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Rules for the V-operator

<

o+9P)=Veo+ Ve

(1) (

(2) V(oY) =¢Ve+¢Vy

(3) Via-b)=(a-V)b+ (b-V)a+ax(Vxb)+bx(Vxa)

(4) V(ia-b)=-Vx(axb)+2(b-V)a+ax (Vxb)+bx(Vxa)+a(V:-b)—bV-a)

V-(a+b)=V-a+V-b
6)  V-(pa)=¢(V-a)+(Vy)-a
V-(axb)=b-(Vxa)—a-(Vxb)

(8) Vx(a+b)=Vxa+Vxb
(9)  Vx(pa)=o(Vxa)+(Ve)xa
(10) Vx(axb)=a(V-b)—b(V-a)+(b-V)a—(a-V)b
(11) Vx(axb)=-V(a-b)+2b-V)a+ax (Vxb)+bx(Vxa)+a(V-b)—bV-a)
(12) V- -Vp=Vi=Ap
(13)  Vx(Vxa)=V(V-a)-Va
(14) Vx(Ve)=0
(15) V-(Vxa)=0
(16)  V2(py) = pVZp + V20 + 2V - VY
17)  Vr=#
(18) Vxr=0
(19) Vx7r=0
(200 V-r=3
(21) V-7 :%
(22) V(a-7)=a, a constant vector
(23) (a-V)r=a
(24) (@ V)i =1 (a—#(a-#) =2
(25) Vi(r-a)=2V-a+r-(Va)
2)  Vu(f) = (V)
(26) u(f) = ( f)@
dF
@ V-FH =3
28 VxE()= (V) x G

(29) V=¢( -V)—7x(#xV)
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1 The Maxwell equations 1

1 The Maxwell equations

1.1

A time-harmonic linearly polarized plane wave propagating in the positive z—direction
in vacuum reads

E(z,t) = Eycos(kz —wt)x

a) Express the angular frequency w in the wavenumber k& and the speed of light c.
b) Determine the magnetic flux density B(z,t).
c¢) Determine the Poynting vector S(z,t) and its time average.

d) Show that the time average of the electric and magnetic energy densities are the
same.

e) Determine the complex electric field E(z) and complex magnetic flux density
B(z).

f) Determine the complex Poynting vector S(z) and show that it has the same value
as the time average of S(z,t).

1.2

A time-harmonic linearly polarized plane wave propagating in the positive z—direction
in vacuum reads

E(z,t) = Eycos(kz —wt)x

a) Add a wave Ey(z,t) so that the total wave is a circularly polarized wave. There
are two ways to do this. Give both of them.

b) Determine the Poynting vector S(z,t) for the circularly polarized wave.

¢) Determine the electric and magnetic energy densities, we(z,t) and wy(z,t) for
the circularly polarized wave.

1.3

The complex electric far-field from an electric dipole antenna located at the origin
and with dipole moment p = pyZz is given by
6ikr .

E(r,0) = Eysinf = 0
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where k = w/c i the wavenumber.

a) Determine B(r,0) by using the induction law. Apparently E and B satisfy the
induction law. Do they also satisfy Amperes law?

b) Show that E and B satisfy the plane wave rule B = 'k x E.
c) Determine the time domain fields E(r,0,t) and B(r,0,t).

d) Determine the Poynting vector S(r,0,t) and its time average.

e) Determine the time average of the radiated power from the dipole.
f) Does E(r,0) satisfy V2E + k*E = 0?7 If not why?

g) Neglect all terms that drop off faster than r=! in V2E. Is then V2E + k*E =0
satisfied?

1.4

The electromagnetic fields from currents and charge distributions that vary slowly in

time can often be determined by a quasi static analysis based on a reduced version

of the Maxwell equations. There are two quasi static versions. The first is that one
oD OB

skips the term %% in the Ampere law but keeps the term %7 in the induction law.

This is done when the source is a known current distribution. The other version is
the other way around, one skips aa—'f and keeps %—?. This is done when the source is

a known charge distribution.

a) A circular plate capacitor with area A, distance d between the plates, and with
air between the plates, is connected to a time harmonic voltage source. The voltage
between the plates is Vj coswt. Determine the electric field between the plates.

b) Determine the magnetic flux density between the plates.
c) Do E and B satisfy the full Maxwell equations?

d) Some approximation must have been made since the full Maxwell equations are
not satisfied. What is this approximation?

e) A magnetic circuit has an iron core with circular cross section, see figure. The
current in the coil is time harmonic which gives a magnetic flux density in the air

gap

B(t) = Bysin(wt)z
The frequency f is so low that the wavelength A\ = ¢/f is much larger than the
radius of the air gap. Determine the electric field in the air gap.

f) Do E and B satisfy the full Maxwell equations?

g) Some approximation must have been made since the full Maxwell equations are
not satisfied. What is this approximation?
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Z(t) I— &_—B(cht)

Figure 1: Magnetic circuit

The Maxwell equations: Answers and solutions

S1.1

a) w=kc
b) The right hand rule gives B(z,t) = ¢ 'k x E(z,t), where k = 2. Then B(z,t) =
c1Eycos(kz — wt)y.

1
c) S = E x H. Then S(z,t) = —FEjcos?’(kz — wt)z. The time average is <
Mo
1
S(z,t) >= —E2.
() = 5 I

1 1
d) The electric energy density is wg(z,t) = 550]E(z, t)|>. Then wg(z,t) = §€0E§ cos®(kz—

wt). The time average is

1
< wg(z,t) >= ZaoEg

1 1
The electric energy density is wy(z,t) = §p0|H(z, t)|>. Then wy(z,t) = §€0E§ cos?(kz—

wt). The time average is
L o
< wg(z,t) >= ZaoEo

This is always the case with waves. A wave is a resonance where the energy switch
between two energy states.

e) The complex electric field and magnetic flux density are defined by E(z,t) =
Re{E(z)e !}, Then E(z) = Eye™ and B(z) = ¢ 1 Epel*.

1
f) The definition of the complex Poynting vector is S(z) = §E (z) x H*(z), where *
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1

denotes complex conjugate. From e) we get S(z) = 2—E§ This is the same value
"o

as in c).

S1.2

a) If we add Es(z,t) = Eysin(kz — wt)y then the total wave is a circular polarized
plane wave. We can also add Es(z,t) = —Eysin(kz — wt)y.

b) The magnetic field is given by H(z,t) = n,'2 x (E(z,t) + Es(2,t)). With
Ey(z,t) = Eysin(kz — wt)g then H(z,t) = 1y ' Ey(cos(kz — wt)gy — sin(kz — wt)&).
The Poynting vector reads

1

S(z,t) = —E22 (1)
Tlo
L
c) wg(z,t) = wu(z,t) = §€0E0.
S1.3
. . . 1 . .
a) The induction law gives B = —i—V x E. In spherical coordinates

V x (Ey(r,0)8) &%%rw, 9))

This gives

ikr

1 .
B = —Eoe sin 0¢
c kr

They do not satisfy the Amperes law since there is a term in the 7-direction that
drop off as =2 and does not cancel.

ikr

b) The plane wave rule with k = 7 also gives B = —F) k sin QqAb.
c r
kr — wt ~ kr — wt .
c) E(r,0,t) = EOW sin#9 and B(r,0,1) = c—lEOCOS(Z—“’) sin 0¢p.
r r
1 E? cos?(kr — wt) 1 E?
d) S(r,0,t) = —— sin? @7, and < S(r,0,t) >= — —2_sin? 67

e) Integrate the Poynting vector over a sphere with radius r. Then the time average
of the power is

™ 2
pP= / / < S(r,0,t) > -ir2sin do df
0 0
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T w : 4
Since [ sin®@df = [(1 — cos? ) sinfdf = 3 We et

4
P=—F?
377[)l€2 0

f) Since E(r, #) only depends on 7 and 6, and is directed in the @ direction V2E(r, 6)
is reduced to, see formula in appendix 2 in the end of the book,

[ 20FEy 2cotf - Ey
2B(r,0) = —¢ [ =20 E 2, - 0 2
VZE(r,0) r (7"2 50 + = 9) +9(V o T281n20) (2)
where
10 OFEy 1 0 (. 0E
2 _ L 9 o 9 oLe
VB = r2Or <7’ or ) * r2sind 06 (sm@ 00 ) (3)

It is straightforward to see that Helmholtz equation is not satisfied since there are
terms that drop off as =2 and =3 that do not cancel.

~1 02
g) Yes. The only term of O(r~!) remaining in V2E is 0—8—(7’E9> and this term

r Or?
equals —k%E.

S1.4
a) We use the induction law but make the approximation that v ~ 0. Then
V-E =0 and E = —VV. From that we conclude that
Vv t
B C(;sw 5

b) We use Amperes law for this. V x H = 05, Since the capacitor is axially

~

symmetric it must be that H (r..t) = H(r.,t)¢. Stoke’s theorem then give

Vorew sin(wt) 4

B(r.,t) = eopto 5d

0B
c¢) The induction law is not satisfied since V x E = 0 and o # 0.

d) The approximation is that we use V- E = 0 when we calculate E. However,
when the radius of the capacitor is much smaller than the wavelength A = w/¢, then
it is a good approximation.

e) Axially symmetry says that E = E(r,, t)(Ab The induction law gives

E(r.t) = —gBO'r’C cos(wt)
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oFE
f) No. The Amperes law is not satisfied since V x H = 0 but e # 0.

g) We started with a magnetic field that is constant in space. This is an approxi-
mation since B should satisfy V2B + k*B = 0. However, when the radius of the
core is much smaller than the wavelength A = w/c, then it is a good approximation.
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Figure 2: Geometry for waveguide

2  Waveguides and cavities

There are different types of waveguides for electromagnetic waves. Transmission
lines, hollow waveguides and dielectric waveguides (e.g. optical fibers), are the most
common ones, but here we only consider hollow waveguides. These are metal tubes
where the waves propagate by bouncing between the walls. We first present basic
results for hollow waveguides with arbitrary cross sections. The derivations of these
results are given in the book Microwave theory which can be downloaded from the
home page.

Waveguides are structures that guide waves along a given direction. Figure 2 gives an
example of the geometry for a waveguide. The surface of the waveguide is denoted S
and the normal to the surface n. The surface is considered to be perfectly conducting
and we assume that there is air or vacuum inside the waveguide (&, = 1). Note that
the normal n is a function of the coordinates z and y, but not of the coordinate z.
The cross section of the waveguide is denoted €2 and it has the generating curve I'.
The analysis in this chapter is valid for waveguides with general cross section.

Specific z-dependence of the fields

The Maxwell equations in vacuum lead to the vector Helmholtz equations for E and

H

Y

V2E(r) +K*E(r) =0 (4)
V2H(r) 4+ k*H(r) = 0. (5)
Decomposition

From now on we let the z—axis be parallel to the guiding structures. Then

r=p+2zz
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Also
92
Vi=Vi+ 5z
0? o
where V3 = 922 + a7

In a waveguide the complex electromagnetic fields can be decomposed into a trans-
verse and a longitudinal vector as

E(r)=Er(r)+ zE.(r) (6)
H(r)=H~(r)+ 2H,(r) (7)

Boundary conditions

The sufficient boundary conditions on a perfectly conducting surface are,

nxE(r)=0
{ﬁ,-H(T):O ron S (8)

since B = pouH for an isotropic material.
On the surface S these boundary conditions reduce to
E.(r)=0

OH(r) ron S (9)
=0
on

OH.(r)

where = n - VrH,(r). The two boundary conditions are sufficient for

n
determining the waves that can exist in a hollow waveguide.

TM- and TE-modes

In this section we solve the Maxwell equations in a waveguide with general cross-
section 2 and perfectly conducting walls S. The conditions in (9) separate the
z-component of the electric field, E., from the z—component of the magnetic field,
H,. We look for solutions where either E, or H, is zero, ie.

H.,(r)=0 (TM-case)
E.(r)=0 (TE-case).

The first case is the transverse magnetic case (TM-case), where the magnetic field
lacks z—component. The other case is the transverse electric case (TE-case). The
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Figure 3: The source free region in the waveguide.

solutions to the two cases do not couple since there is no coupling via the differential
equations or the boundary conditions. We will later also discuss the conditions that
have to be satisfied in order to obtain waves with both E, and H, zero.

We let the region z; < z < 23 be source free, ie. J = 0, see figure 3 and determine
the waves that can exist in this region.

We first describe our strategy for finding general solutions. The waveguide is as-
sumed to be filled with an isotropic, homogeneous material with material parameters
¢ and p. The z—components of the equations (4) and (5), and the boundary condi-
tions for £, (r) and H,(r) are summarized as
V2E.(r) + K*E.(r) =0

€ |21, 2], p € Q (TM-
{Ez(r) =0 ron S €Lzl p ( case)

V2H.(r) + k*H.(r) =0 (10)

H 2 € |21, 23], p € Q (TE-case
aaz(r):O ron S 21, 22], P ( )
n

where the wave number is

P
2
On page 11 it shown that we can determine the entire vector field E and H from
(15) if we know E, and H..

We use the method of separation of variables to solve the two boundary value prob-
lems in (10). The method is frequently used in mathematical physics and in our case
it leads to a complete set of functions in the transverse coordinates x and y. The
z—component of the electric (TM-case) or magnetic field (TE-case) is expanded in
this system. The other components follow from the relations between the transverse
and longitudinal components.
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TEM-modes

If Q is not simply connected TEM-modes can exist. These are modes with both
E. =0and H, = 0. A waveguide with N surfaces can have N — 1 TEM-modes.
The most common type of a waveguide with a TEM-mode is the coaxial cable.
One can treat TEM-modes by solving the Maxwell equations, but it is easier to use
transmission line theory, where wave propagation is expressed in terms of currents
and voltages, rather than electric and magnetic fields. The transmission line theory
can be found in the book Microwave theory. We do not treat TEM-modes here.

The longitudinal components of the fields

We make the following ansatz

{ E.(r) = v(p)e**,  (TM-case)
H.(r) = w(p)e***,  (TE-case)

where p = + 9.

We identify the following two eigenvalue problems for the hollow waveguide

\Y& k? =0
Tv(p) + tv(p) (TM-C&SG) (11)
v(p) =0 ponT
and
Viw(p) + kfw(p) = 0
Ow (TE-case) (12)
So(p)=0  ponl
where

k2 = k* — k2. (13)

There are only non-trivial solutions v, or w, for discrete values of k2. We call these
values eigenvalues and the corresponding solutions eigenfunctions.

Here are some properties of the eigenvalues and eigenfunctions:
e All eigenvalues are positive and can be numbered such that 0 < k3 < k%, <
k%L < ..., where k} — oo as n — oo.
e There is only a finite number of eigenvalues that have the same values.

e We always let the eigenfunctions v,(p) and w,(p) be real valued
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e The eigenfunctions v, and v,,, or w, and w,,, that belong to different eigen-
values k2, and k? in the TM- and TE-cases are orthogonal on €.

e Each of the sets of eigenfunctions, {v,(p)}.—, and {w,(p)} —,, constitutes a

n=1"
complete set of functions in the plane.

The set of functions v,(p) is orthogonal and normalized (also called orthonormal-
ized) if

/Q 0 () AS = Gum (14)

where 6, is the Kronecker delta.’

The transverse components Er and H

In Chapter 4 of the book Microwave theory it is shown that the transverse compo-
nents of E and H can be expressed in F, and H.:

Er(r) — %{/{ZVTEZ(T) — Wk X Vo H.(r)}
§ (1)
Hi(r) = 5 (V. (r) + weo x V(1)

This for a mode propagating in the positive z—direction. A mode that propagates
in the negative z—direction has z—dependence e *:* and then all k, in (15) change
sign.

Waveguide modes

The electromagnetic field that corresponds to a certain eigenwavenumber k2, is called
a waveguide mode. The modes for the TE-case are called TE-modes and the ones
for TM-modes are called TM-modes.

Cut-off frequency, phase speed and group speed

We define the cut-off frequency as

fe= (16)

c
a_ Nt
2m
Consider a mode with eigenwavenumber k2 . Since k? = k? — k2, we have three
cases:

L8mm = 1 if n = m and 0 otherwise
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e k < k; For these frequencies k, is imaginary. The mode attenuates (decays
exponentially) and we say that it is a non-propagating mode. The frequency
c
is below the cut-off frequency f. = 2—]@.
T

Cc

e k =Fk; Then k, = 0. The frequency is equal to the cut-off frequency f. = 5 ky.
T

e k > k; For these frequencies k, is real. The frequency is above the cut-off

c
frequency f. = Q_kt' The mode propagates as a wave without attenuation.
T

For a propagating TM-mode we have E,(r) = v,(p)e*n* and then the corresponding
time domain component is F,(r,t) = Re{FE,(r)e“'}. this gives

E.(r,t) = v,(p) cos(wt — k,z) (17)

w
The phase wt — k. z is constant when z = —t. It means that the phase travels with
z

the phase speed
Up = —. (18)

Notice that this speed is always larger than the speed of light and goes to infinity
as f — f.. There is no contradiction with special relativity since one can show that
the power travels with the group speed, which is given by

k
Vg = ¢ (19)

This speed is always lower than the speed of light and goes to zero when f — f..

We now give examples of important cross-sections for which we can derive explicit
expressions of the vector basis functions.

Waveguide with rectangular cross-section

We start with the eigenfunctions for the rectangular waveguide. This is the most
common type of hollow waveguide. The geometry is depicted in figure 4. The surface
is simply connected and hence no TEM-mode exists. The convention is to let the
longest side of the rectangle be along the z-axis.

The eigenvalues that are to be solved are
Pu(p) , Pv(p)

0x? oy?
v(p)=0, ponT

k2 =0 in
+ tv(p) 9 p mn (TM—C&SG)
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Figure 4: The geometry for a waveguide with rectangular cross-section.

and

0w 0w _
8x(2p> + 8y(2p) + kw(p) = p, in Q

(TE-case).
%(P) =0 p,onl

The solution is based on the following one-dimensional eigenvalue problems:
0?X (x)

92 +7vX(z)=0, 0<z<a
X(z)=0, z=0,a

and
*X .
azgx)+7 (x):O7 0<z<a
dX
%(a:) =0, z=0,a.
The solutions to these two problems are
Xp(z) = sin (mmr) , m=1,2,3,...
a
and
Xm(x) = cos (mwx) , m=0,1,2,3,...,
a

respectively. These sets of functions are orthogonal and complete on the interval x €
[0, a]. The solution to the two-dimensional eigenvalue problems for the rectangular
waveguide are obtained as a product of these sets of one-dimensional eigenfunctions?,

2A common method to create complete sets of functions in two dimensions is to take the
product of one-dimensional systems, ie. if {fm(z)} -_; and {g,(y)},—, are complete systems on

the intervals x € [a, b] and y € [¢, d], respectively, then

{ £ (@)9n () Yy e

is a complete set of functions in the rectangle [a, b] X [c, d].
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Eigenfunctions v,,,, W, Eigenvalues kfmn
2 . /mmx\ . [nTyY , (m? n?
TM, ., T— N sin ( - ) sin <T> T (? 4 i
2 2
. Emén mmx nmwy 9 (M n
TEmn | Winn = o oS ( . ) coS <_b ) T (_a2 + b_2)

Table 1: Table of normalized eigenfunctions to equations (11) and (12) for rect-
angular waveguides, see figure 4. The integers m and n can have values m,n =
0,1,2,3,..., with the exception that m and n are not zero for TM-modes, and m
and n cannot both be zero for the TE-modes (&, = 2 — 6,,0). The convention in
this book is always to have the long side of the rectangle along the z-axis, ie. a > b.
The mode with the lowest cut-off frequency is then the TE;y mode. This mode is
called the fundamental mode and is very important.

1€.

sin <m7m:> sin (%) ,  TM-case
a

cos <m7rx> cos (n%bry) ,  TE-case.
a

The eigenvalues in the two cases are the same k? = 72 (m?/a® +n?/b?). The nor-
malized functions are

2 . (mmc) . (mry)
Umn = sin sin [ —= ), TM-case
v ab a b
Wynn = EmEn cos (mwx) cos <@> ,  TE-case
ab a b

where the Neumann-factor is €, = 2 — d,, 0. The results are collected in table 1.

Example

The fundamental mode of a rectangular waveguide with a > b is the TE;y mode.
T

/2
It has the cut-off frequency f.,, = 2£ and wig = o cos <—) The normalized
a a a

electric field is

=G ()
Eyyre(z,w) =19y - 2 sin —) (20)

If a > 2b then the second mode is TEy, that has cut-oft frequency f.,, = i
a

b < a < 2b then TEy is the second mode with cut-oft frequency f., = % In
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m 1 2 0 1 2 3 3 4 0 1
n 0 o 1 1 1 0o 1 0 2 2
for (GHz) | 319 638 681 7.52 933 957 117 128 136 14.0
k. (mY)*| 433 107 119 136; 179; 184i 233i 255i 274i 282i
k. (m)"| 1446 86.6 70.6 22.6 114i 122i 188i 215i 237i 246i

®The frequency is f = 3.8 GHz.
’The frequency is f = 7.6 GHz.

Table 2: Table of the lowest cut-off frequencies f., = and the longitudinal wavenum-
ber k. . for a rectangular waveguide with dimensions 4.7 cm x 2.2 cm. Only
TE-modes can have m- or n-values that are zero. For frequencies below the cut-off
frequency the longitudinal wavenumber k.  is imaginary and the corresponding
mode is non-propagating. The attenuation of that mode is exp(—Im{k.,, , }2).

order to maximize the bandwidth it is common to have rectangular waveguides
with a > 2b. Then the bandwidth is BW = 2£ and the fractional bandwidth is

be = 2(c/2a)/(3¢/2a) = 2/3 = 0.67. ¢

Example

A rectangular waveguide has dimensions 4.7 cm x 2.2 cm. The cut-off frequencies
fer,, for the different modes are easy to calculate from (16) and table 1. The lon-
gitudinal wavenumbers k., given by (13), are related to the frequency f and the
cut-off frequency f., . in the following way

k

Zmn

2w
_ 20 2 g2
c f Cmn
The results are given in table 2. The bandwidth is BW = 3.19 Ghz and the fractional
bandwidth is by = 1.

Waveguide with circular cross-section

The geometry of the circular waveguide with radius a is depicted in figure 5. The
geometry has only one simply connected surface and hence there is no TEM-mode.
It is best to solve the eigenvalue problem in cylindrical-(polar)coordinates. The
eigenvalue problems are given by

, s . 10 ( du(p) LPv(p) | o,
Viv(p) + kjv(p) = 29p <P 3y )+; 0¢° +kiv(p) =0 (TM-casc)
v(a,p) =0
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Figure 5: Geometry for waveguide with circular cross-section.

2 2 _ 12 dw(p) iaQUJ(P) 2 _
Viw(p) + kjw(p) = P ry + 705 + kw(p) =0
ow

on

(TE-case).
(a,¢) =0

We solve these eigenvalue problems by the method of separation of variables. We
make the ansatz v(p,¢) = f(p)g(¢) and insert this into the differential equation.
After division with f(p)g(¢)/p* we get

P ﬁ (paf(P)) TR = — 1 9°g(0¢?)
flp)op \" 9p ' gle) ¢
The right hand side depends only on ¢ and the left hand side depends only on p.

That means that they both have to be equal to a constant. We denote this constant
~v and get

0 af(ﬂ) 2 2 _
’on <pa—p) + (kp* =) flp) = 0.

9%9(¢)
952

+79(¢) = 0.

The solution to the eigenvalue problem in the variable ¢ is

cos mao
sin m¢

g(¢):< ) m=0,1,2,3,...

Only integer values of m are allowed since the function must be periodic in ¢ with
period 27, ie. only v =m?, m = 0,1,2,3, ... are possible values. The corresponding
set of functions is complete on the interval ¢ € [0, 27). The solution to the equation
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2

Eigenfunctions v,,,, W, Eigenvalues k;

o \/ajm(gmnp/a) COSs m¢ 72nn

TEmn . VEMNmn Jm (nmnp/a> (COS m¢> TI?M

Wy = )
Q0 (ﬁgm —m?) S (Mmn) \ S meo a?

Table 3: Table of the normalized eigenfunctions for waveguides with circular cross-
section, see figure 5 for definition of geometry. (€, = 2 — d,,0). The first values of
the positive zeros &, to J,,(x) and the positive zeros 1, to J/ (), ie. Jpn(&mn) =0
and J/ (Nmn) = 0, m =0,1,2,3,..., n = 1,2,3,... are listed in tables 4 and 5 on
page . The mode with the lowest cut-off frequency is the TE;; mode.

in the p-variable is a Bessel function, see section 8. Only solutions that are regular
in p = 0 are valid, ze.

f(p) = Jin(kip)-

dwy,
The boundary conditions v,,(a, ¢) = 0 and dL(a, ¢) = 0 for the TM- and TE-cases,
0

respectively, add extra conditions. For these boundary conditions to be satisfied,
the transverse wavenumber has to satisfy

Emn, (TM-case)
k:ta =
Nmn, (TE-case),

where &, and 1, n = 1,2,3, ..., are zeros to the Bessel function J,,,(x) and to the
derivative of the Bessel function, respectively, ie. J,(§mnn) = 0 and J! (9mn) = 0.
Numerical values of the first of these zeros are given in appendix 8.

The sets of functions {J,,(Emnp/a) oty {J),(Mmnp/a)},~, are both complete on the
interval p € [0, a] for every value of m. The complete set of functions in the circle is,
in analogy with the rectangular waveguide, given by the product of the sets of basis
functions. The normalized eigenfunctions (the normalization integrals are given in
appendix 8) are

 onmlEmpla) (cosms
Umn = vrad, (Emn)  \sinme )’
VemNmnIm(Mmnp/a) [ cosme
vl (M2 — m2)am (Nmn) \ SIDMO

where €, = 2 — 0,,0. The results are collected in table 3.

TM-case

(21)

Wmn =

) , TE-case,

Example

The fundamental mode is the TE;; mode. The cut-off frequency is given by f.,, =

cni1

52 where a is the radius of the cylinder and 7y, = 1.841 is the first zero of Ji(x). The
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second mode is the TMy; mode with cut-off frequency f.,, = 27ra
is the first zero of Jy(x). The bandwidth is BW = fo,, — fo;, = 55 (

0.5645—. The fractional bandwidth is b = 225 = 0.265.

2%5—1MU

Analyzing waveguides with Comsol Multiphysics

Waveguides with arbitrary cross-sections can be analyzed with numerical methods
and in this book we use the finite element method. The specific calculations are
done with the commercial software package Comsol Multiphysics. We use Comsol
to find the cut-off frequencies for the TE- and TM-modes in a hollow waveguide
filled with a homogenous non-conducting material with permittivity e. We also let
Comsol determine the electric and magnetic fields and the power flow density for
the lowest modes. In Comsol we do the following steps:

e We choose 2D> Radio frequency> Electromagnetic waves> Eigenfre-
quency study.

e We draw the cross section of the waveguide.

e In Study>Eigenfrequency we define how many modes that are to be deter-
mined and the cut-off frequency where Comsol starts to look for eigenfrequen-
cies.

e We let Comsol solve the eigenvalue problem. It then shows the electric field
in the cross section of the waveguide for the different modes. It also gives the
cut-off frequencies f, for the modes. From the cut-off frequencies we get the
corresponding k; from k; = w/c = 2nf./c. There are spurious solutions with
very low frequencies, or complex frequencies that Comsol presents. These have
a fuzzy field plot.

e To distinguish TE- from TM-modes we plot the z—component of the electric
field. If the plot is fuzzy with very small field values then the mode is a
TE-mode, otherwise it is a TM-mode.

e The fields that Comsol presents are not normalized. We use a normalization
such that [, |E.(p)|* dzdy = 1 for the TM-modes and [, |H.(p)|* dzdy = 1
for the TE- modes To obtain this normalization we divide all field values
with [[, |E.(p)|* dzdy for the TM-modes and [[, |H.(p)|* dzdy for the TE-
modes. To mtegrate we right click on Derived values and choose integration
and surface integral.

e Notice that there are many options of surface graphs to choose from.
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Figure 6: Geometry for the ridge waveguide and the power flow density for the
TM-mode with cut-off frequency 5.83 GHz.

Example

We analyze the ridge waveguide in figure 6. This is a waveguide with a large band-
width since the fundamental mode has a very low cut-off frequency. We use the
scheme for Comsol to obtain the modes. The TM modes have cut-off frequencies
fo = 3.88 GHz, 3.88 GHz, 5.83 GHz, 5.83 GHz, 6.43 GHz, 6.43 GHz and the TE
modes have cut-off frequencies f. = 0.663 GHz, 2.51 GHz, 2.51 GHz, 2.86 GHz, 3.14
GHz. In figure 7 we see the active power flow density for one of the TM-mode with
the cut-off frequency 5.83 GHz. The other mode with the same cut-off frequency
has its power flow in the right part of the waveguide. This mode is very close to
the TMj5 mode in a 5 cm X 6 cm rectangular waveguide. The TM;, mode has
cut-off frequency f. = 5.831 GHz which is very close to the cut-off frequency 5.827
GHz obtained for the mode in figure 6. The fractional bandwidth is defined by
by = 2(fupper — Siower)/ (fupper + fiower), and the ridge waveguide has by = 1.16. This
is to be compared with by = 0.67 for the rectangular waveguide with a > 2b.
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Figure 7: The power flow density for the fundamental mode of the ridge waveguide,
te. the TE-mode with cut-off frequency 0.663 GHz. The power flow is concentrated
to the narrow section. Notice that the electric field is very strong at edges.
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2.1

Assume a rectangular air filled waveguide with dimension a x b, where b < a and
a = 0.3 m. Determine the largest b such that the fundamental mode is the only
propagating mode in the interval (fy,2fo), where fj is the cut-off frequency for the
fundamental mode.

2.2

Sketch the electric field in the xy—plane for the fundamental mode of a rectangular
waveguide. Use vectors where the length of the vector indicates the field strength.

2.3

mmnx

The electric field of a TE,,o-mode is E(z, z) = E,, sin (

by using the induction law.

) e*=2g. Determine H
a

24

Sketch the magnetic field in the xy—plane for the fundamental mode of a rectangular
waveguide.

2.5

Determine the surface current density on the surfaces z = 0 and x = a for the
fundamental mode of a rectangular waveguide.

Hint: The surface current density of a perfect conductor is given by Jg =n x H,
where n is the outward directed unit normal vector to the surface.

2.6

Assume a rectangular airfilled waveguide with dimension a x b, a = 0.3 m, b = 0.15

2
k—ﬂ. Use ¢ = 3-10% m/s.

a) Determine k, for m =1, 2, 3 for the TE,,,p modes Whenz f =704 MHz.

m. The wavelength in the z-direction is defined by A\, =

b) Determine A, for the TE;q mode at f = 704 MHz.
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c) Determine A, for the TE;q mode at f = 500 MHz.

d) Let f = 704 MHz. Assume that the amplitude of the TE9y mode is 10 V/m at
z = 0. Determine z such that the amplitude is 5 V/m.

e) How many of the TE,,,, and TM,,,, modes are propagating at 2 GHz?

2.7

The phase speed in the z-direction is defined by vy = % and the group speed by the

dk,
dw
airfilled waveguide with dimension a x b, @ = 0.3 m, b = 0.15 m. Use ¢ = 3 - 108
m/s.

-1
derivative v, = ( ) . Assume that the TE;g-mode propagates in a rectangular

a) Determine vy and v, for f = 704 MHz.
b) Determine vy and v, for f = 500 MHz.
c¢) Determine vy and vy, when f — oo MHz.

d) Use Matlab to plot v, as a function of frequency in the interval [500 MHz, 5
GHz|.

2.8

A TE;o mode with E = Ejsin(mx/a)e***y is propagating in the positive z—direction
for z < 0. At z = 0 the waveguide is terminated by a perfectly conducting plate.
Determine the total electric field in the waveguide.

2.9

Determine the three lowest cut-off frequencies for the waveguides described below
by using the analytic formulas and confirm your solutions by determining the cut-
off frequencies with COMSOL. Give the ten lowest cut-off frequencies obtained by
COMSOL for each waveguide. Check the accuracy in the COMSOL solutions and

give a rough estimate of the error.
a) A rectangular waveguide with ¢ = 8 cm and b = 3 cm.

b) A circular waveguide with radius R =5 cm.
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c) A waveguide with a cross section as a half circle with radius R = 5 cm.

2.10

A waveguide has a cross section in the shape of a quarter circle with radius R.
Determine expressions for the cut-off frequencies and E, and H, for all TE- and
TM-modes for the waveguide. You don’t have to normalize E, and H.,.

2.11

Use COMSOL Multiphysics to determine the five lowest modes of the waveguide in
the previous problem when the radius is 2 cm. Check the cut-off frequencies with
the analytic expressions.

2.12

Use COMSOL Multiphysics to determine the five lowest modes of a waveguide with
elliptic cross-section and where the ellipse has a semi-axis of 5 cm and 3 cm. Is there
any of the modes that resembles the fundamental mode of a circular waveguide?
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Waveguides and cavities: Answers and solutions

S2.1

b=0.15 m.

S2.2

See figure

S2.4

Same figure as in problem 2 but with all arrows rotated 90 degrees.

S2.5
iEo?T

Wl

eikzz

Js

€y
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S2.6

a) m =1 gives k., = 10.3798 m~!, m = 2 gives k, = i14.8744 m~! (for a wave in
positive z—direction) and m = 3 gives k, = i27.7409 m~!.

b) 0.605 m

c) oo

d) z = (—Im(k,)) ' In2 = 4.66 cm.

e) 7 TE-modes (10, 01, 20, 11, 30, 21, 31) and 3 TM-modes (11, 21, 31)

S2.7

k.c .
a) vy = k:i and v, = TC gives vy = 4.26 - 10* m/s and v, = 2.11 - 10® m/s.

z

b) vy = 0o and v, = 0.
c) vy =v, =c=3-10° m/s when f — occ.
d)

0.5F

" tHz ' 5

S2.8

E(z,z) = 2iEysin(mz/a) sin(k.2)e,
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S2.9
a) The three lowest cut-off frequencies are frg,, = 1.87370286 GHZ, frg, =
3.74740573 GHZ and frg,, = 4.99654099 GHz.

b) The three lowest cut-off frequencies are frg, = 1.75680928 GHz, frag,, =
2.29501702 GHZ and frpg,, = 2.91433762 GHz.

c) For the half-circle the modes are the same as for the full circle except that the
TMy,, modes cannot exist. The boundary condition at the flat surfaces ¢ = 0 and
¢ = m require that the E, is zero there and that cannot be fullfilled by the TMy,
mode since F, is then proportional to cos¢. Then the modes with the lowest cut-
oft frequencies are frg,, = 1.75680928 GHz, frg, = 2.91433762 GHz and frg, =
fran, = 3.656478349513779 GHz.

S2.10
TE-modes:

Hz - Anj(]2n(62njp) COS(?TLQS) eXp(ik/‘anz)
where k2 = (w/co)? — (ki,,,;)* and Jy, (i, R) =0
TM-modes:

E. = By, jJon(ky,,, p) sin(2n¢) exp(ik.,; 2)

where k2 = (w/co)? = (kt,,;)? and Jon (ki ) = 0.
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\/

Figure 8: Geometry for cylindric resonance cavity.

3 Microwave cavities

A finite volume of air or vacuum, enclosed by a metallic surface, constitutes a res-
onance cavity. Only electromagnetic fields with certain frequencies can exist in the
cavity. These fields are called cavity modes, or eigenmodes, and the corresponding
frequencies are called eigenfrequencies, or resonance frequencies. In this chapter we
describe how cavity modes and resonance frequencies can be obtained by analytical
and numerical methods. Resonance cavities are frequently used as bandpass and
bandstop filters in microwave systems. The losses are much smaller than in tradi-
tional bandpass filters based on circuit components and that makes the filters based
on cavities very narrow banded. In modern particle accelerators the particles are ac-
celerated by the electric fields in microwave cavities. Another important application
is klystrons and magnetrons, which are generators for time-harmonic electromag-
netic waves. Magnetrons are used in radars and also in microwave ovens. Klystrons
are used as sources in, eg., particle accelerators and high power communication
systems.

Cylindrical cavities

We analyze a common type of resonance cavity that consists of a hollow waveguide
terminated by metallic plane surfaces at z = 0 and z = d, see figure 8. In order
to determine the fields that can exist in such a cavity we need boundary conditions
for the z-component of the electric and magnetic fields at z = 0 and z = d. Since
E1(p,0) = Er(p,d) = 0 for all p, it follows that V- Er(p,0) = V- Er(p,d) = 0.
There are no charges inside the cavity and then V- E(r) = 0, ie. 0 = Vo Ep(7) +
OFE.(r)/0z. It follows that the z-derivative of E, is zero at the end surfaces. The
magnetic field H is zero in the metal and B is always continuous and then it follows
that H, is zero at the end surfaces. We conclude that the boundary conditions at
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z=0and z = d are

3Ez(x,y,0) _ aEz(x7y7d) =0
0z B 0z a (22)
H.(z,y,0) = H,(z,y,d) = 0.

A cavity mode in a cylindrical cavity is a superposition of a waveguide mode prop-
agating in the positive and negative z-directions. The z-component of the fields of
mode n is expressed as

nv

H.(r) = (a},e** + a e **)w,(p) v =TE.

nv

{ E.(r) = (a},e™* — ap,e " )ua(p) v ="TM

The boundary conditions give af, = —a,, and sin k,d = 0. Hence k, can only take
the discrete values

lr (=0,1,2... v=TM
(=1,2... v =TE.

There exists no TE-mode with value ¢ = 0 since then H, = 0. The frequencies that
can exist in the cavity are determined by k* = k7 + k2, and thus

c ir\?
fne = Gy k7, + <F) . (23)

The transverse fields for the corresponding resonances follow from (15). For the
wave traveling in the negative z—direction we need to change sign on k, in these
formulas.

The pill-box cavity

The pill-box cavity is a circular cylindric cavity. Almost all resonance cavities that
are used for accelerating particles in acceerators are related to this cavity.

Let the cylinder have radius a and height d. We use the expressions for v,,, and
Wi given in (21). Then the TM-modes have the FE, field

Ene(p, @, 2) = Apne I (Emnp/ @) cos(ma) cos (%Z) ,m=0,1,...,n=1,2..., 0=
(24)

and the TE-mode has the H, field

/
Hone(p, &, 2) = Brnem(Mmnp/a) cos(me) sin (—Z) ,m=0,1,....,.n=1,2..., (=

0,1...
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(25)
where A, and By, are amplitudes. Here &,,, is the n:th zero of J,,(x) and 9,

the n:th zero of J/ (x). The first zeros are given in tables in appendix 1. The
eigenfrequencies are given by

() (5) o .
o=y (5)

The fundamental mode is the mode with lowest eigenfrequency. The lowest TM-
mode is TMy;g, with frequency

fmn@ =

c 2.405
Joro = o
T

(27)

a

and the lowest TE-mode is TE 11, with frequency

=y (52)"+ ) 2

When d < v 4052” 0~ 2.03a then the fundamental mode is TMop other-

wise it is TEqq;. It is the TMg;o that is used in the cavities of accelerators. We can
see why when we know the total electric field. Equation (21) says that Er = 0 for
TMop19, since k., = 0. This means that the electric field of TMgq is

E(r) = AJo(€orp/a)z. (29)
This is shown in figure (9).

The TMg;o cavity is perfect for accelerating particles. In figure (10) the beam pipe
and the pillbox cavity is shown. The particles travel along the beam pipe. As they
enter the pillbox cavity the electric field is strong and accelerates that particle in
the forward direction. The particles must come in bunches separated in time with
T =1/f, where T is the period of the frequency of the TMg;9 mode.

In practice the pilbox cavities used in accelerators are deformed in order to optimize
their performance. Figure (11) shows an elliptic cavity of the same type that is to
be used in ESS. It consists of five cells® and each cell can be viewed as a deformed
pillbox cavity. The electric field and the bunches are depicted in figure (12). Notice
that there is a phase difference of 180 degrees between two adjacent cells. In that
way the particles get accelerated in all of the cells.

3In ESS the elliptic cavities will have six cells.
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AT

Figure 9: The electric field of the TMy;o mode in a pill-box cavity.

iR

T

RN

Figure 10: The pillbox cavity and beam pipe in an accelerator.

Figure 11: The elliptic cavity to be used in the LINAC of ESS.
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electric field

Figure 12: The cross section of the elliptic cavity and the electric field. The bunches
are traveling to the right. The frequency of the fundamental mode is 704 MHz and
the bunches come with a frequency of 352MHz. The lower figure is at half a period
later than the upper one.

Traveling wave cavities

We have seen that the pill-box cavity is very good for accelerating particles. There
is another type of cavity, called traveling wave cavity, that is very common for
accelerating electrons. It is used in the LINAC of MAX IV and also in accelerators
that are used for radio therapy at hospitals.

To understand the idea behind the traveling wave cavity we can go back to the
circular waveguide. Let the radius of the waveguide be a. According to (21) and
(15) the TMy; mode has the electric field

ik, . 2\ ik
E(p,z) = Ey <—k—J1(ktP)P+ JO(k‘tl))Z) e=?,
t

2.405
where k; = and k, = \/k2 — k?. On the symmetry axis the electric field is
a

directed in the z—direction. The idea is now to let the electrons surf on the electric

wave. The problem is that the wave is traveling with the phase speed v, = T and
that is always larger than the speed of light. We need to slow down the wave S0

that the wave is traveling with the same speed as the electrons. Since electrons are
very light particles they travel with almost the speed of light already at quite small
energies. The goal is then to let the phase speed equal the speed of light. We do
this by adding irises, which are walls with apertures. This is seen in figure (13).
This results in the wave in figure (14). The electric field is at this moment directed
to the left in the red cells. The electron bunches are located in these cells. There is




32 3 Microwave cavities

Figure 13: The traveling wave cavity. The cells are the same as the one used in M
the MAX IV LINAC.

a phase difference of 27/3 between two adjacent cells. At a time 7'/3 later the red
region has moved one cell to the right. Also the bunch must have moved to this cell.
This sets the length of each cell to L.y = ¢T'/3. The wave continues to travel to the
right and the bunches of electrons are traveling with the same speed. They are then
accelerated in each cell and, by that, along the entire structure. To prevent that the
wave is reflected at the end of the cavity, the cavity is terminated by an absorber.

Analyzing resonance cavities with Comsol

The resonance cavities can be analyzed by FEM. There are three different cases that
are of interest:

a) If the cavity is axisymmetric we use 2D axisymmetric in Comsol. The axially
symmetric geometry makes it possible to expand the electric and magnetic
fields in a Fourier series in the system e™?. Then the problem is reduced to a
two-dimensional problem in the cylindrical coordinates p and z. Each n value
is treated separately. The reduction from 3D to 2D makes the solver very fast
and accurate.

b) If the resonance cavity consists of a hollow waveguide with plane metallic
walls at z = 0 and z = h it is easy to analyze it with FEM. First the cut-off
frequencies for the different modes are determined using the scheme on page
32. Then the resonance frequencies of the cavity are obtained from (23).
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Figure 14: A Comsol simulation of the electric field in the traveling wave cavity.

c) If neither of the two previous cases are relevant then we have to use the three-
dimensional solver.

We now give an example of the first case.

Example

We determine some of the resonances of a hollow sphere with radius a = 1 m. We
use the solver 2D axisymmetric since the sphere is axially symmetric. All of the
field components can be expanded in a Fourier series

flp:¢,2) = mep, )e™me.

Fields with different m-values do not couple to each other and then each m value
can be treated separately.

a) First choose 2D axisymmetric>Radio Frequency>Electromagnetic waves
>Eigenfrequency.

b) Draw a circle with radius @ = 0.1 m and put its center at (0,0).

c) Choose Sector angle 180 degrees and Rotation -90 degrees. By that you
have a half circle in the right half-plane.
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d)
e)

f)

g)

h)

j)

Choose Air as material.

Go to Electromagnetic waves and choose perfect conductor as boundary
condition for the circular line. The symmetry axis has the condition Axial
Symmetry by default.

Choose Electromagnetic waves and the azimuthal index m.

In Study>Eigenfrequency we set the frequency to e.g. 1 GHz. This is the
frequency where Comsol starts to look for an eigenfrequency. We can also
choose the number of resonances that it will determine.

The mesh size is Normal by default. If we need a better accuracy then we
choose a finer mesh.

We now let Comsol solve the problem.

Comsol calculates the lowest resonant frequencies and their electric fields.
There might be spurious solutions that are unphysical. The resonance fre-
quency for spurious solutions are usually very far from 1 GHz, or even complex,
and the corresponding field plots are fuzzy.
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3.1

Determine the ratio between radius a and length d for a circular cylinder such that
the lowest resonance frequency for the TE and TM modes are the same. All walls
are perfectly conducting and there is vacuum inside the cavity. Confirm your result
with COMSOL.

3.2

The fundamental mode TE is used for accelerating particles in a rectangular waveg-
uide, see figure. The waveguide has dimension 0.2m x 0.1 m and is terminated in
both ends by perfect conducting plates. There will then be a standing wave in the
waveguide. The waveguide is fed by a coaxial cable with an inner conductor that
extends into the waveguide.

The frequency and length is adapted such that the electric field has a maximum
where the beam pipe is attached to the waveguide. The particles come in bunches
with frequency f = 500 MHz, but in order to reduce the dimensions of the waveguide
it is fed with the double frequency f, = 1 GHz.

|
_ | |
rectangular &
L/4 w-guide
beampipe % b)
: ©) T
3L/4 coaxial
w-guide coaxial
Fa— w-guide
d
A

a) Is the pipe attached at the waveguide as in figure a) or b)? Motivate why.
b) Is the coaxial cable attached as in figure ¢) or d)? Motivate your answer.

c) Determine the length, L, of the waveguide expressed in @ = 0.2 m, f, and speed
of light ¢g. Choose the shortest possible length for which the pipe is attached where
the electric field has a maximum.

d) Determine the distance d between the end of the waveguide and the feed point,
expressed in L. Motivate
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e) Assume that that you like to feed the waveguide with 500 MHz. Is it possible to
do this by just changing the length of the waveguide?

3.3

The fundamental mode TMg;, is used for accelerating particles that travel along
the symmetry axis of a circular cylindric cavity with radius a and length h. The
particles come in short bunches with time interval 7. All bunches should get the
same acceleration.

a) Determine the radius a of the cavity, expressed in 7" and ¢g. The radius should
be as large as possible.

b) You want to avoid higher order modes with frequencies that are a multiple of
the frequency of the fundamental mode, f;. The reason is that the beam acts as
a radiating antenna that excites cavity modes. The modes with a frequency close
to or at a multiple of the frequency of the beam will grow strong and affect the
trajectories of the particles.

Determine the length h that should be avoided in order for the TMgy;; mode to get
the frequency 2 fy.

Hint: The three lowest zeros of the Bessel function Jy(z) are {y; = 2.405, {g2 = 5.520,

l
o3 = 8.654. The TM,,,,;-mode has E. (1., ¢, 2) = EpniJm(Emnre/a) cos(me) cos (%) )

3.4

Assume a cylindric cavity with radius a and length h.

a) Sketch the electric field for the TMg;g mode in a cross section of the cavity. The
cross section should be in the zz-plane, where the z—axis is the symmetry axis. The
electric field should be shown as arrows where the length of the arrow indicates the
field strength.

b) Sketch the magnetic field in a cross section in the zy-plane of the TMyio mode.

c¢) Determine the resonant frequency of the TMy;9 mode when @ = 0.1 m and h = 0.3
m.

d) The cylindric cavity is fed by a source with frequency equal to the resonant
frequency of the TMy;p mode. The phase of the source is such that the electric field
in the cavity is proportional to sin(wt). The maximum amplitude of the electric
field in the cavity is Fy. Assume that a proton with speed v enters the cavity at
time t = 0. Determine the kinetic energy that the proton will gain in the cavity as a
function of the length h. The gain in energy is small enough compared to the initial
kinetic energy of the proton, such that the speed of the proton can be considered to



3 Microwave cavities 37

be constant in the cavity. The radius a, the length h, Ey, w and v are assumed to
be known.

3.5

Consider the TMyg-mode in a cylindric cavity with radius a and length L.
a) At what radius 7. is the magnetic field maximal.

b) Where is the surface current density maximal?

c) Where is the surface charge density maximal?

d) Confirm you results from a COMSOL 2D axisymmetric eigenfrequency calcu-
lation. You can plot the quantities along lines by using line graph. You can find
line graph under Results—1D Plot Group. If you don’t find surface charge density
then you can plot the absolute value of the normal component of the D-field, or
equivalently, the norm of the the D-field along the surface.

3.6

A resonance cavity is a cylinder with elliptic cross section. The ellipse has major
half-axis a = 3 cm and minor half-axis b = 2 cm. The length of the cylinder is 3 cm.

Determine the three lowest resonance frequencies of the cavity by using COMSOL.
All walls are perfectly conducting and there is vacuum inside the cavity.

Help: One can solve problem a) in COMSOL using either a 2D or a 3D calculation.
Do both.
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Microwave cavities: Answers and solutions

S3.1

d
- =203
a

S3.2

a) The pipe is attached as in b) since the electric field is directed parallell with
the end plates.

b) The coaxial cable is attached as in d) since the inner conductor then couples
to the electric field.
2
c¢) The length L is given by L = X, = k—ﬂ where k, = \/k? — (7/a)?. Since the
frequency is f, the wavenumber is k = pae fo/co. Then
2 2
I — ™ _ Co (30)
VP —(xjaf  \2haP-a

Numerically L = 45.3 cm when a = 20.0 cm.

d) d = L/4 since the feed point should be where the electric field is maximal.

e) No, it will not work. The cut-off frequency for the TE;y mode is f. = 20—3 ~750

MHz.

S3.3
a) The resonance frequency is given by f = 20—0@, where &y; = 2.405. Thern
T a
2.405T ¢y
a=——"
2m

b) For TMOH

2
2 _ (S m\?
k _<a) +<h)

Wherek:4—ﬁ.

Co
The following length should be avoided:

s col’

\/(4_7r)2 j (2.405)2 S 2V3
T a

h:
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S3.4
= =
—> -
— —_
- -
== ==

a) See left figure.

b) See right figure.

c 2.405

d) Since z = vt the proton will experience the force F' = e £ sin(wt)z = eEjysin(wz/v)z.

eBov (1 — cos(wh/v))

The gain in kinetic energy is AW, = foh eFEysin(wz/v)dz =

S3.5

a) The r. at which the magnetic field has its largest amplitude is when &7, = m11a,
where &y = 2.505 and n;; = 1.841. Then r. = 0.7656a.
b) r. = 0.7656a

c) In the center of the flat surfaces since ps = ggnv - E and E = EyJy(&p17c) 2, where
Jo(z) is maximal at x = 0.

S3.6

The three lowest resonance frequencies are

f1 =4.86 GHz, f, = 5.81 GHz and f3 = 6.59 GHz.
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4 Potentials and fields

4.1

Show that the differential equations for V and A (10.4 and 10.5) can be written in
the more symmetric form

oL 1
v+ o 2
* ot €0p
A - VL= —pod
0? ov
where [? = V? — Hoco 55 and L=V - A+ Hogo 5.

Problem 10.1 in Griffiths 5th ed..

4.2

Suppose V' = 0 and A = Apsin(kx—wt)y, where Ay, w, and k are constants. Find E
and B and check that they satisfy Maxwell’s equations in vacuum. What condition
must you impose on w and k?

Problem 10.4 in Griffiths 5th ed..

4.3

Consider a closed curve C in the plane z = 0. Along the curve is a thin metal wire
(perfectly conducting) that is almost closed, see figure. A magnetic flux density
B(r,t) will induce a voltage V'(t) in the gap of the loop. Show that, if the self-
inductance of the loop can be neglected,

where ®(t) = [( B - 2dS and S is the planar surface enclosed by C. One can show
this in many ways, but you should do it by going through the following steps:

a) Show that ®(t) = ¢, A(r,1) - dL.
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b) What is the electric field inside the metal of the wire?

c) Is A affected by the presence of the wire?

A
d) Use [, A(r,t)-de= ¢, A(r,1)-de, E=-VV — %_t and show that

here C}, is the almost closed curve along the metal wire.

e) Can we use the same formula for V' if the gap is large?

4.4

A time-dependent point charge q(t) at the origin, p(r,t) = q(t)6*(r), is fed by a
i)
4mr?
a) Check that charge is conserved, by confirming that the continuity equation is
obeyed.

current J(r,t) =

b) Find the scalar and vector potentials in the Coulomb gauge.
c¢) Find the fields, and check that they satisfy all of Maxwell’s equations.
Problem 10.7 in Griffiths 5th ed..

4.5

LN

A piece of a wire bent into a loop, as shown in the figure, carries a current that
increases linearly with time:

I(t) =kt (—o0 <t < )

Calculate the retarded vector potential A at the center. Find the electric field at
the center. Why does the (neutral) wire produce an electric field? (Why can’t you
determine the magnetic field from this expression for A)

Problem 10.12 in Griffiths 5th ed..
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4.6

A particle of charge ¢ moves in a circle of radius a at a constant angular velocity
w. Assume that the circle lies in the xy—plane, centered at the origin, and at time
t = 0 the charge is at (a,0), on the positive z—axis. Find the Liénard-Wiechert
potentials for points on the z—axis.

Problem 10.15 in Griffiths 5th ed..

4.7

It was shown in Griffiths that at most one point on the particle trajectory commu-
nicates with r at any given time. In some cases there might be no such point (an
observer at r would not see the particle). As an example, consider a particle in
hyperbolic motion along the x—axis:

w(t) = /b + (ct)’x (—o0 <t < ) (31)

(In special relativity this is the trajectory of a particle subject to a constant force
F = mc?/b.) Sketch the graph of w versus t. At four or five different representative
points on the curve, draw the trajectory of a light signal emitted by the particle at
that point-both in the plus = direction and the minus x direction. What region on
your graph corresponds to points and times (z,t) from which the particle cannot be
seen? At what time does someone at point z first see the particle? (Prior to this the
potential is zero.) Is it possible for a particle, once seen, to disappear from view?

Problem 10.17 in Griffiths 5th ed..

4.8

Suppose a point charge ¢ that is constrained to move along the x—axis. Show that
the fields at points x on the axis to the right of the charge are given by

BE— q c+v &
dreg(x —w,)? \c—v

B=0

where w, = w,(t,) is the position of the charge at the retarded time. (Do not assume
v is constant!) What are the fields on the axis to the left of the charge?

Problem 10.20 in Griffiths 5th ed..
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Potentials and fields: Answers and solutions
S4.1
S4.2

A
E=-VV - aa—t = Aow cos(kxr — wt)y

B =V x A = Apk cos(kz — wt)z

It follows that V- E =0 and V- B = 0.

0 B
It is also straightforward to see that V x E = T

0F

If k? = w?eoup then V x B = piggg—— T

S4.3

a) Use B =V x A and Stokes theorem.
b) The electric field is zero.

¢) No, not in the quasi statics. The magnetic flux density B is, by assumption, not
affected and then A is not affected either.

d)

e) No. The voltage between two points that are not close to each other is not unique.
It depends on the integration path between the points.

S4.4

S4.5

I —r 1 1
:@f (tr)dzzuok]{t T/Cdg_uok (tj{—dﬁ——]{dﬁ) (32)
4 r 47t r 4m r ¢

But for the complete loop ¢ d€ = 0, so

“Okt( /de+ /d£+2/ ) (33)

Here [, d€ = 2a& (inner circle) and [, d€ = —2bx (outer circle), so
/L()kt 1

A=t (é(Za) — () + 21n(b/a)) @
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Thus
A= Mg—itln(b/a):i:
B 0A B ,uok’ ~
E = —E = % n(b/a)a:

The changing magnetic field induces the electric field. Since we only know A at one
point (the center), we can’t compute B =V x A.

S4.6
At time ¢ the particle is at w(t) = a(cos(wt)&+sin(wt)y), so v(t) = aw(— sin(wt)x+
cos(wt)y). Therefore

r—w = 2z — a(cos(wt,)& + sin(wt,)Y)
and, as expected, |r —w| = Va2 + 22. It must also be that (r — w(t,)) - v(t,) = 0
(check this if you don’t believe it). So (1 - w) =1

lr —w|c
Then
Vigt)=—L
dregva? + 22
Az, t) = ed (— sin(wt,)@ + cos(wt,)§)

dregc?v/ a2 + 22
Va2 + 22

Cc

where t, = ¢ —

S4.7
The particle is invisible for times ¢ < “Ltora person at x. the light reaches the
c

x x
person at t = —— and after that it will be visible for all times ¢t > ——.

c c
S4.8

g _|?|

= e o)

here v = v&, a = ax, and, for points to the right, 2 = . So u = (¢ — v)z,
uxa=0,and 2z -u=|2|(c—v).

q | 2] 2 2 - q CtHuy .
E — - —_ —_ frg 34
dreg |23 (c — v)3 (¢ =v)e—v)z Areg|e|? (c - v) v (34)

1
B=-2xE=0 (35)
C
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where 2 = r — w(t,).

For field points to the left, 2 = —& and uw = —(c+v)&, so 2 - u = |2|(c + v), and

q |2 5 9 . q [ AN
drteg | 2|3 (c — v)3 (€ —v)le—v)2 dmegl2|? \c—w ¥ (36)

1
B=-xE=0 (37)
C
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5 Radiation

5.1

Write a Matlab script that determines the retarded time ¢, from the time ¢ given
the position vector w(t) as a function of time and the field point 7. Check your
program by calculating ¢, for the following case of circular motion of the particle:

w(t) = A(cos(wt), sin(wt), 0) (38)

where A is the the radius of the circle. The speed of the particle is v = ¢ and the
field point is . Let

A=10m (39)
B =095 (40)
r = (100,0,0) m (41)
0 <t < 250ns (42)

Notice that w = v/A. Plot t,(t) as a function of ¢ in the interval 0 < ¢ < 250 ns and
compare with the curve in the answer.

5.2

Write a Matlab script that evaluates the electric and magnetic fields from a point
charge that moves along a prescribed curve w(t).

a) Check your program by determining the electric field from a particle in circular
motion with the values given in 5.1.

b) Check your program by determining the electric field from a particle traveling
through an undulator.

5.3

Write a Matlab script that evaluates the frequency spectrum of the electric field
from a a point charge that moves along a prescribed curve w(t).

a) Check your program by determining the frequency spectrum of E, from a particle
in circular motion with the values given in 5.1.

b) Check your program by determining the Fourier transform of the electric field
from a particle traveling through an undulator.
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Figure 15: Angle 0,,., at maximum radiation.

5.4

In Bohr’s theory of hydrogen, the electron in its ground state was supposed to
travel in a circle of radius 510~ m, held in orbit by the Coulomb attraction of
the proton. According to classical electrodynamics, this electron should radiate, and
hence spiral in to the nucleus. Show that v < ¢ for most of the trip (so you can use
the Larmor formula), and calculate the lifespan of the Bohr’s atom. (Assume each
revolution is essentially circular.)

Problem 11.14 in Griffiths 5th ed..

9.9

When v and a of a particle is instantaneously collinear (at time t,), as, for example
in a straight-line motion. Then the angular distribution of the radiation is, according
to Griffiths, given by

d_P B poqa? sin? 6
dQ  1672c (1 — Bcosb)?

Find the angle 0.y, see figure (15), at which the maximum radiation is emitted.
Show that for ultrarelativistic speeds (v close to ¢), Opax ~ /0.5 —0.55. What is
the intensity of the radiation in this maximal direction (in the ultrarelativistic case),
in proportion to the same quantity for a particle instantaneously at rest? Give your
answer in terms of .

Problem 11.15 in Griffiths 5th ed..

5.6

In the previous problem we assumed that the velocity and acceleration were (instan-
taneously, at least) collinear. Carry out the same analysis for the case where they
are perpendicular. Choose your axes so that v lies along the z—axis and a along the
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raxis, so that v = vz, @ = a®, and 7 = sin f cos & + sin # sin ¢y + cosfz. Check
that P is consistent with the Liénard formula.

(Comment: For relativistic velocities (§ = 1) the radiation is again sharply peaked
in the forward direction. The most important application of these formulas is to
circular motion— in this case the radiation is called synchrotron radiation. For a
relativistic electron, the radiation sweeps around like a locomotive’s headlight as
the particle moves.)

Problem 11.16 in Griffiths 5th ed..

5.7

a) A particle of charge ¢ moves in a circle of radius R at a constant speed v. To
sustain the motion, you must, of course, provide a centripetal force mv?/R. What
additional force (F,) must you exert, in order to counteract the radiation reaction?
[It’s easiest to express the answer in terms of the instantaneous velocity v.] What
power (P,) does this extra force deliver? Compare P, with the power radiated (use
Larmor formula).

b) Repeat part (a) for a particle in simple harmonic motion with amplitude A and
angular frequency w (w(t) = Acos(wt)z). Explain the discrepancy.

c) Consider the case of a particle in free fall (constant acceleration g). What is the
radiation reaction force? What is the power radiated? Comment on the results.

Problem 11.17 in Griffiths 5th ed..
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Radiation: Answers and solutions

S5.1

200

100

-100

retarded time/ns

-200

-300

-400 1 1 1 I
0 100 200 300 400 500

time/ns

Figure 16: The retarded time ¢, as a function of time ¢ for a particle in circular
motion.

One may use the function fsolve in Matlab. Do help fsolve in Matlab to find out
more.

Another option is to solve ¢, from t by iteration. Start with ¢,y = t and use the
scheme

tinp1 =1t — \/7“2 + |w(t)]? — 27 - w(ty)/c

S5.2

It is convenient to use the Matlab functions dot and cross in order to take the scalar
and vector products of three-dimensional vectors.



50 5 Radiation: Answers and solutions

a) The circular motion is w(t) = 10(cos wt, sinwt, 0) m. The speed is 0.95¢ and the

field point is (100,0,0) m. The y—component of the electric field is given in Figure
(17).

b) The motion is given by w(t) = (vt, Asinwt,0), where A = 0.001 m, w = 1.6953 -
10' rad/s, and speed v = 0.9¢. The period of the magnetic field is 0.1 m, the length
of the undulator is 0.2 m, and the field point is (20,0,0) m. The y—component of
the electric field is given in Figure (18). The time in the figure is translated.

1 x10710
0 J\ F
AL 4
L
22t 1
C
()
c
o
£
&3 i
NG
>
-4 - i
5L J
-6 L L L I
0 20 40 60 80 100

time/ns

Figure 17: E,(t) as a function of time ¢ for a particle in circular motion.

S5.3

One can here use the function fft in Matlab. In the reference page for fft it is
explained how the fourier transform, as a function of frequency, is obtained from

the fIt.

S5.4
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o5 x10®

y-component of E

.25 L 1 L
66.6 66.8 67 67.2 67.4 67.6
time/ns

Figure 18: E,(t) as a function of time ¢ for a particle running through an undulator.

2

then v = T At the beginning (ro = 0.5 A) Numerically
dregmr
L= 0.0075
c

and when the radius is one hundreth of this , v/c is only 10 times greater (0.075),
so for most of the trip velocity is safely non-relativistic.

2 2\ 2 2 2 2
From the Larmor formula, P = Fod (V) — Hod a . (since a = v?/r),
6mc \ r 6mc \ dmegmr?

and P = %, where U is the (total) energy of the electron:

1 ¢ ¢
U=Uq + Ut = —muv* — = —
k pot = 9 Aregr Smeor

So

du q> dr_P_ ¢ q? 2
dt Sregr2 dt  6megcd \ dwegmir?
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x1072

25

-
[6)]
T

y-component of E

0.5}

4 6
frequency/Hz

x10

10

Figure 19: The absolute value of the Fourier transform of E,(¢) in figure (17).

dt 3c

2 2
and hence ﬁ = —l ( q > i,

2megme

omegme 9
dt = —3c¢ redr

q2

Integration from 7y to 0 gives

omegme 2
t=c ( 0 ) 7“3
e

Numerically t = 1.3 - 107! s.

S5.5

The maximum occurs when

d sin? 6 _ 0
dd \ (1 —Bcosh)>)
This gives

1
0050:%( 1+15682 —-1)
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Figure 20: The absolute value of the Fourier transform of E,(¢) in figure (18).

Since Opax — 90° ( €os Opax = 0) when5 — 0 we use the + sign. Then

3p

For v ~ ¢, f ~ 1 write § =1 — ¢, where ¢ < 1, and expand to first order in e:

VIt 1552 —1 1
=...=1—-—¢€
30 4
. 1, 1
Evidently 0.« =~ 0, 0 cos O ~ 1 — §9max =1- Ze, or

Omax ~ \/g =4/0.5(1 = )

Let

¢ (dP/d0ly, ) _( sin2f )

(dP/dQIQm)rest N (1 — BCOS 9)5
Now since sin? fpax ~ €/2, and

(1= BcosbOmax) ~1—(1—€)(1—0.25¢) ~1— (1 —e—0.25¢) = 1.25¢
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AN\° 1
=(-) —.B
So f <5> 5ed ut
1

v

1 1

~

VISR JIS(-r Ve

1
Therefore € = — and
22

5
r=(3) se—ze

S5.6

Use
dP ¢* | x(uxa)l
dQ 16729 (2-u)s

Also 2-u =c¢(1 — fcosf), a-u=acsinfcos ¢ and u? = ¢* + v* — 2cv cos §. Since

~—

zx(uxa)=(2-a)u—(2-u)a
then
|2 x (u x 2)]* = a*c*((1 — Beosh)? — (1 — B?)(sin 6 cos ¢)?)
and
dP _ pog*a® (1 — Beosf)® — (1 — B%)(sin b cos $)?)
dQ 1672 (1 — B cosh)®
Integrate over € and ¢. The integrals over ¢ are easy. The remaining integral is
2.2 pw _ 2 _ (1 _ A2)ainf
P:uoqza / (2(1 = Beosh)* — (1 5B>Sm)sin9d9
6m2c J, (1 —Bcosh)
Use change of variables to y = (1 — Scosf). The integral can then be solved by

Wolphram Alpha. The result is

2 .24
p _ Hog’a®y!

6me

Is this consistent with the Liénard generalization of the Larmor formula?

p_ d (az v x al2)

6m2c c?
Now v X @ = va(z x &) = vay, so

v X al?
a2—| . | _ 22

C
pog*ay*
6me

Then P = which is the same as above.
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S5.7
L. . Loq? da
a) To counteract the radiation reaction you must exert a force Fo = — e di For
e
circular motion , r(t) = R(cos(wt)& + sin(wt)y), v(t) = Rw(— sin(wt)& + cos(wt)y),
da 5
and — = —w*v. Then
dt
2
F,— Hogq v
6me
The power one has to supply is
foq?
P=F, - v= w?
6me
This is the same as the radiated power given by the Larmor formula.
b) For simple harmonic motion, r(t) = Acos(wt)z, v = —Awsin(wt)z and a =
—w?r. Then
Fo= L 2, (43)
6me
2
= Fod 2,2 (44)
6me

2
Now v? = A%w?sin®(wt) but Pag = 'Léo—qw4A2 cos*(wt) # P,. However, the time
e

averages are the same.

1
c) In free fall, r = §gt2f/, v = gty, a = gy and da/dt = 0. So F, = 0. The

2
radiation action is zero and hence P, = 0. But there is radiation P,.,q = Hod g*. Ev-
e

idently energy is being continuously extracted from the nearby fields. This paradox
persists even in the exact solution.
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6 Relativistic electrodynamics

6.1

a) What’s the percent error introduced when you use Galileo’s rule, instead of
Einstein’s, with vap = 8 km/h and 96 km/h?

b) Suppose that you could run at half the speed of light down the corridor of a train
going three quarters the speed of light. What would your speed be relative to the
ground?

c) Prove, using Einstein’s formula for velocity addition that if vap < ¢ and vgc < ¢,
then vac < ¢

Problem 12.3 in Griffiths 5th ed..

6.2

As the outlaws escape in their getaway car, which goes %c, the police officer fires a
bullet from the pursuit car, which only goes %c. The muzzle velocity of the bullet
(relative to the gun) is $c. Does the bullet reach its target (a) according to Galileo,
(b) according to Einstein?

Problem 12.4 in Griffiths 5th ed..

6.3

In a laboratory experiment a muon is observed to travel 800 m before disintegrating.
A graduate student looks up the lifetime of a muon (2x107¢ s) and concludes that
its speed was
800 m
==
2 x 107%s

Faster than light! Identify the student’s error, and find the actual speed of the
muon.

Problem 12.7 in Griffiths 5th ed..

4% 10%m

6.4

A Lincoln Continental is twice as long as a VW Beetle, when they are at rest. As
the Continental overtakes the VW, going to a speed trap, a (stationary) policeman
observes that they both have the same length. The VW is going at half the speed
of light. How fast is the Lincoln going? (Leave your answer as a multiple of ¢)
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Problem 12.9 in Griffiths 5th ed..

6.5

a) Write out the matrix that describes a Galilean transformation.
b) Write out the matrix describing a Lorentz transformation along the y—axis.

c) Find the matrix describing a Lorentz transformation with velocity v along the
x—axis, followed by a Lorentz transformation with velocity v along the y-axis. Does
it matter in what order the transformations are carried out?

6.6

If a particle’s kinetic energy is n times its rest energy, what is its speed?

Problem 12.30 in Griffiths 5th ed..

6.7

A particle of mass m whose total energy is twice its rest energy collides with an
identical particle at rest. If they stick together, what is the mass of the resulting
composite particle? What is its velocity?

Problem 12.33 in Griffiths 5th ed..

6.8

In the past, most experiments in particle physics involved stationary targets: one
particle (usually a proton or an electron) was accelerated to a high energy F, and
collided with a target particle at rest. Far higher relative energies are obtainable
(with the same accelerator) if you accelerate both particles to energy E, and fire
them at each other. Classically the energy E on one particle, relative to the other,
is just 4F (why?)- not much of a gain (only a factor of 4). But relativistically the
gain can be enormous. Assuming the two particles have the same mass, m, show
that
2F? 9

E:—Q—mc
mc

Suppose that you use protons (me? = 1 GeV) with £ = 30 GeV. What E do you
get? What multiple of E does this amount to?

Problem 12.35 in Griffiths 5th ed..
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6.9

a) The electrons in the large storage ring of MAX IV has 3 GeV energy. Determine
f = wv/c for the electrons.

b) In the large hadron collider at Cern protons are accelerated to high energies in
two directions such that they collide. The protons have 7 TeV energy. Determine
f = v/c for the protons and compare that with g for the electrons in MAX IV. How
many m/s difference is there between the electrons of MAX IV and the protons of
LHC? How many m/s difference is there between the speed of light and the 7 TeV
protoms?

c) Assume that MAX IV would like to beat LHC in particle speed. What energy
does that require?

d) Determine the ratio £/E, where E is the energy when two 7 TeV protons collide
and E the energy when a 7 TeV proton collides with a proton at rest.

6.10

a) Charge g4 is at rest at the origin in system S; charge gp flies by at speed v on a
trajectory parallel to the x—axis, but at y = d. What is the electromagnetic force
on qp as it crosses the y—axis?

b) Now study the same problem from system S, which moves to the right with speed
v. What is the force on ¢p when g4 passes the g-axis? [Do it two ways: (i) by using
your answer to (a) and transforming the force; (ii) by computing the fields in S and
using the Lorentz force law.]

Problem 12.45 in Griffiths 5th ed..

6.11

Consider a beam of protons traveling in an accelerator. We assume that along a
quite long distance the beam can be approximated by a circular cylinder with radius
a and constant charge density p, seen from the stationary system Sy. The z—axis is
the symmetry axis of the cylinder and the cylinder travels with velocity voz.

a) Determine the electric field Ey and magnetic flux density By for r. < a seen
from 5.

b) Show that the Lorentz force ¢(E(+ v x By) goes to zero as v — c¢. This explains
why bunches of particles in an accelerator can stay confined for a long time.

c) What is the electric field E and magnetic flux density for 7. < a in a system S
that travels with the protons? What is the force on an electron in the system S
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compared to the force in a system S at rest relative the accelerator?
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Relativistic electrodynamics: Answers and solutions

S6.1

a) 6.7-1071% error.
10
b) —c.
) 1¢
c) Let B =vac/c, f1 = vap/c and By = vpc/c. then

_ B428-15+ 5
(1426162 + B1533)

where A = (1—3%)(1— $2)/(1+ B132)? is clearly a positive number. So 35 < 1, and
hence |vac| < ¢

B =1-A

S6.2

a) Velocity of bullet realtive ground: %c + %c = %c.

Velocity of getaway car: %c = %c so buller does reach target.

b) Velocity of bullet relative ground: C{i%g = Zc.

Velocity of getaway car: %c = ;—éc so bullet does not reach target.

S6.3

The student has not taken into account time dilatation of the muon’s internal clock.
In the laboratory, the muon lasts y7, where 7 is the proper lifetime 2107 s. Thus,
after some analysis, v = 0.8c.

S6.4

ct 1 0 00 ct
| |- 100 x
gl |0 010 Y
Z 0 0 01 z
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b)
v 0 =8 0
0 1 0 0
A =
-8 0 v 0
0 0 0 1
1.5 ¢) Multiply the matrices:
7 0 =38 0 v =8 00 W =8 =B 0
Al Ot 0 opf=B8 v 00| _[=B8 4 0 0
-8 0 5 0 0 0 10 B BBy 0
0 0 0 1 0 0 01 0 0 0 1

Yes, the order does matter. In the other order bars and non-bars would switch.

S6.6

7mc2 — m02 = nm02

This gives v = n + 1 and from that

n(n+ 2)
Y — ¢
n+1

S6.7

Initial momentum is obtained from: E? — p?c? = m2¢t, then p = v/3me.
Initial energy: 2mc? + mc? = 3mc>.

Each is conserved, so final energy is 3mc? and final momentum is v/3me. The mass,
M, of the two particles that are stuck is obtained from

E? — p* = (3mc®)"2 — (V3me)?c? = 6m2ct = M3
Then M = v6m ~ 2.45m. Some of the kinetic energy is transformed into rest
energy.

the speed of the two particles is

p®  V3mec? ¢
V= =

E  3me2 /3
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S6.8

Classically, £ = %mvz. In a colliding beam experiment, the relativity velocity is

twice the velocity of either one, so the relative energy is 4F.

For relativistic particles we use the fact that (E/c, py,py,p.) is a four vector and
hence transform according to the Lorentz transformationen. Thus we know how to
transform from the system where both particles have energy W and are moving with
velocities v& and —v&, respectively, to the system where one of the particles is at
rest. The energy E of the moving particle in the new system is, according to the
Lorentz transformation, given by

E E
— =7——7Pp
c c
where f = —v/c, vy =1/4/1 — 5% and p = m~yv. Since
2
v =1
g =1
- Y
E = m7c?
E = m~yc?
we get

Y= 1+8) =20 -1
and finally

_ ~ E2
E:zE:27E—E/7:2—2—m02
0l me

For £ =30 GeV and mc® = 1 GeV, we have E = 1799 GeV= 60E.

S6.9

m62

E + mc?
m = 9.11-1073! kg one get mc®> = 0.51 MeV and 3 = 0.999999986.

b) With m = 1.673- 10727 kg, mc? = 0.939 GeV and 3 = 0.999999991. The protons
of LHC are just 1.5 m/s faster than the the electrons in MAX IV. They are on the
other hand only 2.7 m/s slower than the speed of light.

c) They have to go up to 3.8 GeV, so the 1.5 m/s cost 0.8 GeV.
E  (2E%/mc® — mc?)

d) = = =14
) & = 900

2
a) Kinetic energy is £ = myc® — mc?. This gives 3 = \/ 1— ( ) . With
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S6.10
a) Fields of A and B: E = q—Ag and B = 0. So force on qp is F = L qags
ey d? Amey d?
b) (i) The particle is at rest in S and then the force is F = L%@
471'80 d?

i) Wi L qal=p* 1. Y 44

With 6§ = 90° t E = iy qA
(i) Wi we ge Treo (1 — B2)372 7Y Ineg &2
B # 0 but since vg = 0 in S, there is no magnetic force anyway, and F =

Y 4AYB .

471'80 d?
S6.11

a) Gauss law gives the electric field for r. < a:

2
E(’f’c)_ pPTT: _ Ple .

= =
€027, 2e0

C

The current density is J(r.) = pv for r. < a and zero for 7. > a. Amperes law gives

2
HoUPTTe 5 HoUPTe 4
Bre) = 2mr "¢ = 2 ¢

b) The force on a particle traveling with the beam and at a distance r. from the
symmetry axis is:

2
qapre Ut 4

F=q(E B) - -2 ) 7,
¢(E+v x B) 200 < CQ)’r

We see that this force goes to zero as v — c.

c) The electric and magnetic fields in system S are

2
_ OTe v\ .
E=~FE B) = 1—— |7 45
WE +v x B) 7280( 02)7' (45)

_ 1
B_7<B—7vxE)_0 (46)
C

No surprise that B = 0.

We see that the force is v times larger in S than in S. This is accordance with the
transformation formula for forces.
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7 Motion of relativistic particles in electromag-
netic fields

Solving the equation of motion for a particle with MATLAB
Consider a particle with charge ¢ and mass m that moves in a vacuum region with

a static electric field E(x,y, z) and a static magnetic flow density B(x,y,z). The
motion of the particle is governed by Newton’s second law

dp
F=—
dt
where F' is the force and p = mn = myu = Mm———  is the relativistic

V1—u?/c?
momentum. Here 1 is the proper velocity and m is the proper mass (sometimes
called rest mass). The force is the Lorentz’ force

F =q¢(E+ux B).

Thus

de;—tu = ¢(E(r) +u x B(r)). (47)

There are some special cases when this equation can be solved analytically. In other
cases one has to solve the equations by numerical methods. To use the MATLAB
routines we need to rewrite the equation as a system of coupled first order ordinary
differential equations. To do this we first use the relation

d(m~yu) u(u - a)
— -~ = 48
dt my\e+ 2 —u? (48)
u
where a is the acceleration a = —. The derivation of this expression is left as an

exercise. From this relation and equation (47) one can show that

a:i(EJruxB—c—lzu(u-E)) (49)

my
Also the derivation of this relation is left as an exercise.

The non-relativistic case

We show in detail how the non-relativistic version of equation (50) can be solved by
MATLAB. The relativistic case is left to the reader. The non-relativistic version of

equation (49) is obtained by letting % — 0 and thus v=1
c

azi(E—i-uxB) (50)

m
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This equation is a system of three equations:

d Uy al(uxa uya uz)
o | = [ aalun ) (51)
Uz a3(ur7 Uy, uz)
where

a1 (U, Uy, u,) (Ey +uyB, —u,B,)

GQ(Ux, Uy, ’LLZ) (Ey + usz - u:):Bz) (52)

Se3I=3=

as (g, Uy, u,) (E, + u, By, — uyBy)
The system (51) is not sufficient, even if we know the velocity at a certain time.
The reason is that E and B are space dependent and we then need to know also

the position of the particle. For this reason we add three equations to the system
(51) as

x Uy
Y Uy

d |z | Uy

dt | uz | | a1(us, uy, us)
Uy g (U, Uy, Uy)
U, as(Ug, Uy, u,)

Initial conditions are needed for the velocity and position. For convenience we solve
the equation for ¢ > 0 and then we need the initial conditions (z(0),y(0), z(0)) and

(uz(0), uy(0), u.(0)).

An analytic solution for the case when F = F.z and B = B,z

Assume that the particle starts at the origin (x,y,z) = (0,0,0) with velocity
(g, uy, us) = (10%,0,0) m/s. When both E and B are directed in the z—direction
and they are constant in space then the equation of motion can be solved analyti-
cally. From (52) we get the three equations

du, ¢
dt - E (uyBZ)
du, q
— = —= (u,B. 53
dt m (u2B:) (53)
du, q
= — EZ
dt m (E:)

That means that the motion in the zy—plane is decoupled from the motion in
the z.plane. In the xy—plane the particle moves along a circular path with radius
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mu
- _ 3 5 4 . . T .
R = B where u = \/u2 + u2 = 10" m/s is a constant speed, and in the z—direction

it has a constant acceleration such that z(t) = QiEzt2.
m

We can use this analytic solution to check the accuracy of the different ode-solvers
in MATLAB.solution.

The MATLAB script

There are at least eight different solvers for ordinary differential equations in MAT-
LAB. It is hard to tell which of these solvers that is the best one for a specific
problem. Sometimes one has to try different solvers and pick the one that gives the
best result. When we applied the different solvers to the problem above the solver
ode23t gave the best results. Here is an example of a script that solves the equation

clear

% This script determines and plots the trajectory of a
% charged particle in a static electric field

% and a static magnetic flux density

% y(1:3) is the position vector and y(4:6) the velocity vector
[t,y]=0de23t (Quppgift1NonR ,[0 1e—3],[0 0 0 100 0 0]);
figure (1)

% Plot the trajectory

plot3 (y(:,1),y(:,2),y(:,3));

figure (2)

% Plot z(t)

plot (t,y(:,3))

Here [00.01] says that it solves from ¢ = 0 to ¢t = 0.01 s and
[00010000] = [2(0)y(0)2(0)uy(0)uy(0)u.(0)] in m/s. The routine ode23 calls the
function uppgift1NonR that can be written as

function yout=uppgiftINonR (t,yin)

% This function is used by the script uppgiftlNonRel.m

% q= charge, mO=mass, E=electric field , B=magnetic flux
% density;

% yin is a vector for which yin(1:3) is the position and
% yin(4:6) is the velocity of the particle.

q=1.6e—19;
m0=1.67e—27;
E=[0 0 0.1];

B=[0 0 0.001];

% Notice that one can use the function dot to do a scalar
% product in MATLAB

v=sqrt (dot(yin (4:6) ,yin (4:6)));
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% Notice that one can use the function cross to do a
% vector product in MATLAB
verossB=cross (yin (4:6) ,B);

yout=[yin (4:6);q/m0*(E+vcrossB 7)];

The program determines the trajectory of a proton that at ¢ = 0 has velocity
(0,0,100) m/s and position (0,0,0) and moves in a region with the electric field
E = (0,0,0.1) V/m and magnetic flux density B = (0,0,0.001) T. When we run
the script we get the trajectory of the particle and the graph of z(t) as a function
of t as seen by the figures
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z(t)/m

0 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time/s x 10"

7.1

Write a Matlab program that solves the equation of motion for a relativistic particle
in an arbitrary space dependent electric field E(r) and magnetic flux density B(r).
The program should be able to plot the trajectory (z(t),y(t), z(t)) for a given time
interval and given initial conditions (z(0),y(0),2(0)) and (u,;(0),u,(0),u,(0)).
Hint: First write the system of equations as

x Uy
y y

d | z| U,

dt | uz | | a1(ua, uy, us)
Uy Qo (Ug, Uy, Uy)
U, a3 (Ug, Uy, Uy )

and use the routine ode23t. The plot subroutine plot3 is suitable for trajectories in
three dimensions.

7.2

Check your Matlab program by first considering E = (0,0,0) and B = By(0,0, 1).
Determine (2(t),y(t), 2(t)) when (2(0),y(0),2(0)) = 0 and (ug(0), uy(0),u(0)) =

(10%,0,0) m/s. Let By = 1 mT. The time should be large enough so that the
particle comes back to where it started from. Consider first an electron and then a
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proton. You can compare the radius of the circle that the charge moves along with
the analytic result.

7.3

a) Consider a particle with mass m and charge ¢. Show that when E = (0,0, Ey),
B = (0,0,0), (x(0),y(0),2(0)) = 0 and (u;(0),u,(0),u,(0)) = O then the velocity
of the particle is given by u,(t) = u,(t) = 0 and

B qFEoct
= V(me? + (¢Bot)?
2(t) = qf (me) + (¢Eot)” — %

b) Check your Matlab program by considering an electron that is accelerated by the
field E = (0,0,—10°%) V/m and B = By(0,0,0). Determine (z(t),y(t), 2(t)) when
(2(0),y(0), 2(0)) = 0 and (u,;(0),u,(0),u.(0)) = (0,0,0) m/s. Plot u,(t) and z(t) as
a function of time in the interval 0 < t < 20 ns. Compare with the analytic result.

7.4

Consider E = (0,0, Ey) and B = (0,0, By). Use your Matlab program to plot the
trajectory (z(t),y(t),z(t)) when (2(0),y(0),2(0)) = 0 and (u;(0),u,(0),u,(0)) =
(10%,0,0) m/s. Consider first an electron in the time interval 0 < ¢ < 5 ns and then
a proton in the interval 0 < ¢t < 5pus. Let By = 0.1 T and Fy = 10* V/m.

7.5

In the synchrotrons of Max IV much of the light is created by letting the electrons
pass through undulators. An undulator usually consists of a number of permanent
magnets arranged as in the figure. They create an z-dependent magnetic field that

2
can be approximated by B(z) = (0,0, By cos (%)) where d is the period of

the undulator, given by the figure. Let By = 0.01 T, 0 < x < 15d, d = 2 cm,
(x(0),y(0), 2(0)) = (0,0,0) and (u;(0),u,(0),u.(0)) = (0.999 - ¢, 0,0), where c is the
speed of light. Plot the trajectory (z(t),y(t)) for the interval 0 < ¢ < 1 ns.
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Motion of relativistic particles in electromagnetic fields: An-
swers and solutions

S7.1

The main program can look like this

clear

% start with initial conditions

%[t ,y]=0de23t (Quppgiftlrhs ;[0 1/3e8],[0
[t,y]=0de23t (Quppgiftlrhs ,[0 5e—8],[0 0
figure

% Plot of the trajectory in 3—dimensions
plot3(y(:,1),y(:,2),y(:,3));

% Plot of trajectory in the xy—plane
Voplot (y (:,1),y(:,2))

axis equal

% plot of speed in the z—dirction as a function of time
%plot (t,y(:,6))

0 2.999¢8 0 0]);
1.

0
0 1.e8 10 0]):

Here is the function that is called by ode23t

function yout=uppgiftlirhs(t,yin)

% This function is used by the script uppgiftlMatlab.m
% g= charge , mO=mass, c= speed of light ,

% E=electric field , B=magnetic flux

% density ,d=distance between pairs of mgnets in an undulator.
% yin is a vector for which yin(1:3) is the position and yin(4:6) is the
% velocity of the particle.

q=1.6e—19;

m0=1.67e—27;%9.1e —31;

c=3e8;

d=0.05;

JE=[0 0 1e6 ];

E=[0 0 0];

7%B=[0 0 0];

%B=[0 0 .001];

B=[0 0 .lxcos(2«pixyin(1)/d)];

% Notice that one can use the function dot to do

% a scalar product in Matlab

v=sqrt (dot(yin (4:6) ,yin (4:6)));

gamma=1/sqrt (1—(v/c)" " 2);

vdotE=dot (yin (4:6) ,E);

% Notice that one can use the function cross to do

% a vector product in Matlab
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vecrossB=cross (yin (4:6) ,B);
yout=[yin (4:6);q/m0/gammax (E’+vcrossB’—1/c"2%yin (4:6)*vdotE)];}

S7.2
B Bgv/1 — 2

The analytic result is that w = 4Bo _ 450 (u/c) . The radius is given by
mry m

R:U/w: - : Whenu:]‘og m/Sa BOZ]-mT7q:1.6'10719 m/S

¢Boy/1 — (u/c)?
then we get the radius R and period T = 27 /w to be

R =0.60 m and 7" = 37.9 ns for the electron.
R =1107 m and T = 69.56 us for the proton.

The program gives these values with high accuracy.

S7.3
dmoyu(t o (t E
a) Integrate M = qFEy from 0 to t. This gives 0 — 250 he
dt 1= (u.(t)/c)> m
solution is
qFoct

w(t) = (54)

V/(me)? + (qEot)?

Notice that u, () is a function of gFEyt/m. This means that the electric field required
to obtain a speed of a particle with charge ¢ in a certain time is proportional to the
mass of the particle.

To get z(t)we integrate Eq. 54 from 0 to ¢ and use z(0) = 0. This gives
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3x 108 Electron, E=1 MV/m

speed/(m/s)

8 10 12 14 16 18 20
time/ns




7 Motion of relativistic particles in electromagnetic fields: Answers and
74 solutions

S7.4

The initial conditions are (x(0),y(0), 2(0)) = 0 and (u,(0), u,(0),u,(0)) = (108,0,0)
m/s. The first graph shows the electron trajectory for the time interval 0 < ¢ < 5
ns when E = (0,0,10*) V/m and B = (0,0,0.1) T. The second graph shows the
proton trajectory for the time interval 0 < ¢ < 5 us when E = (0,0,10*) V/m and
B =(0,0,0.1) T.

y/m x/m
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S7.5

The figure shows the electron trajectory in an undulator for the time interval 0 <
t<1lns. E=(0,0,0) V/m and B = (0,0,0.01 cos(2rz/d) T, where d = 2 cm, and
(2(0),y(0), 2(0)) = 0, (uz(0),u,(0),u,(0)) = (0.999¢, 0, 0).

0.5

ot |

-2.5r b

-3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
x/m
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8 Appendix 1: Bessel functions

In wave propagation problems the Bessel differential equation often appears, es-
pecially in problems showing axial or spherical symmetries. This appendix collects
some useful and important results for the solution of the Bessel differential equation.

Bessel and Hankel functions

The Bessel differential equation is

d2
P27, (2) + 2

T I20) + 2 Za(2) + (2 ) Zu(2) = 0 55)

dz
where n is assumed integer?.

There exist two linearly independent solutions to this differential equation. One is
regular at the origin, z = 0, and this solution is the Bessel function J,(z) of order n.
The argument z is a complex number. These solutions are often called cylindrical
Bessel function of order n, which stresses the affinity to problems with the axial
symmetry. The Bessel functions J,,(z) are defined real-valued for a real argument
z. An everywhere in the complex z-plane convergent power series is

> —1)k 2\ nt+2k
1) =3 i () o

We notice immediately that J,(z) is an even function for even n and odd for odd n,
te.

A commonly used integral representation of the Bessel functions is

I 1 [ in(t—1
In(z) = _/0 cos (zsint — nt) dt = o |, eizcostein(t=3m) iy (57)

™

From this integral representation, we see that the Bessel functions for positive and
negative integer orders, n, are related to each other.

Toa(2) = (=1)"Ju(2)

The power series representation in (56) implies that for small arguments we have

z n

1= B o

4A more general definition with eg. complex-valued n is also possible, but the expressions and
the results often differ.
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Root j
Order n 1 2 3 4
0 2.4048 | 5.5201 | 8.6537 | 11.7915
1 3.8317 | 7.0156 | 10.1735 | 13.3237
2 5.1356 | 8.4172 | 11.6198 | 14.7960
3 6.3802 | 9.7610 | 13.015 | 16.2235
4 7.5883 | 11.0647 | 14.3725 | 17.6160
Table 4: Table of the roots &,; to J,,(2).
Root j
Order n 1 2 3 4
0 3.8317 | 7.0156 | 10.1735 | 13.3237
1 1.8412 | 5.3314 | 8.5363 | 11.7060
2 3.0542 | 6.7061 | 9.9695 | 13.1704
3 4.2012 | 8.0152 | 11.3459 | 14.5858
4 5.3175 | 9.2824 | 12.6819 | 15.9641

Table 5: Table of the roots 7,; to J; (2).

For large arguments hold (—7 < arg z < m)

Jo(z) = (%)1/2 {Pn(z) cos (z — % - %) — @n(2) sin (2 - % - %)}

where the functions P,(z) and @, (z) have the following asymptotic expansions (v =
4n?)

v—1)w-9) (¥—1)(r—9)(v—25)(r—49)
P~ = e 4l(82)" o
v—1 (v—=1(w-9)(v—25)

8z 31(82)3

(58)

Qn(z) ~

The roots of the Bessel function J,(z) are all real, and the first roots, &,;, are listed in
Table 4. The derivative of the Bessel function J,(z) has also only real roots, 7,,, and
the first ones are listed in Table 5. Larger roots (larger j values) are asymptotically
given by

. 1\« : 3\
§nj = Jm + n=g5)y i =JT N5 )

Another, linearly independent solution to the Bessel differential equation, which is
real-valued for real arguments, is the Neumann function® N, (z). The power series

5These solutions are also called Bessel functions of the second kind.
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expansion is

Ly T 5 (bt
il Kln+ k)<= \1 l+n
1 — (n—Fk—1)! <E>—"+2’f
™= k! 2
where the Euler constant v = 0.57721566 ..., and where all sums are dined as zero

if the summation index exceeds the upper summation limit. This solution is singular
at the origin z = 0. For small arguments the dominant contribution is

No(z) = % <1n (%) + 7) +O(2%)
No(z) = —(";1)! <§>,n+

For large arguments the Neumann function has an asymptotic expansion (—7 <
argz < m)

Non(z) = (i>l/2 <Pn(z) sin (z — % - %) + Qn(2) cos <Z - % - %))

Tz
where the functions P, (z) and Q,(z) are given by (58).

In the solution of scattering problems, linear combinations of Bessel and Neumann
functions, ie. the Hankel functions, Hfll)(z) and Hff)(z) of the first and the second
kind, respectively, are natural®. These are defined as

HW(2) = J,(2) +iNa(2)

n

HP(2) = J,(2) — iNa(2)

n

The Hankel functions of the first and second kind have integral representations

2 o [
HWV(z) = Ze ™2 / e'# s coshns ds, 0<argz <m
im 0
(2) 21 inZ OO —iz cosh s
H (z) = —e™2 e coshns ds, —m <argz <0
T 0

For large argumens, the Hankel functions have asymptotic expansions

1/2
HD(z) = (%) el==5-%) (P (2) +1Qn(2)), —m < argz < 2w
T (59)
H?(z) = (E) e (P(2) —iQn(2)), —2r <argz <m

6These also called Bessel functions of the third kind.
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where the functions P, (z) and Q,(z) are given by (58).

Solutions to the Bessel differential equation of different order are related to each

other by recursion relations. Some of the more important ones are (n = 0,1,2,...,m =
0,1,2,...)7

Zn-1(2) = Zn41(2) = 22;,(2)

T () + Zor(2) = %”Zn(z)

Znn(2) = ~Z0(2) = Z3(2)

Z,(2) = Zua(2) = ~Za(2)

Here Z,(z) is a fixed arbitrary linear combination of J,(z), N,(x), HT(LI)(x) or
HY (x). Specifically, we have

Ji(z) = —Jo(2)

which is frequently used in the analysis in this textbook.

Some useful indefinite integrals with solutions to the Bessel differential equation,
which are often used in the text, are (n =0,1,2,...)

/x”“Zn(a:) dr = 2" Z, 1 (z) = —2" (Z;L(x) - an(x))

/J;"HZn(x) do = —2 " Z,_(2) = —x~ ! (Z,’l(x) +

i

[ (2@ do =5 [(20(a))? = Zoes(a)Zus ()]

2
2

(Zi () + 5 (a* = n?) (Zu(2)

As above, Z,(x) is an arbitrary linear combination of J,(z), N,(x), H,(LI)(:U) or
HY (). Some additional — more complex —but useful determined integrals are

"These recursion relations hold for non-integer values of n, eg. n = 1/2. The index m, however,
must be an integer.
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(n=0,1,2,...,m=0,1,2,...)

/ |:(O£2 — )z — mon Zm(ax)Y,(Bz) dx = BxZy,(ax)Y,_1(Bx)

— 0t Zy 1 (ax)Y,(Bz) + (m — n)Z,, (ax)Y,,(Sz)
/me(ax)Ym(/Ba?) dx = 5$Zm(a$)Ym_l<ﬂzg : gfzm_l(aﬂv)Ym(ﬁﬂi)
/ Zm(ax)Y, (ax) dr = o Zp—1(az)Yy(aw) — Zn(az)Ya(ax)  Zn(ax)Ya(az)
x m? — n? m+n

Here, Z,,(ax) and Y, (8z) is an arbitrary linear combination of J,(z), N,(x), Y (x)
or H? (x).

For Bessel functions, J,,(z), Neumann functions, N, (z), and Hankel functions, Hﬁl)(z)
or HT(LZ)(Z), we have for a complex argument z

{ Jn(27) = (Jn(2))" {HT(LU(Z*) = (H?(2))
Na(2) = (Nu(2))" HP (2*) = (H(2))

n

The Graf addition theorem for Bessel functions is useful. Let Z,(z) be any linear
combination of J,,(x), N, (), Hr(Ll)(x) and HS” (). The Graf addition theorem is

Zy(w) (“’W) = Y Zu(w) (COS’“), et

sin ng sin ka

< ul

k=—00

where w is

w = vVu2+ 12— 2uvcosa

Useful integrals

Some integrals related to Bessel functions used in this book are derived in this
subsection. We start with the integral representation for integer order n, (57)

27
/ eizcos¢>ein¢ d¢ — 27'('1an(2>
0
From this we easily conclude by a simple change of variables that

o . . ) 2m—a ) ) R
/ ol cos(¢>fa)em¢ d(ﬁ — plna / glz cos wemw dw = QWian(Z)ema
0 _

«

This integral is a function of the variables z and «.
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9 Appendix 2: V in curvlinear coordinate sys-
tems

In this appendix some important expressions with the V-operator in two curvilinear
coordinate systems, cylindrical and spherical, are collected. For completeness we
start with the Cartesian coordinate system.

Cartesian coordinate system

The Cartesian coordinates (z, y, z) is the most basic coordinate system. The gradient
and the Laplace-operator of a scalar field ¢ (x, y, z) in this coordinate system are

VY =2 a_w+ya¢+ af
oy O O

V) =

022 o2 T 92

The divergence, the curl, and the Laplace-operator of a vector field A(z,y,z) =
aA:A:v(x7 Y, Z) + @Ay(ZE, Y, Z) + ’%Az(xv Y, Z) are
0A, 0A, 8AZ

A= 2T
\Y (3:Jc+(9+

OA,
VXA_x<ay 32) (

VA = 2V?A, + VA, + 2V?A,

Lo (04 on.
ox dy

Circular cylindrical (polar) coordinate system

We now treat the first curvilinear coordinate system, and start with the circular
cylindrical coordinate system (p, ¢, z) defined by

(p= /a2 + 42

; arccos \/Q;Tgﬂ y>0
21 — arccos y <0

X
N

Z =z
\

The gradient and the Laplace-operator of a scalar field ¢(p, ¢, z) in this coordinate
system are

_Aﬁ@b 1a¢ ¢
2 _ 0y i32_¢ 0%
Vw_pa (3,0)+ 205 | 922



82 9 Appendix 2: V in curvlinear coordinate systems

The divergence, the curl, and the Laplace-operator of a vector field A(p, ¢, 2)
bAP<p7 ¢7 Z) + ¢A¢(p7 ¢7 Z) + 2A2(p7 ¢7 Z) are

10 104, 0A,
ViAo () T

104, 6A¢> ( > 1 <a aAp>

VxA= 2 = (pA,) — =P
”(p 5 #o\ap )~ 5
) A, 204, Ay 204, .

V2A:p(v2 p—p—zp—;a—gb) ¢(V2A¢— +—2—¢)+zV2AZ

Spherical coordinates system

The spherical coordinate system (r, 6, ¢) (polar angle 6 and the azimuth angle ¢) is
defined by

(= Vaz+y?+ 22
6 = arccos z

2 4y2+22
arccos ——= y>0
¢ o \/ x2+y?
\

27 — arccos y <0

x24y?

The gradient and the Laplace-operator of a scalar field ¢(r, 0, ¢) in this coordinate
system are

O 10y 1 oY
Vg =7 or +6 r 00 rsin@@qb
o 1 0 (. 0y 1 0%
2 _ + 9 [ 200 9 gy
vd}_T?@r (T 8T> +r28in989 <Sm989> +7“Qsin293¢2

1 9? 1 o0 (. oy 1 0%
T ror? (ry) + 2 sin 0 90 (s1n8—) - r2sin® § 0p?
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and the divergence, the curl, and the Laplace-operator of a vector field A(r,0,¢) =
A (1r,0,0) + 0A(r,0,0) + pAs(r,0,9) are

1 0 1 0A,

1 .
V-A=— _(SIDQA6)+rsin98_¢

o,
"2 Or (r°4.) + rsind 06
1 J . 0Ag
VXxA= rrsine (% (SIH9A¢) — a—¢)

-1 1 0A, 0 ~1 (0 0A,
r (sin@ o or (TAd))) * ¢; <E (rd) = 00 )
2A, 2 0Ap 2cotf 2 %
r2  r2 06 rz 0T r2ging 0¢

B Ay +38AT B 2cosf 0A4
r2sin®@  r2 00  r2sin®6 0¢

B Ay N 2  0A, 2cost 0Ay
r2sin?6  r2sinf 0¢  r2sin?6 O¢

r




