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March 24, 2019

1 Lecture 1

The Maxwell equations in a source free region with vacuum are

∇×E(r, t) = −
∂B(r, t)

∂t
(1.1)

∇×H(r, t) =
∂D(r, t)

∂t
(1.2)

∇ ·E(r, t) = 0 (1.3)

∇ ·B(r, t) = 0. (1.4)

Here

E(r, t) = electric field (1.5)

D(r, t) = electric flux density (1.6)

H(r, t) = magnetic field (1.7)

B(r, t) = magnetic flux density. (1.8)

In vacuum D = ε0E and B = µ0H , where ε0 is the permittivity of vacuum and µ0

the permeability of vacuum, with values

ε0 = 8.854 · 10−12As/Vm (1.9)

µ0 = 4π · 10−7Vs/Am (1.10)

Only regions with vacuum are considered in the course.

1.1 The wave equation

The wave equations for E and H follow from the Maxwell equations

∇2
E −

1

c2
∂2
E

∂t2
= 0 (1.11)

∇2
H −

1

c2
∂2
H

∂t2
= 0. (1.12)

The conditions ∇ ·E = 0 and ∇ ·H = 0 also have to hold.

1.1.1 Plane wave solutions

A linearly polarized plane wave propagating in the positive z−direction is given by

E(z, t) = E(z − ct)x̂. (1.13)

The magnetic field is given by the right hand rule

H(z, t) = η−1

0
ẑ ×E(z, t) (1.14)



2

where

η0 =

√

µ0

ε0
(1.15)

is the wave impedance of vacuum.
A more general plane wave is propagating in the k̂-direction is E(k̂ · r − ct),

where k̂ ⊥ E. Then

H(r, t) = η−1

0
k̂ ×E(k̂ · r − ct). (1.16)

Here k̂ =
k

k
is the unit vector pointing in the direction the wave propagates.

1.2 The Poynting theorem

Consider a volume V with vacuum and enclosed by a surface S. The surface S has
an outward directed unit normal n̂. In V there can be a current density J . The
Poynting theorem is:

∮

S

S · n̂dS = −

∫

V

(

µ0H ·
∂H

∂t
+ ε0E ·

∂E

∂t

)

dV −

∫

V

E · J dS, (1.17)

where
S = E ×H (1.18)

is the Poynting vector.
Interpretations:

•
∮

S

S · n̂ dS is the power radiated out from V .

• µ0

∫

V

H ·
∂H

∂t
dV =

µ0

2

∂

∂t

∫

V

|H|2 dV is the change per unit time of the magnetic

energy in V .

•
ε0
2

∫

V

E ·
∂E

∂t
dV =

ε0
2

∂

∂t

∫

V

|E|2 dV is the change per unit time of the electric

energy in V .

• Pd(t) =
∫

V

E · J dS is the power related to J . If Pd(t) > 0 then it is the

power consumed by J . This is the case if there is a conductive region in V . If
Pd(t) < 0 then J adds the power −Pd(t) to the system. This is for instance the
case if there is an antenna in V , or, as in an accelerator, a beam of particles
traveling through V .

• The Poynting vector S is interpreted as the power flow density (W/m2) in the
direction k̂ = S/|S|.

•
µ0

2
|H|2 is interpreted as the magnetic energy density (J/m3).

•
ε0
2
|E|2 is interpreted as the electric energy density (J/m3).
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1.2.1 Energies for propagating waves

Propagation of waves requires that two types of energies interact. For water waves
potential interacts with kinetic energy. For waves along a string the stress energy
interacts with the kinetic energy. For an electromagnetic wave the two interacting
energies are the electric and magnetic energy. The electric and magnetic energy
densities are equal for all propagating electromagnetic waves.

Example: The electric energy density of a plane wave is

we =
1

2
ε0|E(k̂ · r − ct)|2 (1.19)

and the magnetic energy density is

wm =
1

2
µ0|H(k̂ · r − ct)|2 (1.20)

Since H = η−1

0
k̂ ×E(k̂ · r − ct) it follows that we(r, t) = wm(r, t).

1.3 The Maxwell equations in frequency domain

We may transform the time domain Maxwell equations into frequency domain. This
can be done by Fourier transformationor by using phasors. In both cases time

derivative
∂

∂t
is transformed to multiplication with −iω. The frequency domain

Maxwell equations in a source free region with vacuum are

∇×E(r) = iωB(r) (1.21)

∇×H(r) = −iωD(r) (1.22)

∇ ·E(r) = 0 (1.23)

∇ ·B(r) = 0. (1.24)

where the frequency domain fields have argument (r) instead of (r, t). The wave
equations (1.11) and (1.12) are transformed to the Helmholtz equations

∇2
E + k2

E = 0 (1.25)

∇2
H + k2

H = 0. (1.26)

where k =
ω

c
is the wavenumber of vacuum.

1.4 Waveguides

See pages 7–12 in the exercise book.


