.8

E(x, z) = 2iE0 sin(πx/a) sin(kzz)ey
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S2.9

a) The three lowest cut-off frequencies are fTE10 = 1.87370286 GHZ, fTE20 =
3.74740573 GHZ and fTE01 = 4.99654099 GHz.

b) The three lowest cut-off frequencies are fTE11 = 1.75680928 GHz, fTM01 =
2.29501702 GHZ and fTE21 = 2.91433762 GHz.

c) For the half-circle the modes are the same as for the full circle except that the
TM0n modes cannot exist. The boundary condition at the flat surfaces φ = 0 and
φ = π require that the Ez is zero there and that cannot be fullfilled by the TM0n

mode since Ez is then proportional to cosφ. Then the modes with the lowest cut-
off frequencies are fTE11 = 1.75680928 GHz, fTE21 = 2.91433762 GHz and fTE01 =
fTM11 = 3.656478349513779 GHz.

S2.10

TE-modes:

Hz = AnjJ2n(β2njρ) cos(2nφ) exp(ikznjz)

where k2
znj

= (ω/c0)2 − (kt2nj)
2 and J ′2n(kt2njR) = 0

TM-modes:

Ez = Bn,jJ2n(kt2njρ) sin(2nφ) exp(ikznjz)

where k2
znj

= (ω/c0)2 − (kt2nj)
2 and J2n(kt2njR) = 0.
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Figure 8: Geometry for cylindric resonance cavity.

3 Microwave cavities

A finite volume of air or vacuum, enclosed by a metallic surface, constitutes a res-
onance cavity. Only electromagnetic fields with certain frequencies can exist in the
cavity. These fields are called cavity modes, or eigenmodes, and the corresponding
frequencies are called eigenfrequencies, or resonance frequencies. In this chapter we
describe how cavity modes and resonance frequencies can be obtained by analytical
and numerical methods. Resonance cavities are frequently used as bandpass and
bandstop filters in microwave systems. The losses are much smaller than in tradi-
tional bandpass filters based on circuit components and that makes the filters based
on cavities very narrow banded. In modern particle accelerators the particles are ac-
celerated by the electric fields in microwave cavities. Another important application
is klystrons and magnetrons, which are generators for time-harmonic electromag-
netic waves. Magnetrons are used in radars and also in microwave ovens. Klystrons
are used as sources in, eg., particle accelerators and high power communication
systems.

Cylindrical cavities

We analyze a common type of resonance cavity that consists of a hollow waveguide
terminated by metallic plane surfaces at z = 0 and z = d, see figure 8. In order
to determine the fields that can exist in such a cavity we need boundary conditions
for the z-component of the electric and magnetic fields at z = 0 and z = d. Since
ET (ρ, 0) = ET (ρ, d) = 0 for all ρ, it follows that ∇T ·ET (ρ, 0) = ∇T ·ET (ρ, d) = 0.
There are no charges inside the cavity and then ∇ ·E(r) = 0, ie. 0 = ∇TET (r) +
∂Ez(r)/∂z. It follows that the z-derivative of Ez is zero at the end surfaces. The
magnetic field H is zero in the metal and B is always continuous and then it follows
that Hz is zero at the end surfaces. We conclude that the boundary conditions at
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z = 0 and z = d are
∂Ez(x, y, 0)

∂z
=
∂Ez(x, y, d)

∂z
= 0

Hz(x, y, 0) = Hz(x, y, d) = 0.
(22)

A cavity mode in a cylindrical cavity is a superposition of a waveguide mode prop-
agating in the positive and negative z-directions. The z-component of the fields of
mode n is expressed as{

Ez(r) = (a+
nνe

ikzz − a−nνe−ikzz)vn(ρ) ν = TM

Hz(r) = (a+
nνe

ikzz + a−nνe
−ikzz)wn(ρ) ν = TE.

The boundary conditions give a+
nν = −a−nν and sin kzd = 0. Hence kz can only take

the discrete values

kz` =
`π

d

{
` = 0, 1, 2 . . . ν = TM

` = 1, 2 . . . ν = TE.

There exists no TE-mode with value ` = 0 since then Hz = 0. The frequencies that
can exist in the cavity are determined by k2 = k2

tn + k2
z`

and thus

fn` =
c

2π

√
k2
tn +

(
`π

d

)2

. (23)

The transverse fields for the corresponding resonances follow from (15). For the
wave traveling in the negative z−direction we need to change sign on kz in these
formulas.

The pill-box cavity

The pill-box cavity is a circular cylindric cavity. Almost all resonance cavities that
are used for accelerating particles in acceerators are related to this cavity.

Let the cylinder have radius a and height d. We use the expressions for vmn and
Wmn given in (21). Then the TM-modes have the Ez field

Ezmn`(ρ, φ, z) = Amn`Jm(ξmnρ/a) cos(mφ) cos

(
`z

d

)
, m = 0, 1, . . . , n = 1, 2 . . . , ` = 0, 1 . . .

(24)

and the TE-mode has the Hz field

Hzmn`(ρ, φ, z) = Bmn`Jm(ηmnρ/a) cos(mφ) sin

(
`z

d

)
, m = 0, 1, . . . , n = 1, 2 . . . , ` = 1, 2 . . . ,
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(25)

where Amn` and Bmn` are amplitudes. Here ξmn is the n:th zero of Jm(x) and ηmn
the n:th zero of J ′m(x). The first zeros are given in tables in appendix 1. The
eigenfrequencies are given by

fmn` =


c

2π

√(
ξmn
a

)2

+

(
`π

d

)2

TM

c

2π

√(ηmn
a

)2

+

(
`π

d

)2

TE.

(26)

The fundamental mode is the mode with lowest eigenfrequency. The lowest TM-
mode is TM010, with frequency

f010 =
c

2π

2.405

a
(27)

and the lowest TE-mode is TE111, with frequency

f111 =
c

2π

√(
1.841

a

)2

+
(π
d

)2

. (28)

When d <
π√

2.4052 − 1.8412
a ≈ 2.03a then the fundamental mode is TM010 other-

wise it is TE111. It is the TM010 that is used in the cavities of accelerators. We can
see why when we know the total electric field. Equation (21) says that ET = 0 for
TM010, since kz = 0. This means that the electric field of TM010 is

E(r) = AJ0(ξ01ρ/a)ẑ. (29)

This is shown in figure (9).

The TM010 cavity is perfect for accelerating particles. In figure (10) the beam pipe
and the pillbox cavity is shown. The particles travel along the beam pipe. As they
enter the pillbox cavity the electric field is strong and accelerates that particle in
the forward direction. The particles must come in bunches separated in time with
T = 1/f , where T is the period of the frequency of the TM010 mode.

In practice the pilbox cavities used in accelerators are deformed in order to optimize
their performance. Figure (11) shows an elliptic cavity of the same type that is to
be used in ESS. It consists of five cells3 and each cell can be viewed as a deformed
pillbox cavity. The electric field and the bunches are depicted in figure (12). Notice
that there is a phase difference of 180 degrees between two adjacent cells. In that
way the particles get accelerated in all of the cells.

3In ESS the elliptic cavities will have six cells.
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Figure 9: The electric field of the TM010 mode in a pill-box cavity.

Figure 10: The pillbox cavity and beam pipe in an accelerator.

Figure 11: The elliptic cavity to be used in the LINAC of ESS.



3 Microwave cavities 31

particle bunches

electric field

z

z

Figure 12: The cross section of the elliptic cavity and the electric field. The bunches
are traveling to the right. The frequency of the fundamental mode is 704 MHz and
the bunches come with a frequency of 352MHz. The lower figure is at half a period
later than the upper one.

Traveling wave cavities

We have seen that the pill-box cavity is very good for accelerating particles. There
is another type of cavity, called traveling wave cavity, that is very common for
accelerating electrons. It is used in the LINAC of MAX IV and also in accelerators
that are used for radio therapy at hospitals.

To understand the idea behind the traveling wave cavity we can go back to the
circular waveguide. Let the radius of the waveguide be a. According to (21) and
(15) the TM01 mode has the electric field

E(ρ, z) = E0

(
− ikz
kt
J1(ktρ)ρ̂+ J0(ktρ)ẑ

)
eikzz,

where kt =
2.405

a
and kz =

√
k2 − k2

t . On the symmetry axis the electric field is

directed in the z−direction. The idea is now to let the electrons surf on the electric
wave. The problem is that the wave is traveling with the phase speed vp =

ω

kz
and

that is always larger than the speed of light. We need to slow down the wave so
that the wave is traveling with the same speed as the electrons. Since electrons are
very light particles they travel with almost the speed of light already at quite small
energies. The goal is then to let the phase speed equal the speed of light. We do
this by adding irises, which are walls with apertures. This is seen in figure (13).
This results in the wave in figure (14). The electric field is at this moment directed
to the left in the red cells. The electron bunches are located in these cells. There is
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Figure 13: The traveling wave cavity. The cells are the same as the one used in M
the MAX IV LINAC.

a phase difference of 2π/3 between two adjacent cells. At a time T/3 later the red
region has moved one cell to the right. Also the bunch must have moved to this cell.
This sets the length of each cell to Lcell = cT/3. The wave continues to travel to the
right and the bunches of electrons are traveling with the same speed. They are then
accelerated in each cell and, by that, along the entire structure. To prevent that the
wave is reflected at the end of the cavity, the cavity is terminated by an absorber.

Analyzing resonance cavities with Comsol

The resonance cavities can be analyzed by FEM. There are three different cases that
are of interest:

a) If the cavity is axisymmetric we use 2D axisymmetric in Comsol. The axially
symmetric geometry makes it possible to expand the electric and magnetic
fields in a Fourier series in the system einφ. Then the problem is reduced to a
two-dimensional problem in the cylindrical coordinates ρ and z. Each n value
is treated separately. The reduction from 3D to 2D makes the solver very fast
and accurate.

b) If the resonance cavity consists of a hollow waveguide with plane metallic
walls at z = 0 and z = h it is easy to analyze it with FEM. First the cut-off
frequencies for the different modes are determined using the scheme on page
32. Then the resonance frequencies of the cavity are obtained from (23).
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Figure 14: A Comsol simulation of the electric field in the traveling wave cavity.

c) If neither of the two previous cases are relevant then we have to use the three-
dimensional solver.

We now give an example of the first case.

Example

We determine some of the resonances of a hollow sphere with radius a = 1 m. We
use the solver 2D axisymmetric since the sphere is axially symmetric. All of the
field components can be expanded in a Fourier series

f(ρ, φ, z) =
∞∑

m=−∞

fm(ρ, z)eimφ.

Fields with different m-values do not couple to each other and then each m value
can be treated separately.

a) First choose 2D axisymmetric>Radio Frequency>Electromagnetic waves
>Eigenfrequency.

b) Draw a circle with radius a = 0.1 m and put its center at (0, 0).

c) Choose Sector angle 180 degrees and Rotation -90 degrees. By that you
have a half circle in the right half-plane.
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d) Choose Air as material.

e) Go to Electromagnetic waves and choose perfect conductor as boundary
condition for the circular line. The symmetry axis has the condition Axial
Symmetry by default.

f) Choose Electromagnetic waves and the azimuthal index m.

g) In Study>Eigenfrequency we set the frequency to e.g. 1 GHz. This is the
frequency where Comsol starts to look for an eigenfrequency. We can also
choose the number of resonances that it will determine.

h) The mesh size is Normal by default. If we need a better accuracy then we
choose a finer mesh.

i) We now let Comsol solve the problem.

j) Comsol calculates the lowest resonant frequencies and their electric fields.
There might be spurious solutions that are unphysical. The resonance fre-
quency for spurious solutions are usually very far from 1 GHz, or even complex,
and the corresponding field plots are fuzzy.
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3.1

Determine the ratio between radius a and length d for a circular cylinder such that
the lowest resonance frequency for the TE and TM modes are the same. All walls
are perfectly conducting and there is vacuum inside the cavity. Confirm your result
with COMSOL.

3.2

The fundamental mode TE10 is used for accelerating particles in a rectangular waveg-
uide, see figure. The waveguide has dimension 0.2 m × 0.1 m and is terminated in
both ends by perfect conducting plates. There will then be a standing wave in the
waveguide. The waveguide is fed by a coaxial cable with an inner conductor that
extends into the waveguide.

The frequency and length is adapted such that the electric field has a maximum
where the beam pipe is attached to the waveguide. The particles come in bunches
with frequency f = 500 MHz, but in order to reduce the dimensions of the waveguide
it is fed with the double frequency fv = 1 GHz.

a) Is the pipe attached at the waveguide as in figure a) or b)? Motivate why.

b) Is the coaxial cable attached as in figure c) or d)? Motivate your answer.

c) Determine the length, L, of the waveguide expressed in a = 0.2 m, fv and speed
of light c0. Choose the shortest possible length for which the pipe is attached where
the electric field has a maximum.

d) Determine the distance d between the end of the waveguide and the feed point,
expressed in L. Motivate
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e) Assume that that you like to feed the waveguide with 500 MHz. Is it possible to
do this by just changing the length of the waveguide?

3.3

The fundamental mode TM010 is used for accelerating particles that travel along
the symmetry axis of a circular cylindric cavity with radius a and length h. The
particles come in short bunches with time interval T . All bunches should get the
same acceleration.

a) Determine the radius a of the cavity, expressed in T and c0. The radius should
be as large as possible.

b) You want to avoid higher order modes with frequencies that are a multiple of
the frequency of the fundamental mode, f0. The reason is that the beam acts as
a radiating antenna that excites cavity modes. The modes with a frequency close
to or at a multiple of the frequency of the beam will grow strong and affect the
trajectories of the particles.

Determine the length h that should be avoided in order for the TM011 mode to get
the frequency 2f0.

Hint: The three lowest zeros of the Bessel function J0(x) are ξ01 = 2.405, ξ02 = 5.520,

ξ03 = 8.654. The TMmnl-mode hasEz(rc, φ, z) = EmnlJm(ξmnrc/a) cos(mφ) cos

(
lπz

h

)
.

3.4

Assume a cylindric cavity with radius a and length h.

a) Sketch the electric field for the TM010 mode in a cross section of the cavity. The
cross section should be in the xz-plane, where the z−axis is the symmetry axis. The
electric field should be shown as arrows where the length of the arrow indicates the
field strength.

b) Sketch the magnetic field in a cross section in the xy-plane of the TM010 mode.

c) Determine the resonant frequency of the TM010 mode when a = 0.1 m and h = 0.3
m.

d) The cylindric cavity is fed by a source with frequency equal to the resonant
frequency of the TM010 mode. The phase of the source is such that the electric field
in the cavity is proportional to sin(ωt). The maximum amplitude of the electric
field in the cavity is E0. Assume that a proton with speed v enters the cavity at
time t = 0. Determine the kinetic energy that the proton will gain in the cavity as a
function of the length h. The gain in energy is small enough compared to the initial
kinetic energy of the proton, such that the speed of the proton can be considered to
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be constant in the cavity. The radius a, the length h, E0, ω and v are assumed to
be known.

3.5

Consider the TM010-mode in a cylindric cavity with radius a and length L.

a) At what radius rc is the magnetic field maximal.

b) Where is the surface current density maximal?

c) Where is the surface charge density maximal?

d) Confirm you results from a COMSOL 2D axisymmetric eigenfrequency calcu-
lation. You can plot the quantities along lines by using line graph. You can find
line graph under Results→1D Plot Group. If you don’t find surface charge density
then you can plot the absolute value of the normal component of the D-field, or
equivalently, the norm of the the D-field along the surface.

3.6

A resonance cavity is a cylinder with elliptic cross section. The ellipse has major
half-axis a = 3 cm and minor half-axis b = 2 cm. The length of the cylinder is 3 cm.

Determine the three lowest resonance frequencies of the cavity by using COMSOL.
All walls are perfectly conducting and there is vacuum inside the cavity.

Help: One can solve problem a) in COMSOL using either a 2D or a 3D calculation.
Do both.
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Microwave cavities: Answers and solutions

S3.1

d

a
= 2.03

S3.2

a) The pipe is attached as in b) since the electric field is directed parallell with
the end plates.

b) The coaxial cable is attached as in d) since the inner conductor then couples
to the electric field.

c) The length L is given by L = λz =
2π

kz
where kz =

√
k2 − (π/a)2. Since the

frequency is fv the wavenumber is k = 2πfv/c0. Then

L =
2π√

k2 − (π/a)2
=

2c0a√
(2fva)2 − c2

0

(30)

Numerically L = 45.3 cm when a = 20.0 cm.

d) d = L/4 since the feed point should be where the electric field is maximal.

e) No, it will not work. The cut-off frequency for the TE10 mode is fc =
c0

2a
≈750

MHz.

S3.3

a) The resonance frequency is given by f =
c0

2π

ξ01

a
, where ξ01 = 2.405. Thern

a =
2.405Tc0

2π

b) For TM011

k2 =

(
ξ01

a

)2

+
(π
h

)2

where k =
4π

Tc0

.

The following length should be avoided:

h =
π√(

4π

c0T

)2

−
(

2.405

a

)2
=

c0T

2
√

3
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S3.4

a) See left figure.

b) See right figure.

c) f =
c

2π

2.405

.1
= 1.15 GHz

d) Since z = vt the proton will experience the force F = eE0 sin(ωt)ẑ = eE0 sin(ωz/v)ẑ.

The gain in kinetic energy is ∆Wk =
∫ h

0
eE0 sin(ωz/v)dz =

eE0v

ω
(1− cos(ωh/v))

S3.5

a) The rc at which the magnetic field has its largest amplitude is when ξ01rc = η11a,
where ξ01 = 2.505 and η11 = 1.841. Then rc = 0.7656a.

b) rc = 0.7656a

c) In the center of the flat surfaces since ρS = ε0n̂ ·E and E = E0J0(ξ01rc)ẑ, where
J0(x) is maximal at x = 0.

S3.6

The three lowest resonance frequencies are

f1 = 4.86 GHz, f2 = 5.81 GHz and f3 = 6.59 GHz.
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4 Potentials and fields

4.1

Show that the differential equations for V and A (10.4 and 10.5) can be written in
the more symmetric form

�2V +
∂L

∂t
= − 1

ε0

ρ

�2A−∇L = −µ0J

where �2 ≡ ∇2 − µ0ε0
∂2

∂t2
and L ≡ ∇ ·A+ µ0ε0

∂V

∂t
.

Problem 10.1 in Griffiths 5th ed..

4.2

Suppose V = 0 andA = A0 sin(kx−ωt)ŷ, where A0, ω, and k are constants. Find E
and B and check that they satisfy Maxwell’s equations in vacuum. What condition
must you impose on ω and k?

Problem 10.4 in Griffiths 5th ed..

4.3

Consider a closed curve C in the plane z = 0. Along the curve is a thin metal wire
(perfectly conducting) that is almost closed, see figure. A magnetic flux density
B(r, t) will induce a voltage V (t) in the gap of the loop. Show that, if the self-
inductance of the loop can be neglected,

V (t) = −dΦ(t)

dt

where Φ(t) =
∫
S
B · ẑ dS and S is the planar surface enclosed by C. One can show

this in many ways, but you should do it by going through the following steps:

a) Show that Φ(t) =
∮
C
A(r, t) · d`.
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b) What is the electric field inside the metal of the wire?

c) Is A affected by the presence of the wire?

d) Use
∫
Cm
A(r, t) · d` ≈

∮
CA(r, t) · d`, E = −∇V − ∂A

∂t
and show that

V (t) = −dΦ(t)

dt

here Cm is the almost closed curve along the metal wire.

e) Can we use the same formula for V if the gap is large?

4.4

A time-dependent point charge q(t) at the origin, ρ(r, t) = q(t)δ3(r), is fed by a

current J(r, t) = − q̇(t)

4πr2
r̂.

a) Check that charge is conserved, by confirming that the continuity equation is
obeyed.

b) Find the scalar and vector potentials in the Coulomb gauge.

c) Find the fields, and check that they satisfy all of Maxwell’s equations.

Problem 10.7 in Griffiths 5th ed..

4.5

A piece of a wire bent into a loop, as shown in the figure, carries a current that
increases linearly with time:

I(t) = kt (−∞ < t <∞)

Calculate the retarded vector potential A at the center. Find the electric field at
the center. Why does the (neutral) wire produce an electric field? (Why can’t you
determine the magnetic field from this expression for A)

Problem 10.12 in Griffiths 5th ed..
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4.6

A particle of charge q moves in a circle of radius a at a constant angular velocity
ω. Assume that the circle lies in the xy−plane, centered at the origin, and at time
t = 0 the charge is at (a, 0), on the positive x−axis. Find the Liénard-Wiechert
potentials for points on the z−axis.

Problem 10.15 in Griffiths 5th ed..

4.7

It was shown in Griffiths that at most one point on the particle trajectory commu-
nicates with r at any given time. In some cases there might be no such point (an
observer at r would not see the particle). As an example, consider a particle in
hyperbolic motion along the x−axis:

w(t) =
√
b2 + (ct)2x̂ (−∞ < t <∞) (31)

(In special relativity this is the trajectory of a particle subject to a constant force
F = mc2/b.) Sketch the graph of w versus t. At four or five different representative
points on the curve, draw the trajectory of a light signal emitted by the particle at
that point–both in the plus x direction and the minus x direction. What region on
your graph corresponds to points and times (x, t) from which the particle cannot be
seen? At what time does someone at point x first see the particle? (Prior to this the
potential is zero.) Is it possible for a particle, once seen, to disappear from view?

Problem 10.17 in Griffiths 5th ed..

4.8

Suppose a point charge q that is constrained to move along the x−axis. Show that
the fields at points x on the axis to the right of the charge are given by

E =
q

4πε0(x− wx)2

(
c+ v

c− v

)
x̂

B = 0

where wx = wx(tr) is the position of the charge at the retarded time. (Do not assume
v is constant!) What are the fields on the axis to the left of the charge?

Problem 10.20 in Griffiths 5th ed..
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S4.1

S4.2

E = −∇V − ∂A

∂t
= A0ω cos(kx− ωt)ŷ

B = ∇×A = A0k cos(kx− ωt)ẑ

It follows that ∇ ·E = 0 and ∇ ·B = 0.

It is also straightforward to see that ∇×E = −∂ B
∂t

.

If k2 = ω2ε0µ0 then ∇×B = µ0ε0
∂ E

∂t
.

S4.3

a) Use B = ∇×A and Stokes theorem.

b) The electric field is zero.

c) No, not in the quasi statics. The magnetic flux density B is, by assumption, not
affected and then A is not affected either.

d)

e) No. The voltage between two points that are not close to each other is not unique.
It depends on the integration path between the points.

S4.4

S4.5

A =
µ0

4π

∮
I(tr)

r′
d` =

µ0k

4π

∮
t− r′/c
r′

d` =
µ0k

4π

(
t

∮
1

r′
d`− 1

c

∮
d`

)
(32)

But for the complete loop
∮

d` = 0, so

A =
µ0kt

4π

(
1

a

∫
1

d`+
1

b

∫
2

d`+ 2x̂

∫ b

a

dx

x

)
(33)

Here
∫

1
d` = 2ax̂ (inner circle) and

∫
2

d` = −2bx̂ (outer circle), so

A =
µ0kt

4π

(
1

a
(2a)− 1

b
(2b) + 2 ln(b/a)

)
x̂
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Thus

A =
µ0kt

2π
ln(b/a)x̂

E = −∂A
∂t

= −µ0k

2π
ln(b/a)x̂

The changing magnetic field induces the electric field. Since we only know A at one
point (the center), we can’t compute B = ∇×A.

S4.6

At time t the particle is atw(t) = a(cos(ωt)x̂+sin(ωt)ŷ), so v(t) = aω(− sin(ωt)x̂+
cos(ωt)ŷ). Therefore

r −w = zẑ − a(cos(ωtr)x̂+ sin(ωtr)ŷ)

and, as expected, |r −w| =
√
a2 + z2. It must also be that (r −w(tr)) · v(tr) = 0

(check this if you don’t believe it). So

(
1− (r −w) · v

|r −w|c

)
= 1.

Then

V (z, t) =
q

4πε0

√
a2 + z2

A(z, t) =
qωa

4πε0c2
√
a2 + z2

(− sin(ωtr)x̂+ cos(ωtr)ŷ)

where tr = t−
√
a2 + z2

c
.

S4.7

The particle is invisible for times t < −x
c

for a person at x. the light reaches the

person at t = −x
c

and after that it will be visible for all times t > −x
c

.

S4.8

E =
q

4πε0

|r |
(r · u)

[
(c2 − v2)u+ r × (u× r )

]
here v = vx̂, a = ax̂, and, for points to the right, r̂ = x̂. So u = (c − v)x̂,
u× a = 0, and r · u = |r |(c− v).

E =
q

4πε0

|r |
|r |3(c− v)3

(c2 − v2)(c− v)x̂ =
q

4πε0|r |2
(
c+ v

c− v

)
x̂ (34)

B =
1

c
r̂ ×E = 0 (35)
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where r = r −w(tr).

For field points to the left, r̂ = −x̂ and u = −(c+ v)x̂, so r · u = |r |(c+ v), and

E = − q

4πε0

|r |
|r |3(c− v)3

(c2 − v2)(c− v)x̂ = − q

4πε0|r |2
(
c+ v

c− v

)
x̂ (36)

B =
1

c
r̂ ×E = 0 (37)
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5 Radiation

5.1

Write a Matlab script that determines the retarded time tr from the time t given
the position vector w(t) as a function of time and the field point r. Check your
program by calculating tr for the following case of circular motion of the particle:

w(t) = A(cos(ωt), sin(ωt), 0) (38)

where A is the the radius of the circle. The speed of the particle is v = βc and the
field point is r. Let

A = 10 m (39)

β = 0.95 (40)

r = (100, 0, 0) m (41)

0 < t < 250 ns (42)

Notice that ω = v/A. Plot tr(t) as a function of t in the interval 0 < t < 250 ns and
compare with the curve in the answer.

5.2

Write a Matlab script that evaluates the electric and magnetic fields from a point
charge that moves along a prescribed curve w(t).

a) Check your program by determining the electric field from a particle in circular
motion with the values given in 5.1.

b) Check your program by determining the electric field from a particle traveling
through an undulator.

5.3

Write a Matlab script that evaluates the frequency spectrum of the electric field
from a a point charge that moves along a prescribed curve w(t).

a) Check your program by determining the frequency spectrum of Ey from a particle
in circular motion with the values given in 5.1.

b) Check your program by determining the Fourier transform of the electric field
from a particle traveling through an undulator.
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Figure 15: Angle θmax at maximum radiation.

5.4

In Bohr’s theory of hydrogen, the electron in its ground state was supposed to
travel in a circle of radius 5×10−11 m, held in orbit by the Coulomb attraction of
the proton. According to classical electrodynamics, this electron should radiate, and
hence spiral in to the nucleus. Show that v � c for most of the trip (so you can use
the Larmor formula), and calculate the lifespan of the Bohr’s atom. (Assume each
revolution is essentially circular.)

Problem 11.14 in Griffiths 5th ed..

5.5

When v and a of a particle is instantaneously collinear (at time tr), as, for example
in a straight-line motion. Then the angular distribution of the radiation is, according
to Griffiths, given by

dP

dΩ
=
µ0q

2a2

16π2c

sin2 θ

(1− β cos θ)5

Find the angle θmax, see figure (15), at which the maximum radiation is emitted.
Show that for ultrarelativistic speeds (v close to c), θmax ≈

√
0.5− 0.5β. What is

the intensity of the radiation in this maximal direction (in the ultrarelativistic case),
in proportion to the same quantity for a particle instantaneously at rest? Give your
answer in terms of γ.

Problem 11.15 in Griffiths 5th ed..

5.6

In the previous problem we assumed that the velocity and acceleration were (instan-
taneously, at least) collinear. Carry out the same analysis for the case where they
are perpendicular. Choose your axes so that v lies along the z−axis and a along the
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xaxis, so that v = vẑ, a = ax̂, and r̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ. Check
that P is consistent with the Liénard formula.

(Comment: For relativistic velocities (β ≈ 1) the radiation is again sharply peaked
in the forward direction. The most important application of these formulas is to
circular motion– in this case the radiation is called synchrotron radiation. For a
relativistic electron, the radiation sweeps around like a locomotive’s headlight as
the particle moves.)

Problem 11.16 in Griffiths 5th ed..

5.7

a) A particle of charge q moves in a circle of radius R at a constant speed v. To
sustain the motion, you must, of course, provide a centripetal force mv2/R. What
additional force (F e) must you exert, in order to counteract the radiation reaction?
[It’s easiest to express the answer in terms of the instantaneous velocity v.] What
power (Pe) does this extra force deliver? Compare Pe with the power radiated (use
Larmor formula).

b) Repeat part (a) for a particle in simple harmonic motion with amplitude A and
angular frequency ω (w(t) = A cos(ωt)ẑ). Explain the discrepancy.

c) Consider the case of a particle in free fall (constant acceleration g). What is the
radiation reaction force? What is the power radiated? Comment on the results.

Problem 11.17 in Griffiths 5th ed..
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S5.1
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Figure 16: The retarded time tr as a function of time t for a particle in circular
motion.

One may use the function fsolve in Matlab. Do help fsolve in Matlab to find out
more.

Another option is to solve tr from t by iteration. Start with tr0 = t and use the
scheme

trn+1 = t−
√
r2 + |w(trn)|2 − 2r ·w(trn)/c

S5.2

It is convenient to use the Matlab functions dot and cross in order to take the scalar
and vector products of three-dimensional vectors.
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a) The circular motion is w(t) = 10(cosωt, sinωt, 0) m. The speed is 0.95c and the
field point is (100, 0, 0) m. The y−component of the electric field is given in Figure
(17).

b) The motion is given by w(t) = (vt, A sinωt, 0), where A = 0.001 m, ω = 1.6953 ·
1010 rad/s, and speed v = 0.9c. The period of the magnetic field is 0.1 m, the length
of the undulator is 0.2 m, and the field point is (20, 0, 0) m. The y−component of
the electric field is given in Figure (18). The time in the figure is translated.
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Figure 17: Ey(t) as a function of time t for a particle in circular motion.

S5.3

One can here use the function fft in Matlab. In the reference page for fft it is
explained how the fourier transform, as a function of frequency, is obtained from
the fft.

S5.4

F =
q

4πε0r2
= ma = m

v2

r
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Figure 18: Ey(t) as a function of time t for a particle running through an undulator.

then v =

√
q2

4πε0mr
. At the beginning (r0 = 0.5 Å) Numerically

v

c
= 0.0075

and when the radius is one hundreth of this , v/c is only 10 times greater (0.075),
so for most of the trip velocity is safely non-relativistic.

From the Larmor formula, P =
µ0q

2

6πc

(
v2

r

)2

=
µ0q

2

6πc

(
q2

4πε0mr2

)2

. (since a = v2/r),

and P =
dU

dt
, where U is the (total) energy of the electron:

U = Ukin + Upot =
1

2
mv2 − q2

4πε0r
= − q2

8πε0r

So

−dU
dt

= − q2

8πε0r2

dr

dt
= P =

q2

6πε0c3

(
q2

4πε0mr2

)2
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Figure 19: The absolute value of the Fourier transform of Ey(t) in figure (17).

and hence
dr

dt
= − 1

3c

(
q2

2πε0mc

)2
1

r2
, or

dt = −3c

(
2πε0mc

q2

)2

r2dr

Integration from r0 to 0 gives

t = c

(
2πε0mc

q2

)2

r3
0

Numerically t = 1.3 · 10−11 s.

S5.5

The maximum occurs when

d

dθ

(
sin2 θ

(1− β cos θ)5

)
= 0

This gives

cos θ =
1

3β
(±
√

1 + 15β2 − 1)
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Figure 20: The absolute value of the Fourier transform of Ey(t) in figure (18).

Since θmax → 90◦ ( cos θmax = 0) whenβ → 0 we use the + sign. Then

θmax = cos−1

(√
1 + 15β2 − 1

3β

)
For v ≈ c, β ≈ 1 write β = 1− ε, where ε� 1, and expand to first order in ε:(√

1 + 15β2 − 1

3β

)
= . . . = 1− 1

4
ε

Evidently θmax ≈ 0, so cos θmax ≈ 1− 1

2
θ2

max = 1− 1

4
ε, or

θmax ≈
√
ε

2
=
√

0.5(1− β)

Let

f =
(dP/dΩ|θm)ur

(dP/dΩ|θm)rest

=

(
sin2 θ

(1− β cos θ)5

)
ur

Now since sin2 θmax ≈ ε/2, and

(1− β cos θmax) ≈ 1− (1− ε)(1− 0.25ε) ≈ 1− (1− ε− 0.25ε) = 1.25ε
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So f =

(
4

5

)5
1

2ε4
. But

γ =
1√

1− β2
=

1√
1− (1− ε)2

≈ 1√
2ε

Therefore ε =
1

2γ2
and

f =

(
4

5

)5
1

2
(2γ2)4 = 2.62γ8

S5.6

Use

dP

dΩ
=

q2

16π2ε0

|r̂ × (u× a)|2

(r̂ · u)5

Also r̂ · u = c(1− β cos θ), a · u = ac sin θ cosφ and u2 = c2 + v2 − 2cv cos θ. Since

r̂ × (u× â) = (r̂ · a)u− (r̂ · u)a

then

|r̂ × (u× r̂ )|2 = a2c2((1− β cos θ)2 − (1− β2)(sin θ cosφ)2)

and

dP

dΩ
=
µ0q

2a2

16π2c

((1− β cos θ)2 − (1− β2)(sin θ cosφ)2)

(1− β cos θ)5

Integrate over θ and φ. The integrals over φ are easy. The remaining integral is

P =
µ0q

2a2

6π2c

∫ π

0

(2(1− β cos θ)2 − (1− β2) sinθ)

(1− β cos θ)5
sin θ dθ

Use change of variables to y = (1 − β cos θ). The integral can then be solved by
Wolphram Alpha. The result is

P =
µ0q

2a2γ4

6πc

where γ =
1√

1− β2
.

Is this consistent with the Liénard generalization of the Larmor formula?

P =
µ0q

2γ6

6π2c
π

(
a2 − |v × a|

2

c2

)
Now v × a = va(ẑ × x̂) = vaŷ, so

a2 − |v × a|
2

c2
= a2γ−2

Then P =
µ0q

2a2γ4

6πc
which is the same as above.
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S5.7

a) To counteract the radiation reaction you must exert a force F e = −µ0q
2

6πc

da

dt
. For

circular motion , r(t) = R(cos(ωt)x̂+ sin(ωt)ŷ), v(t) = Rω(− sin(ωt)x̂+ cos(ωt)ŷ),

and
da

dt
= −ω2v. Then

F e =
µ0q

2

6πc
ω2v

The power one has to supply is

P = F e · v =
µ0q

2

6πc
ω2v2

This is the same as the radiated power given by the Larmor formula.

b) For simple harmonic motion, r(t) = A cos(ωt)ẑ, v = −Aω sin(ωt)ẑ and a =
−ω2r. Then

F e =
µ0q

2

6πc
ω2v (43)

Pe =
µ0q

2

6πc
ω2v2 (44)

Now v2 = A2ω2 sin2(ωt) but Prad =
µ0q

2

6πc
ω4A2 cos2(ωt) 6= Pe. However, the time

averages are the same.

c) In free fall, r =
1

2
gt2ŷ, v = gtŷ, a = gŷ and da/dt = 0. So F e = 0. The

radiation action is zero and hence Pe = 0. But there is radiation Prad =
µ0q

2

6πc
g2. Ev-

idently energy is being continuously extracted from the nearby fields. This paradox
persists even in the exact solution.
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6 Relativistic electrodynamics

6.1

a) What’s the percent error introduced when you use Galileo’s rule, instead of
Einstein’s, with vAB = 8 km/h and 96 km/h?

b) Suppose that you could run at half the speed of light down the corridor of a train
going three quarters the speed of light. What would your speed be relative to the
ground?

c) Prove, using Einstein’s formula for velocity addition that if vAB < c and vBC < c,
then vAC < c

Problem 12.3 in Griffiths 5th ed..

6.2

As the outlaws escape in their getaway car, which goes 3
4
c, the police officer fires a

bullet from the pursuit car, which only goes 1
2
c. The muzzle velocity of the bullet

(relative to the gun) is 1
3
c. Does the bullet reach its target (a) according to Galileo,

(b) according to Einstein?

Problem 12.4 in Griffiths 5th ed..

6.3

In a laboratory experiment a muon is observed to travel 800 m before disintegrating.
A graduate student looks up the lifetime of a muon (2×10−6 s) and concludes that
its speed was

v =
800 m

2× 10−6s
= 4× 108 m

Faster than light! Identify the student’s error, and find the actual speed of the
muon.

Problem 12.7 in Griffiths 5th ed..

6.4

A Lincoln Continental is twice as long as a VW Beetle, when they are at rest. As
the Continental overtakes the VW, going to a speed trap, a (stationary) policeman
observes that they both have the same length. The VW is going at half the speed
of light. How fast is the Lincoln going? (Leave your answer as a multiple of c)



6 Relativistic electrodynamics 57

Problem 12.9 in Griffiths 5th ed..

6.5

a) Write out the matrix that describes a Galilean transformation.

b) Write out the matrix describing a Lorentz transformation along the y−axis.

c) Find the matrix describing a Lorentz transformation with velocity v along the
x−axis, followed by a Lorentz transformation with velocity v̄ along the y-axis. Does
it matter in what order the transformations are carried out?

6.6

If a particle’s kinetic energy is n times its rest energy, what is its speed?

Problem 12.30 in Griffiths 5th ed..

6.7

A particle of mass m whose total energy is twice its rest energy collides with an
identical particle at rest. If they stick together, what is the mass of the resulting
composite particle? What is its velocity?

Problem 12.33 in Griffiths 5th ed..

6.8

In the past, most experiments in particle physics involved stationary targets: one
particle (usually a proton or an electron) was accelerated to a high energy E, and
collided with a target particle at rest. Far higher relative energies are obtainable
(with the same accelerator) if you accelerate both particles to energy E, and fire
them at each other. Classically the energy Ē on one particle, relative to the other,
is just 4E (why?)- not much of a gain (only a factor of 4). But relativistically the
gain can be enormous. Assuming the two particles have the same mass, m, show
that

Ē =
2E2

mc2
−mc2

Suppose that you use protons (mc2 = 1 GeV) with E = 30 GeV. What Ē do you
get? What multiple of E does this amount to?

Problem 12.35 in Griffiths 5th ed..
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6.9

a) The electrons in the large storage ring of MAX IV has 3 GeV energy. Determine
β = v/c for the electrons.

b) In the large hadron collider at Cern protons are accelerated to high energies in
two directions such that they collide. The protons have 7 TeV energy. Determine
β = v/c for the protons and compare that with β for the electrons in MAX IV. How
many m/s difference is there between the electrons of MAX IV and the protons of
LHC? How many m/s difference is there between the speed of light and the 7 TeV
protoms?

c) Assume that MAX IV would like to beat LHC in particle speed. What energy
does that require?

d) Determine the ratio Ē/E, where Ē is the energy when two 7 TeV protons collide
and E the energy when a 7 TeV proton collides with a proton at rest.

6.10

a) Charge qA is at rest at the origin in system S; charge qB flies by at speed v on a
trajectory parallel to the x−axis, but at y = d. What is the electromagnetic force
on qB as it crosses the y−axis?

b) Now study the same problem from system S̄, which moves to the right with speed
v. What is the force on qB when qA passes the ȳ-axis? [Do it two ways: (i) by using
your answer to (a) and transforming the force; (ii) by computing the fields in S̄ and
using the Lorentz force law.]

Problem 12.45 in Griffiths 5th ed..

6.11

Consider a beam of protons traveling in an accelerator. We assume that along a
quite long distance the beam can be approximated by a circular cylinder with radius
a and constant charge density ρ, seen from the stationary system S0. The z−axis is
the symmetry axis of the cylinder and the cylinder travels with velocity v0ẑ.

a) Determine the electric field E0 and magnetic flux density B0 for rc < a seen
from S0.

b) Show that the Lorentz force q(E0 +v×B0) goes to zero as v → c. This explains
why bunches of particles in an accelerator can stay confined for a long time.

c) What is the electric field Ē and magnetic flux density for rc < a in a system S̄
that travels with the protons? What is the force on an electron in the system S̄
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compared to the force in a system S at rest relative the accelerator?
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Relativistic electrodynamics: Answers and solutions

S6.1

a) 6.7 · 10−14% error.

b)
10

11
c.

c) Let β = vAC/c, β1 = vAB/c and β2 = vBC/c. then

β2 =
β2

1 + 2β − 1β2 + β2
2

(1 + 2β1β2 + β2
1β

2
2)

= 1−∆

where ∆ = (1−β2
1)(1−β2

2)/(1 +β1β2)2 is clearly a positive number. So β2 < 1, and
hence |vAC| < c

S6.2

a) Velocity of bullet realtive ground: 1
2
c+ 1

3
c = 10

12
c.

Velocity of getaway car: 3
4
c = 9

12
c so buller does reach target.

b) Velocity of bullet relative ground: c/2+c/3
1+1/6

= 20
28
c.

Velocity of getaway car: 3
4
c = 21

28
c so bullet does not reach target.

S6.3

The student has not taken into account time dilatation of the muon’s internal clock.
In the laboratory, the muon lasts γτ , where τ is the proper lifetime 2 · 10−6 s. Thus,
after some analysis, v = 0.8c.

S6.4

v =

√
13

4
c

S6.5

a) 
ct
x̄
ȳ
z̄

 =


1 0 0 0
−β 1 0 0
0 0 1 0
0 0 0 1



ct
x
y
z
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b)

Λ =


γ 0 −γβ 0
0 1 0 0
−γβ 0 γ 0

0 0 0 1


1.5 c) Multiply the matrices:

Λ =


γ̄ 0 −γ̄β̄ 0
0 1 0 0
−γ̄β̄ 0 γ̄ 0

0 0 0 1




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 =


γγ̄ −γγ̄β −γ̄β̄ 0
−γβ γ 0 0
−γ̄γβ̄ γ̄γβ̄β γ̄ 0

0 0 0 1


Yes, the order does matter. In the other order bars and non-bars would switch.

S6.6

γmc2 −mc2 = nmc2

This gives γ = n+ 1 and from that

u =

√
n(n+ 2)

n+ 1
c

S6.7

Initial momentum is obtained from: E2 − p2c2 = m2c4, then p =
√

3mc.

Initial energy: 2mc2 +mc2 = 3mc2.

Each is conserved, so final energy is 3mc2 and final momentum is
√

3mc. The mass,
M , of the two particles that are stuck is obtained from

E2 − p2c2 = (3mc2)n2− (
√

3mc)2c2 = 6m2c4 = M2c4

Then M =
√

6m ≈ 2.45m. Some of the kinetic energy is transformed into rest
energy.

the speed of the two particles is

v =
pc2

E
=

√
3mcc2

3mc2
=

c√
3



62 6 Relativistic electrodynamics: Answers and solutions

S6.8

Classically, E = 1
2
mv2. In a colliding beam experiment, the relativity velocity is

twice the velocity of either one, so the relative energy is 4E.

For relativistic particles we use the fact that (E/c, px, py, pz) is a four vector and
hence transform according to the Lorentz transformationen. Thus we know how to
transform from the system where both particles have energy W and are moving with
velocities vx̂ and −vx̂, respectively, to the system where one of the particles is at
rest. The energy Ē of the moving particle in the new system is, according to the
Lorentz transformation, given by

Ē

c
= γ

E

c
− γβp

where β = −v/c, γ = 1/
√

1− β2 and p = mγv. Since

β2 =
γ2 − 1

γ2

Ē = mγ̄c2

E = mγc2

we get

γ̄ = γ2(1 + β2) = 2γ2 − 1

and finally

Ē =
γ̄

γ
E = 2γE − E/γ = 2

E2

mc2
−mc2

For E = 30 GeV and mc2 = 1 GeV, we have Ē = 1799 GeV= 60E.

S6.9

a) Kinetic energy is E = mγc2 −mc2. This gives β =

√
1−

(
mc2

E +mc2

)2

. With

m = 9.11 · 10−31 kg one get mc2 = 0.51 MeV and β = 0.999999986.

b) With m = 1.673 · 10−27 kg, mc2 = 0.939 GeV and β = 0.999999991. The protons
of LHC are just 1.5 m/s faster than the the electrons in MAX IV. They are on the
other hand only 2.7 m/s slower than the speed of light.

c) They have to go up to 3.8 GeV, so the 1.5 m/s cost 0.8 GeV.

d)
Ē

E
=

(2E2/mc2 −mc2)

E
= 14900
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S6.10

a) Fields of A and B: E =
1

4πε0

qA
d2
ŷ and B = 0. So force on qB is F =

1

4πε0

qAqB
d2

ŷ.

b) (i) The particle is at rest in S̄ and then the force is F̄ =
γ

4πε0

qAqB
d2

ŷ

(ii) With θ = 90◦ we get E =
1

4πε0

qA(1− β2)

(1− β2)3/2

1

d2
ŷ =

γ

4πε0

qA
d2
ŷ

B 6= 0 but since vB = 0 in S̄, there is no magnetic force anyway, and F =
γ

4πε0

qAqB
d2

ŷ

S6.11

a) Gauss law gives the electric field for rc < a:

E(rc) =
ρπr2

c

ε02πrc
r̂c =

ρrc
2ε0

r̂c

The current density is J(rc) = ρv for rc < a and zero for rc > a. Amperes law gives

B(rc) =
µ0vρπr

2
c

2πrc
φ̂ =

µ0vρrc
2

φ̂

b) The force on a particle traveling with the beam and at a distance rc from the
symmetry axis is:

F = q(E + v ×B) =
qρrc
2ε0

(
1− v2

c2

)
r̂c

We see that this force goes to zero as v → c.

c) The electric and magnetic fields in system S̄ are

Ē = γ(E + v ×B) = γ
ρrc
2ε0

(
1− v2

c2

)
r̂c (45)

B̄ = γ

(
B − 1

c2
v ×E

)
= 0 (46)

No surprise that B̄ = 0.

We see that the force is γ times larger in S̄ than in S. This is accordance with the
transformation formula for forces.
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7 Motion of relativistic particles in electromag-

netic fields

Solving the equation of motion for a particle with MATLAB

Consider a particle with charge q and mass m that moves in a vacuum region with
a static electric field E(x, y, z) and a static magnetic flow density B(x, y, z). The
motion of the particle is governed by Newton’s second law

F =
dp

dt

where F is the force and p = mη = mγu = m
u√

1− u2/c2
is the relativistic

momentum. Here η is the proper velocity and m is the proper mass (sometimes
called rest mass). The force is the Lorentz’ force

F = q(E + u×B).

Thus

m
dγu

dt
= q(E(r) + u×B(r)). (47)

There are some special cases when this equation can be solved analytically. In other
cases one has to solve the equations by numerical methods. To use the MATLAB
routines we need to rewrite the equation as a system of coupled first order ordinary
differential equations. To do this we first use the relation

d(mγu)

dt
= mγ

(
a+

u(u · a)

c2 − u2

)
(48)

where a is the acceleration a =
du

dt
. The derivation of this expression is left as an

exercise. From this relation and equation (47) one can show that

a =
q

mγ

(
E + u×B − 1

c2
u(u ·E)

)
(49)

Also the derivation of this relation is left as an exercise.

The non-relativistic case

We show in detail how the non-relativistic version of equation (50) can be solved by
MATLAB. The relativistic case is left to the reader. The non-relativistic version of
equation (49) is obtained by letting

u

c
= 0 and thus γ = 1

a =
q

m
(E + u×B) (50)
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This equation is a system of three equations:

d

dt

uxuy
uz

 =

a1(ux, uy, uz)
a2(ux, uy, uz)
a3(ux, uy, uz)

 (51)

where

a1(ux, uy, uz) =
q

m
(Ex + uyBz − uzBy)

a2(ux, uy, uz) =
q

m
(Ey + uzBx − uxBz)

a3(ux, uy, uz) =
q

m
(Ez + uxBy − uyBx)

(52)

The system (51) is not sufficient, even if we know the velocity at a certain time.
The reason is that E and B are space dependent and we then need to know also
the position of the particle. For this reason we add three equations to the system
(51) as

d

dt


x
y
z
ux
uy
uz

 =


ux
uy
uz

a1(ux, uy, uz)
a2(ux, uy, uz)
a3(ux, uy, uz)


Initial conditions are needed for the velocity and position. For convenience we solve
the equation for t > 0 and then we need the initial conditions (x(0), y(0), z(0)) and
(ux(0), uy(0), uz(0)).

An analytic solution for the case when E = Ezẑ and B = Bzẑ

Assume that the particle starts at the origin (x, y, z) = (0, 0, 0) with velocity
(ux, uy, uz) = (104, 0, 0) m/s. When both E and B are directed in the z−direction
and they are constant in space then the equation of motion can be solved analyti-
cally. From (52) we get the three equations

dux
dt

=
q

m
(uyBz)

duy
dt

= − q

m
(uxBz)

duz
dt

=
q

m
(Ez)

(53)

That means that the motion in the xy−plane is decoupled from the motion in
the z.plane. In the xy−plane the particle moves along a circular path with radius
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R =
mu

qB
, where u =

√
u2
x + u2

y = 104 m/s is a constant speed, and in the z−direction

it has a constant acceleration such that z(t) =
q

2m
Ezt

2.

We can use this analytic solution to check the accuracy of the different ode-solvers
in MATLAB.solution.

The MATLAB script

There are at least eight different solvers for ordinary differential equations in MAT-
LAB. It is hard to tell which of these solvers that is the best one for a specific
problem. Sometimes one has to try different solvers and pick the one that gives the
best result. When we applied the different solvers to the problem above the solver
ode23t gave the best results. Here is an example of a script that solves the equation

c l e a r
% This s c r i p t determines and p l o t s the t r a j e c t o r y o f a
% charged p a r t i c l e in a s t a t i c e l e c t r i c f i e l d
% and a s t a t i c magnetic f l u x dens i ty
% y ( 1 : 3 ) i s the p o s i t i o n vec to r and y ( 4 : 6 ) the v e l o c i t y vec to r
[ t , y]= ode23t ( @uppgift1NonR , [ 0 1e−3 ] , [ 0 0 0 100 0 0 ] ) ;
f i g u r e (1 )
% Plot the t r a j e c t o r y
p lo t3 ( y ( : , 1 ) , y ( : , 2 ) , y ( : , 3 ) ) ;
f i g u r e (2 )
% Plot z ( t )
p l o t ( t , y ( : , 3 ) )

Here [00.01] says that it solves from t = 0 to t = 0.01 s and
[00010000] = [x(0)y(0)z(0)ux(0)uy(0)uz(0)] in m/s. The routine ode23 calls the
function uppgift1NonR that can be written as

func t i on yout=uppgift1NonR ( t , y in )
% This func t i on i s used by the s c r i p t uppgift1NonRel .m
% q= charge , m0=mass , E=e l e c t r i c f i e l d , B=magnetic f l u x
% dens i ty ;
% yin i s a vec to r f o r which yin ( 1 : 3 ) i s the p o s i t i o n and
% yin ( 4 : 6 ) i s the v e l o c i t y o f the p a r t i c l e .
q=1.6e−19;
m0=1.67e−27;
E=[0 0 0 . 1 ] ;
B=[0 0 0 . 0 0 1 ] ;
% Notice that one can use the func t i on dot to do a s c a l a r
% product in MATLAB
v=s q r t ( dot ( yin ( 4 : 6 ) , y in ( 4 : 6 ) ) ) ;
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% Notice that one can use the func t i on c r o s s to do a
% vecto r product in MATLAB
vcrossB=c r o s s ( yin ( 4 : 6 ) ,B) ;
yout=[ yin ( 4 : 6 ) ; q/m0∗(E’+ vcrossB ’ ) ] ;

The program determines the trajectory of a proton that at t = 0 has velocity
(0, 0, 100) m/s and position (0, 0, 0) and moves in a region with the electric field
E = (0, 0, 0.1) V/m and magnetic flux density B = (0, 0, 0.001) T. When we run
the script we get the trajectory of the particle and the graph of z(t) as a function
of t as seen by the figures
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7.1

Write a Matlab program that solves the equation of motion for a relativistic particle
in an arbitrary space dependent electric field E(r) and magnetic flux density B(r).
The program should be able to plot the trajectory (x(t), y(t), z(t)) for a given time
interval and given initial conditions (x(0), y(0), z(0)) and (ux(0), uy(0), uz(0)).
Hint: First write the system of equations as

d

dt


x
y
z
ux
uy
uz

 =


ux
uy
uz

α1(ux, uy, uz)
α2(ux, uy, uz)
α3(ux, uy, uz)


and use the routine ode23t. The plot subroutine plot3 is suitable for trajectories in
three dimensions.

7.2

Check your Matlab program by first considering E = (0, 0, 0) and B = B0(0, 0, 1).
Determine (x(t), y(t), z(t)) when (x(0), y(0), z(0)) = 0 and (ux(0), uy(0), uz(0)) =
(108, 0, 0) m/s. Let B0 = 1 mT. The time should be large enough so that the
particle comes back to where it started from. Consider first an electron and then a
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proton. You can compare the radius of the circle that the charge moves along with
the analytic result.

7.3

a) Consider a particle with mass m and charge q. Show that when E = (0, 0, E0),
B = (0, 0, 0), (x(0), y(0), z(0)) = 0 and (ux(0), uy(0), uz(0)) = 0 then the velocity
of the particle is given by ux(t) = uy(t) = 0 and

uz(t) =
qE0ct√

(mc)2 + (qE0t)2

z(t) =
c

qE0

√
(mc)2 + (qE0t)2 − mc2

qE0

b) Check your Matlab program by considering an electron that is accelerated by the
field E = (0, 0,−106) V/m and B = B0(0, 0, 0). Determine (x(t), y(t), z(t)) when
(x(0), y(0), z(0)) = 0 and (ux(0), uy(0), uz(0)) = (0, 0, 0) m/s. Plot uz(t) and z(t) as
a function of time in the interval 0 < t < 20 ns. Compare with the analytic result.

7.4

Consider E = (0, 0, E0) and B = (0, 0, B0). Use your Matlab program to plot the
trajectory (x(t), y(t), z(t)) when (x(0), y(0), z(0)) = 0 and (ux(0), uy(0), uz(0)) =
(108, 0, 0) m/s. Consider first an electron in the time interval 0 < t < 5 ns and then
a proton in the interval 0 < t < 5µs. Let B0 = 0.1 T and E0 = 104 V/m.

7.5

In the synchrotrons of Max IV much of the light is created by letting the electrons
pass through undulators. An undulator usually consists of a number of permanent
magnets arranged as in the figure. They create an x-dependent magnetic field that

can be approximated by B(x) =

(
0, 0, B0 cos

(
2πx

d

))
where d is the period of

the undulator, given by the figure. Let B0 = 0.01 T, 0 < x < 15d, d = 2 cm,
(x(0), y(0), z(0)) = (0, 0, 0) and (ux(0), uy(0), uz(0)) = (0.999 · c, 0, 0), where c is the
speed of light. Plot the trajectory (x(t), y(t)) for the interval 0 < t < 1 ns.
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Motion of relativistic particles in electromagnetic fields: An-
swers and solutions

S7.1

The main program can look like this

c l e a r
% s t a r t with i n i t i a l c o n d i t i o n s
%[t , y]= ode23t ( @uppgift1rhs , [ 0 1/3 e8 ] , [ 0 0 0 2 .999 e8 0 0 ] ) ;
[ t , y]= ode23t ( @uppgift1rhs , [ 0 5e−8 ] , [ 0 0 0 1 . e8 10 0 ] ) ;
f i g u r e
% Plot o f the t r a j e c t o r y in 3−dimensions
p lo t3 ( y ( : , 1 ) , y ( : , 2 ) , y ( : , 3 ) ) ;
% Plot o f t r a j e c t o r y in the xy−plane
%p lo t ( y ( : , 1 ) , y ( : , 2 ) )
a x i s equal
% p lo t o f speed in the z−d i r c t i o n as a func t i on o f time
%p lo t ( t , y ( : , 6 ) )

Here is the function that is called by ode23t

func t i on yout=uppg i f t 1 rh s ( t , y in )
% This func t i on i s used by the s c r i p t uppgi ft1Matlab .m
% q= charge , m0=mass , c= speed o f l i g h t ,
% E=e l e c t r i c f i e l d , B=magnetic f l u x
% dens i ty , d=d i s t anc e between p a i r s o f mgnets in an undulator .
% yin i s a vec to r f o r which yin ( 1 : 3 ) i s the p o s i t i o n and yin ( 4 : 6 ) i s the
% v e l o c i t y o f the p a r t i c l e .
q=1.6e−19;
m0=1.67e−27;%9.1e−31;
c=3e8 ;
d=0.05;
%E=[0 0 1e6 ] ;
E=[0 0 0 ] ;
%B=[0 0 0 ] ;
%B=[0 0 . 0 0 1 ] ;
B=[0 0 .1∗ cos (2∗ pi ∗yin (1)/ d ) ] ;
% Notice that one can use the func t i on dot to do
% a s c a l a r product in Matlab
v=s q r t ( dot ( yin ( 4 : 6 ) , y in ( 4 : 6 ) ) ) ;
gamma=1/ s q r t (1−(v/c ) ˆ 2 ) ;
vdotE=dot ( yin ( 4 : 6 ) ,E ) ;
% Notice that one can use the func t i on c r o s s to do
% a vecto r product in Matlab
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vcrossB=c r o s s ( yin ( 4 : 6 ) ,B) ;
yout=[ yin ( 4 : 6 ) ; q/m0/gamma∗(E’+ vcrossB ’−1/c ˆ2∗ yin ( 4 : 6 )∗ vdotE ) ] ; }

S7.2

The analytic result is that ω =
qB0

mγ
=

qB0

√
1− (u/c)2

m
. The radius is given by

R = u/ω =
um

qB0

√
1− (u/c)2

. When u = 108 m/s, B0 = 1 mT, q = 1.6 · 10−19 m/s

then we get the radius R and period T = 2π/ω to be

R = 0.60 m and T = 37.9 ns for the electron.

R = 1107 m and T = 69.56µs for the proton.

The program gives these values with high accuracy.

S7.3

a) Integrate
dmγuz(t)

dt
= qE0 from 0 to t. This gives

uz(t)√
1− (uz(t)/c)2

=
qE0

m
t. The

solution is

uz(t) =
qE0ct√

(mc)2 + (qE0t)2
(54)

Notice that uz(t) is a function of qE0t/m. This means that the electric field required
to obtain a speed of a particle with charge q in a certain time is proportional to the
mass of the particle.

To get z(t)we integrate Eq. 54 from 0 to t and use z(0) = 0. This gives

z(t) =
c

qE0

√
(mc)2 + (qE0t)2 − mc2

qE0

b)
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S7.4

The initial conditions are (x(0), y(0), z(0)) = 0 and (ux(0), uy(0), uz(0)) = (108, 0, 0)
m/s. The first graph shows the electron trajectory for the time interval 0 < t < 5
ns when E = (0, 0, 104) V/m and B = (0, 0, 0.1) T. The second graph shows the
proton trajectory for the time interval 0 < t < 5µs when E = (0, 0, 104) V/m and
B = (0, 0, 0.1) T.
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S7.5

The figure shows the electron trajectory in an undulator for the time interval 0 <
t < 1 ns. E = (0, 0, 0) V/m and B = (0, 0, 0.01 cos(2πx/d) T, where d = 2 cm, and
(x(0), y(0), z(0)) = 0, (ux(0), uy(0), uz(0)) = (0.999c, 0, 0).
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8 Appendix 1: Bessel functions

In wave propagation problems the Bessel differential equation often appears, es-
pecially in problems showing axial or spherical symmetries. This appendix collects
some useful and important results for the solution of the Bessel differential equation.

Bessel and Hankel functions

The Bessel differential equation is

z2 d
2

dz2
Zn(z) + z

d

dz
Zn(z) + (z2 − n2)Zn(z) = 0 (55)

where n is assumed integer4.

There exist two linearly independent solutions to this differential equation. One is
regular at the origin, z = 0, and this solution is the Bessel function Jn(z) of order n.
The argument z is a complex number. These solutions are often called cylindrical
Bessel function of order n, which stresses the affinity to problems with the axial
symmetry. The Bessel functions Jn(z) are defined real-valued for a real argument
z. An everywhere in the complex z-plane convergent power series is

Jn(z) =
∞∑
k=0

(−1)k

k!(n+ k)!

(z
2

)n+2k

(56)

We notice immediately that Jn(z) is an even function for even n and odd for odd n,
ie.

Jn(−z) = (−1)nJn(z)

A commonly used integral representation of the Bessel functions is

Jn(z) =
1

π

∫ π

0

cos (z sin t− nt) dt =
1

2π

∫ 2π

0

eiz cos tein(t− 1
2
π) dt (57)

From this integral representation, we see that the Bessel functions for positive and
negative integer orders, n, are related to each other.

J−n(z) = (−1)nJn(z)

The power series representation in (56) implies that for small arguments we have

Jn(z) =
1

n!

(z
2

)n
+O(zn+2)

4A more general definition with eg. complex-valued n is also possible, but the expressions and
the results often differ.
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Root j
Order n 1 2 3 4

0 2.4048 5.5201 8.6537 11.7915
1 3.8317 7.0156 10.1735 13.3237
2 5.1356 8.4172 11.6198 14.7960
3 6.3802 9.7610 13.015 16.2235
4 7.5883 11.0647 14.3725 17.6160

Table 4: Table of the roots ξnj to Jn(z).

Root j
Order n 1 2 3 4

0 3.8317 7.0156 10.1735 13.3237
1 1.8412 5.3314 8.5363 11.7060
2 3.0542 6.7061 9.9695 13.1704
3 4.2012 8.0152 11.3459 14.5858
4 5.3175 9.2824 12.6819 15.9641

Table 5: Table of the roots ηnj to J ′n(z).

For large arguments hold (−π < arg z < π)

Jn(z) =

(
2

πz

)1/2 {
Pn(z) cos

(
z − nπ

2
− π

4

)
−Qn(z) sin

(
z − nπ

2
− π

4

)}
where the functions Pn(z) and Qn(z) have the following asymptotic expansions (ν =
4n2) 

Pn(z) ∼ 1− (ν − 1)(ν − 9)

2!(8z)2
+

(ν − 1)(ν − 9)(ν − 25)(ν − 49)

4!(8z)4
− . . .

Qn(z) ∼ ν − 1

8z
− (ν − 1)(ν − 9)(ν − 25)

3!(8z)3
+ . . .

(58)

The roots of the Bessel function Jn(z) are all real, and the first roots, ξnj, are listed in
Table 4. The derivative of the Bessel function Jn(z) has also only real roots, ηnj, and
the first ones are listed in Table 5. Larger roots (larger j values) are asymptotically
given by

ξnj = jπ +

(
n− 1

2

)
π

2
, ηnj = jπ +

(
n− 3

2

)
π

2

Another, linearly independent solution to the Bessel differential equation, which is
real-valued for real arguments, is the Neumann function5 Nn(z). The power series

5These solutions are also called Bessel functions of the second kind.
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expansion is

Nn(z) =
2

π

(
ln
(z

2

)
+ γ − 1

2

n∑
k=1

1

k

)
Jn(z)

− 1

π

∞∑
k=0

(−1)k
(
z
2

)n+2k

k!(n+ k)!

k∑
l=1

(
1

l
+

1

l + n

)

− 1

π

n−1∑
k=0

(n− k − 1)!

k!

(z
2

)−n+2k

where the Euler constant γ = 0.577 215 66 . . ., and where all sums are dined as zero
if the summation index exceeds the upper summation limit. This solution is singular
at the origin z = 0. For small arguments the dominant contribution is

N0(z) =
2

π

(
ln
(z

2

)
+ γ
)

+O(z2)

Nn(z) = −(n− 1)!

π

(z
2

)−n
+ . . .

For large arguments the Neumann function has an asymptotic expansion (−π <
arg z < π)

Nn(z) =

(
2

πz

)1/2 (
Pn(z) sin

(
z − nπ

2
− π

4

)
+Qn(z) cos

(
z − nπ

2
− π

4

))
where the functions Pn(z) and Qn(z) are given by (58).

In the solution of scattering problems, linear combinations of Bessel and Neumann
functions, ie. the Hankel functions, H

(1)
n (z) and H

(2)
n (z) of the first and the second

kind, respectively, are natural6. These are defined as

H(1)
n (z) = Jn(z) + iNn(z)

H(2)
n (z) = Jn(z)− iNn(z)

The Hankel functions of the first and second kind have integral representations

H(1)
n (z) =

2

iπ
e−inπ

2

∫ ∞
0

eiz cosh s coshns ds, 0 < arg z < π

H(2)
n (z) =

2i

π
einπ

2

∫ ∞
0

e−iz cosh s coshns ds, −π < arg z < 0

For large argumens, the Hankel functions have asymptotic expansions

H(1)
n (z) =

(
2

πz

)1/2

ei(z−nπ2 −
π
4 ) (Pn(z) + iQn(z)) , −π < arg z < 2π

H(2)
n (z) =

(
2

πz

)1/2

e−i(z−nπ2 −
π
4 ) (Pn(z)− iQn(z)) , −2π < arg z < π

(59)

6These also called Bessel functions of the third kind.
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where the functions Pn(z) and Qn(z) are given by (58).

Solutions to the Bessel differential equation of different order are related to each
other by recursion relations. Some of the more important ones are (n = 0, 1, 2, . . . ,m =
0, 1, 2, . . .)7

Zn−1(z)− Zn+1(z) = 2Z ′n(z)

Zn−1(z) + Zn+1(z) =
2n

z
Zn(z)

Zn+1(z) =
n

z
Zn(z)− Z ′n(z)

Z ′n(z) = Zn−1(z)− n

z
Zn(z)(

d

z dz

)m
[znZn(z)] = zn−mZn−m(z)(

d

z dz

)m [
z−nZn(z)

]
= (−1)mz−n−mZn+m(z)

Here Zn(z) is a fixed arbitrary linear combination of Jn(x), Nn(x), H
(1)
n (x) or

H
(2)
n (x). Specifically, we have

J1(z) = −J ′0(z)

which is frequently used in the analysis in this textbook.

Some useful indefinite integrals with solutions to the Bessel differential equation,
which are often used in the text, are (n = 0, 1, 2, . . .)∫

xn+1Zn(x) dx = xn+1Zn+1(x) = −xn+1
(
Z ′n(x)− n

x
Zn(x)

)
∫
x−n+1Zn(x) dx = −x−n+1Zn−1(x) = −x−n+1

(
Z ′n(x) +

n

x
Zn(x)

)
∫
x (Zn(x))2 dx =

x2

2

[
(Zn(x))2 − Zn−1(x)Zn+1(x)

]
=
x2

2
(Z ′n(x))

2
+

1

2
(x2 − n2) (Zn(x))2

As above, Zn(x) is an arbitrary linear combination of Jn(x), Nn(x), H
(1)
n (x) or

H
(2)
n (x). Some additional — more complex —but useful determined integrals are

7These recursion relations hold for non-integer values of n, eg. n = 1/2. The index m, however,
must be an integer.
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(n = 0, 1, 2, . . . ,m = 0, 1, 2, . . .)∫ [
(α2 − β2)x− m2 − n2

x

]
Zm(αx)Yn(βx) dx = βxZm(αx)Yn−1(βx)

− αxZm−1(αx)Yn(βx) + (m− n)Zm(αx)Ym(βx)∫
xZm(αx)Ym(βx) dx =

βxZm(αx)Ym−1(βx)− αxZm−1(αx)Ym(βx)

α2 − β2∫
Zm(αx)Yn(αx)

x
dx = αx

Zm−1(αx)Yn(αx)− Zm(αx)Yn−1(αx)

m2 − n2
− Zm(αx)Yn(αx)

m+ n

Here, Zn(αx) and Yn(βx) is an arbitrary linear combination of Jn(x), Nn(x), H
(1)
n (x)

or H
(2)
n (x).

For Bessel functions, Jn(z), Neumann functions, Nn(z), and Hankel functions, H
(1)
n (z)

or H
(2)
n (z), we have for a complex argument z{

Jn(z∗) = (Jn(z))∗

Nn(z∗) = (Nn(z))∗

{
H(1)
n (z∗) =

(
H(2)
n (z)

)∗
H(2)
n (z∗) =

(
H(1)
n (z)

)∗
The Graf addition theorem for Bessel functions is useful. Let Zn(x) be any linear

combination of Jn(x), Nn(x), H
(1)
n (x) and H

(2)
n (x). The Graf addition theorem is

Zn(w)

(
cosnφ
sinnφ

)
=

∞∑
k=−∞

Zn+k(u)Jk(v)

(
cos kα
sin kα

)
,

∣∣ve±iα
∣∣ < |u|

where w is

w =
√
u2 + v2 − 2uv cosα

Useful integrals

Some integrals related to Bessel functions used in this book are derived in this
subsection. We start with the integral representation for integer order n, (57)∫ 2π

0

eiz cosφeinφ dφ = 2πinJn(z)

From this we easily conclude by a simple change of variables that∫ 2π

0

eiz cos(φ−α)einφ dφ = einα

∫ 2π−α

−α
eiz cosψeinψ dψ = 2πinJn(z)einα

This integral is a function of the variables z and α.
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9 Appendix 2: ∇ in curvlinear coordinate sys-

tems

In this appendix some important expressions with the ∇-operator in two curvilinear
coordinate systems, cylindrical and spherical, are collected. For completeness we
start with the Cartesian coordinate system.

Cartesian coordinate system

The Cartesian coordinates (x, y, z) is the most basic coordinate system. The gradient
and the Laplace-operator of a scalar field ψ(x, y, z) in this coordinate system are

∇ψ = x̂
∂ψ

∂x
+ ŷ

∂ψ

∂y
+ ẑ

∂ψ

∂z

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

The divergence, the curl, and the Laplace-operator of a vector field A(x, y, z) =
x̂Ax(x, y, z) + ŷAy(x, y, z) + ẑAz(x, y, z) are

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

∇×A = x̂

(
∂Az
∂y
− ∂Ay

∂z

)
+ ŷ

(
∂Ax
∂z
− ∂Az

∂x

)
+ ẑ

(
∂Ay
∂x
− ∂Ax

∂y

)
∇2A = x̂∇2Ax + ŷ∇2Ay + ẑ∇2Az

Circular cylindrical (polar) coordinate system

We now treat the first curvilinear coordinate system, and start with the circular
cylindrical coordinate system (ρ, φ, z) defined by

ρ =
√
x2 + y2

φ =

arccos x√
x2+y2

y ≥ 0

2π − arccos x√
x2+y2

y < 0

z = z

The gradient and the Laplace-operator of a scalar field ψ(ρ, φ, z) in this coordinate
system are

∇ψ = ρ̂
∂ψ

∂ρ
+ φ̂

1

ρ

∂ψ

∂φ
+ ẑ

∂ψ

∂z

∇2ψ =
1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1

ρ2

∂2ψ

∂φ2
+
∂2ψ

∂z2
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The divergence, the curl, and the Laplace-operator of a vector field A(ρ, φ, z) =
ρ̂Aρ(ρ, φ, z) + φ̂Aφ(ρ, φ, z) + ẑAz(ρ, φ, z) are

∇ ·A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aφ
∂φ

+
∂Az
∂z

∇×A = ρ̂

(
1

ρ

∂Az
∂φ
− ∂Aφ

∂z

)
+ φ̂

(
∂Aρ
∂z
− ∂Az

∂ρ

)
+ ẑ

1

ρ

(
∂

∂ρ
(ρAφ)− ∂Aρ

∂φ

)
∇2A = ρ̂

(
∇2Aρ −

Aρ
ρ2
− 2

ρ2

∂Aφ
∂φ

)
+ φ̂

(
∇2Aφ −

Aφ
ρ2

+
2

ρ2

∂Aρ
∂φ

)
+ ẑ∇2Az

Spherical coordinates system

The spherical coordinate system (r, θ, φ) (polar angle θ and the azimuth angle φ) is
defined by

r =
√
x2 + y2 + z2

θ = arccos z√
x2+y2+z2

φ =

arccos x√
x2+y2

y ≥ 0

2π − arccos x√
x2+y2

y < 0

The gradient and the Laplace-operator of a scalar field ψ(r, θ, φ) in this coordinate
system are

∇ψ = r̂
∂ψ

∂r
+ θ̂

1

r

∂ψ

∂θ
+ φ̂

1

r sin θ

∂ψ

∂φ

∇2ψ =
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2

=
1

r

∂2

∂r2
(rψ) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
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and the divergence, the curl, and the Laplace-operator of a vector field A(r, θ, φ) =
r̂Ar(r, θ, φ) + θ̂Aθ(r, θ, φ) + φ̂Aφ(r, θ, φ) are

∇ ·A =
1

r2

∂

∂r

(
r2Ar

)
+

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ
∂φ

∇×A = r̂
1

r sin θ

(
∂

∂θ
(sin θAφ)− ∂Aθ

∂φ

)
+ θ̂

1

r

(
1

sin θ

∂Ar
∂φ
− ∂

∂r
(rAφ)

)
+ φ̂

1

r

(
∂

∂r
(rAθ)−

∂Ar
∂θ

)
∇2A = r̂

(
∇2Ar −

2Ar
r2
− 2

r2

∂Aθ
∂θ
− 2 cot θ

r2
Aθ −

2

r2 sin θ

∂Aφ
∂φ

)
+ θ̂

(
∇2Aθ −

Aθ
r2 sin2 θ

+
2

r2

∂Ar
∂θ
− 2 cos θ

r2 sin2 θ

∂Aφ
∂φ

)
+ φ̂

(
∇2Aφ −

Aφ
r2 sin2 θ

+
2

r2 sin θ

∂Ar
∂φ

+
2 cos θ

r2 sin2 θ

∂Aθ
∂φ

)


