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April 16, 2019

Lectures 8

E and B for point charge

The electric and magnetic fields are given by

E(r, t) =
q|r |

4πε0(r · u)3
[(c2 − v2)u+ r × (u× a)] (0.1)

and

B(r, t) =
1

c
r̂ ×E(r, t) (0.2)

where

w(tr) = position of particle at retarded time (0.3)

r = field point (0.4)

r = r −w(tr) (0.5)

t− tr =
|r −w(tr)|

c
(0.6)

t− tr =
|r |

c
(0.7)

u = cr̂ − v (0.8)

Example: Charge with constant velocity

Figure 1: The particle at w(tr) and w(0).

When the velocity is constant, v = vx̂ then a = 0. Then from (0.19)

E(r, t) =
q

4πε0

|r |(c2 − v2)u

(r · u)3
(0.9)
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Assume that the particle passes r = 0 at time t = 0. Let us determine the field
when t = 0. Introduce R = r − vt. Fom figure (1)

(ctr)
2 = (vtr +R cos θ)2 + (R sin θ)2 (0.10)

|r | = ctr (0.11)

|r |u = cr − |r |v = c(r − vtr) = cR (0.12)

This gives

tr =
vR cos θ

c2 − v2
−Rc

√

1− (v/c)2 sin2 θ

c2 − v2
(0.13)

Now
r · u = c|r | − v|r | cosα, (0.14)

but
|r | cosα = vtr +R cos θ (0.15)

and then
r · u = (c2 − v2)tr − vR cos θ (0.16)

Plug in (0.13) to get

r · u = Rc
√

1− (v/c)2 sin2 θ (0.17)

Since
|r |u = cR (0.18)

we get

E(r, t) =
q

4πε0

(1− (v/c)2)R

R3(1− (v/c)2 sin2 θ)3/2
(0.19)

It is now easy to transfer this to an arbitrary t. We just let R = r − vt, i.e. the
vector from the position of the particle at time t to the field point r and let θ be
the angle between R and v. For the magnetic field we use

r̂ =
r − vt

ctr
=

r − vt + (t− tr)v

ctr
=

R

ctr
+

v

c
(0.20)

Then (0.2) gives

B(r, t) =
1

c2
v ×E(r, t) (0.21)

Radiation

Far-field

We now find the radiated electromagnetic waves from an accelerating point charge.
When r ≫ r′ and r ≫ λ, where λ is the wavelength of the waves generated by the
accelerating particle, then we can make a number of approximations that lead to
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quite nice expressions for the electromagnetic waves. This is very important since
we intend to describe the light produced in synchrotrons. Even though we will find
expressions valid when r ≫ r′ we can argue that the expressions are valid also for
smaller r.

We can start with the expression for the electric and magnetic fields in (0.1) and
(0.2). In the far zone we keep all terms that drop off as r−1 and skip those who drop
off faster than this. Everywhere, except in the expression for tr, we use

r ≈ rr̂ (0.22)

u ≈ cr̂ − v(tr) (0.23)

(c2 − v2)u+ r × (u× a) ≈ rr̂ × ((cr̂ − v)× a) (0.24)

r · u = r(c− r̂ · v) (0.25)

Then from (0.1)

E(r, t) =
qµ0

4πr

r̂ × ((r̂ − β)× a)

(1− r̂ · β)3
(0.26)

B(r, t) =
1

c
r̂ ×E(r, t) (0.27)

We have to remember that r̂, a, and β are functions of the retarded time time tr.

Example: Charge in circular motion

Let the particle travel along a circle with radius b. The speed v is constant so that

w = b(cos(ωtr), sin(ωtr)) (0.28)

v = v(− sin(ωtr), cos(ωtr)) (0.29)

a = ωv(cos(ωtr), sin(ωtr)) (0.30)

where ω =
v

b
is the angular frequency. Let r = xx̂, then

r̂ × ((r̂ − β)× a) = ωv(sin(ωtr) + β)ŷ (0.31)

and

E(x, 0, 0, t) =
qµ0ωv

4πx

(sin(ωtr) + β)

(1 + β sin(ωtr))3
ŷ (0.32)

B(x, 0, 0, t) =
qµ0ωβ

4πx

(sin(ωtr) + β)

(1 + β sin(ωtr))3
ẑ (0.33)

For x > 0 it is clear that |E(x, 0, 0, t)| is maximum when ωtr =
3π

2
+n2π. It means

that the light is sent when q travels towards the observer.
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Radiated power by a point charge

Assume a point charge that travels along a path w(tr). Let say that we are at a point
on this path and see the particle pass by at time t̄r. What is the power radiated at
that time? To find this we make a sphere with radius R, with its center at w(t̄r).
We wait a time R/c and then we measure the power transmitted through the sphere
for the fields that were generated at time tr. From our position we see that r̂(tr) is
directed in the radial direction, which a make its easy to find the radiation pattern
and the radiated power. The field reaches the sphere at time t = tr +R/c.

The Poynting vector is

S = E ×H =
1

µ0

E ×B (0.34)

According to (0.2) B(r, t) =
1

c
r̂ ×E(r, t) and we get

S =
1

µ0c
(E × (r̂ ×E)) =

1

µ0c
(E2
r̂ − (r̂ ·E)E) (0.35)

The far-field, or acceleration field, as Griffiths calls it, is given by (1.5), or,

Erad =
q

4πε0

|r |

(r · u)3
(r × (u× a)) (0.36)

Brad(r, t) =
1

c
r̂ ×E(r, t) (0.37)

This is the field that falls off as |r |−1 for large |r |. We see that Erad is perpendicular
to r and then

Srad =
1

µ0c

(

r̂ |E(r, t)|2 −E(r, t)r̂ ·E(r, t)
)

(0.38)

The second term is zero since E ⊥ r̂ and then

Srad(R, θ, φ, t) =
1

µ0c
r̂ |Erad(R, θ, φ, t)|2 (0.39)

For particles with speed much less than the speed of light it is quite straightforward
to carry out the integral. Then u ≈ cr̂ and

Erad(R, θ, φ, t) =
q

4πε0c2
1

R
(r̂ × (r̂ × a)) (0.40)

Brad(R, θ, φ, t) =
1

c
r̂ ×E(r, t) (0.41)

where r̂ × (r̂ × a) = r̂ (r̂ · a) − a and |r̂ × (r̂ × a)|2 = a2 − (r̂ · a)2 = a2 sin2 θ,
where θ is the angle between r̂ and a. We recognise the the radiation pattern from
an electric elementary dipole with its dipole moment directed parallell to a. The
radiated power is

P (t) =

∫

2π

0

∫ π

0

r̂ · Srad(R, θ, φ, t)R2 sin θ dθdφ (0.42)
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This gives

P (t) =
µ0q

2a2

6πc
(0.43)

This formula is called the Larmor formula.
There is a generalization of Poynting vector and the Larmor formula for the

case when v is not small compared to c. The generalization is called the Liénard’s
generalization and reads

P (t) =
µ0q

2γ6

6πc

(

a2 −

∣

∣

∣

∣

v × a

c

∣

∣

∣

∣

2
)

(0.44)

Example: If the particle is traveling in a magnetic field then v ⊥ a and the
expression reduces to

P (t) =
µ0q

2γ4a2

6πc
(0.45)

Thus in LHC and storage rings for electrons the radiation loss scales as the particle
energy to the fourth power. This becomes a problem. For the protons in LHC this
is not the limiting factor. It is instead the magnetic field that sets the limit.

Example: Just before collision, the energy of a proton in LHC is roughly 2000
times the energy of an electron in the MAX IV storage ring. On the other hand
the proper mass of the proton is about 2000 times the proper mass of the electron.
By that γ is almost the same for LHC proton and the MAX IV electron. The
circumference of the large ring in LHC is 27 km and the storage ring in MAX IV is
528 m. It means that a is 27000/528 ≈ 50 times larger for the MAX IV electrons
than for the LHC protons. Then the radiation loss per particle is 2500 larger in
MAXIV than in LHC.


