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April 12, 2019

Lectures 6 and 7

1 Retarded time

An observer A sees light coming from the position w, see Figure (1). The light that
arrived at time t was then sent from w at time

tr = t−
|r −w|

c

We call tr the retarded time.

Figure 1: It takes |r −w|/c for light to travel from w to r.

Now look at Figure (2). The charge q travels along the curve w(t), where t is
time. Assume that observer A at time t receives light sent from q. When was the
light sent from q and what was the position of q when the light was sent?

Figure 2: The charge q travels along the curve w(t) and emits light.

The answer is that the light was sent from q at the retarded time

tr = t−
|r −w(tr)|

c
(1.1)
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Notice that here w(tr) is the position of q at the retarded time. It means that tr is
implicitly given by (1.1). To find the position and tr we have to solve equation (1.1)
for tr.

2 Sources to electromagnetic fields

We will now derive expressions for the electric and magnetic fields that are radiated
Electromagnetic fields are generated by accelerating particles. These moving par-
ticles are represented by a current density J(r, t) and charge density ρ(r, t) in the
Maxwell equations. The current and charge density act as sources in the Maxwell
equations, such that

∇×E(r, t) = −
∂B(r, t)

∂t
(2.1)

∇×H(r, t) = J(r, t) + ε0
∂E(r, t)

∂t
(2.2)

∇ ·E(r, t) =
ρ(r, t)

ε0
(2.3)

∇ ·B(r, t) = 0 (2.4)

The divergence of the Ampère law, (2.2), gives, together with (2.3) the relation
between the current and charge density

∇ · J(r, t) = −
∂ρ(r, t)

∂t
(2.5)

This is the continuity equation. If we integrate this over a volume V , enclosed by
the surface S, we get

∂Q(t)

∂t
= −i(t) (2.6)

where

Q(t) =

∫

V

ρ(r, t) dv (2.7)

is the charge in V and

i(t) =

∮

S

J(r, t) · n̂ dS (2.8)

is the current running out from V . Here n̂ is the outward directed unit normal
vector to S.

To obtain the electromagnetic fields from a current density we use the magnetic
vector potential A. It is related to the magnetic flux density by

B = ∇×A (2.9)

The induction law implies

∇×

(

E +
∂A

∂t

)

= 0 (2.10)



3

All irrotational fields can be expressed in terms of a scalar field. We then use

E +
∂A

∂t
= −∇V (2.11)

where V is the electric scalar potential1. Notice that for static fields E = −∇V ,
which is the same relation as in electrostatics. Now insert (2.9) and (2.11) into
Amperes law

∇× (∇×A) +
1

c2
∂2A

∂t2
+

1

c2
∇
∂V

∂t
= µ0J (2.12)

Since ∇× (∇×A) = ∇(∇ ·A)−∇2A we get

∇2A−
1

c2
∂2A

∂t2
−∇

(

∇ ·A+
1

c2
∂V

∂t

)

= −µ0J (2.13)

We are free to choose ∇ ·A as we like and we let

∇ ·A+
1

c2
∂V

∂t
= 0 (2.14)

This condition is called the Lorenz condition. The equation for the vector potential
is, by that,

∇2A−
1

c2
∂2A

∂t2
= −µ0J (2.15)

The solution is

A(r, t) =
µ0

4π

∫

V

J(r′, tr)

|r − r′|
dv′ (2.16)

where

tr = t−
|r − r′|

c
(2.17)

is the retarded time. The equation for the scalar potential V is obtained from Gauss
law

∇ ·E =
ρ

ε0
(2.18)

and the Lorenz condition (2.14):

∇2V −
1

c2
∂2V

∂t2
= −

ρ

ε0
(2.19)

The solution is

V (r, t) =
1

4πε0

∫

V

ρ(r′, tr)

|r − r′|
dv′ (2.20)

1We use the same notation V for potential as Griffiths, even though we also use V for volume



4

3 Liénard-Wiechert Potentials

Assume a point charge that moves along a curve with parametrization w(t), where
t is time and w(t) the position of the particle at time t. To obtain the electric
and magnetic fields we need to calculate the current density J(r, t) and the charge
density ρ(r, t) and plug them into the vector and scalar potentials, (2.16) and (2.20).
The charge and current distribution for a point charge moving along w(tr) is

ρ(r′, tr) = qδ3(r′ −w(tr)) (3.1)

J(r′, tr) = q
∂w(tr)

∂tr
δ3(r′ −w(tr)) (3.2)

The three-dimensional delta-function is defined by δ3(r − r0) = δ(x − x0)δ(y −
y0)δ(z − z0). From (2.16) and (2.20) we get

V (r, t) =
q

4πε0

∫

V

δ3(r′ −w(tr))

|r − r′|
dv′ (3.3)

A(r, t) =
µ0

4π

∫

V

qv(tr)δ
3(r′ −w(tr))

|r − r′|
dv′ (3.4)

where v(tr) =
∂w(tr)

∂tr
is the velocity of the particle at the retarded time.

We need to to handle substitution of variables the delta functions in a correct
way. First consider the integral

I =

∫

∞

−∞

δ(g(x′)) dx′ (3.5)

where we assume g(x) to be a monotonic function of x with one zero x = x1 in
the interval −∞ < x < ∞. To solve it we make a substitution of variables so that
ξ = g(x′). Then the integral becomes

I =

∫ g(∞)

g(−∞)

(

g(x′(ξ))

dx′

)

−1

δ(ξ) dξ (3.6)

Then

I =
1

∣

∣

∣

∣

g(x)

dx

∣

∣

∣

∣

x=x1

(3.7)

It means that the delta function in (3.5) can be written as

δ(g(x)) =
δ(x− x1)
∣

∣

∣

∣

g(x)

dx

∣

∣

∣

∣

x=x1

(3.8)
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where g(x1) = 0.2 Now we do the substitution of variables in a 3-dimensional
integral of the form

∫

V

δ(r′ −w(tr)) dv
′ =

∫

V

δ(r′ −w(tr)) dx
′dy′dz′ (3.9)

We let r′′ = r′ −w(tr) and make a change of variables so that

∫

V

(J)−1 δ(r′′) dx′′dy′′dz′′ (3.10)

where J is the Jacobian, i.e., the determinant

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x′′

∂x′

∂x′′

∂y′
∂x′′

∂z′
∂y′′

∂x′

∂y′′

∂y′
∂y′′

∂z′
∂z′′

∂x′

∂z′′

∂y′
∂z′′

∂z′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.11)

We use that
∂x′′

∂x′
= 1−

∂wx(tr)

∂tr

∂tr
∂x′

(3.12)

and
∂tr
∂x′

= −
1

c

x− x′

|r − r′|
(3.13)

Also
∂wx(tr)

∂tr
= vx(tr) (3.14)

is the x−component of the velocity of the charge at the retarded time. Then

∂x′′

∂x′
= 1−

vx(tr)(x− x′)

c|r − r′|
(3.15)

∂y′′

∂x′
= −

vy(tr)(x− x′)

c|r − r′|
(3.16)

(3.17)

and so on. We can then evaluate the Jacobian. After some algebra it can be written
as

J = 1−
v · (r − r′)

c|r − r′|
(3.18)

Notice that J > 0 since |v| < c. After the integration the delta function δ(r′′) makes
r′ = w(tr).

2If g(x) has N zeros the expression is δ(g(x)) =
N
∑

i=1

δ(x − xi)
∣

∣

∣

∣

g(x)

dx

∣

∣

∣

∣

x=xi

where g(xi) = 0, i = 1 . . .N .
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Now insert the charge density, see (3.1), and current density, see (3.2), in the
expressions for the vector and scalar potentials, see (2.16) and (2.20). Then use the
Jacobian (3.18) to get

A(r, t) =
µ0

4π

qv

|r −w| − β · (r −w)
(3.19)

V (r, t) =
1

4πε0

q

|r −w| − β · (r −w)
(3.20)

Here we have introduced β = v/c. We also see that

A(r, t) =
v

c2
V (r, t) (3.21)

We have to remember that w and v are the position and velocity of the charge at
the retarded time tr and that tr is implicitly given by

tr = t−
|r −w(tr)|

c
(3.22)

The retarded time makes it somewhat cumbersome to obtain the expressions for the
electric and magnetic fields for the charged particle, but as we will see it can be
done.

3.1 The electric and magnetic fields

To evaluate the expressions (2.9) for H and (2.11) for E for a point charge we need

to find the expressions for ∇V and
∂A

∂t
.

∇V = −
q

4πε0(|r −w| − β · (r −w))2
∇(|r −w| − β · (r −w)) (3.23)

Since |r −w| = c(t− tr) we have ∇|r −w| = −c∇tr. Use

∇(β · r) = β + (∇tr)c
−1a · r (3.24)

and
∇(β ·w) = (∇tr)c

−1(a ·w − v2) (3.25)

Here a is the acceleration at time tr. We also need an expression for ∇tr

∇tr = −c−1∇|r −w| (3.26)

where

∇|r −w| =
1

2|r −w|
∇(r2 + w2 − 2r ·w) (3.27)

and
∇(r2 + w2 − 2r ·w) = 2r + 2(∇tr)w · v − 2w − 2(∇tr)r · v (3.28)
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From (3.26)–(3.28) we get

∇tr = −
(r −w)

c|r −w| − (r −w) · v
(3.29)

We combine (3.23)–(3.25) with (3.29) to get

∇V =
qc

4πε0

[

v

(|r −w|c− (r −w) · v)2
−

(c2 − v2 + (r −w) · a)(r −w)

(|r −w|c− (r −w) · v)3

]

(3.30)

The time derivative of A is

∂A

∂t
=

∂tr
∂t

∂A

∂tr
(3.31)

Here
∂tr
∂t

=

(

∂t

∂tr

)

−1

(3.32)

(remember that t = tr + c−1|r −w(tr)|). By that we get

∂tr
∂t

=
c|r −w|

c|r −w| − (r −w) · v
(3.33)

Also
∂A

∂tr
= c−2aV +

v

c2
∂V

∂tr
(3.34)

and

∂V

∂tr
= −

q

4πε0(|r −w| − β · (r −w))2
∂

∂tr
(|r −w| − β · (r −w)) (3.35)

where (again remember that |r −w| = c(t− tr))

∂

∂tr
(|r −w| − β · (r −w)) = c−1

(

v2 − c2 − c2
∂t

∂tr
− a · (r −w)

)

(3.36)

Then

∂A

∂t
=

q

4πε0c3(|r −w| − β · (r −w))3
((a|r −w| − cv)(c|r −w| − v · (r −w))

+ v|r −w|(c2 − v2 + a · (r −w)
)

(3.37)

Let r = r − w(tr), |r | = |r − w| = c(t − tr), and u = cr̂ − v, then from
E = −∇V − ∂tA, (3.30) and (3.37)

E(r, t) =
q|r |

4πε0(r · u)3
[(c2 − v2)u+ r × (u× a)] (3.38)
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Also from B = ∇×A, A = c−2vV ,

∇×A = c−2(∇V × v − V∇× v) (3.39)

and
∇× v = (∇tr)× a (3.40)

one obtains

B(r, t) =
1

c
r̂ ×E(r, t) (3.41)

The expression for B is the familiar right hand rule that is valid for planar and
spherical waves. It holds also here, but notice that the direction r̂ is the unit vector
from the position of the charge at the retarded time, w(tr) to the field point r.

The relation (3.41) is not obvious since the first term in the right hand side of
(3.38) is a near field that drops off as r−2. The electric and magnetic near fields
of antennas do not satisfy (3.41). The far field of an antenna drops off as r−1 and
satisfies (3.41). The second term in the right hand side of (3.38) also drops off as
r−1 and constitute the radiated field. It not a surprise that (3.41) holds for that
field.

3.2 Final expressions

Here are the final expressions that we will use further on.
A charge q travels along the curve w(t), where t is time. At a fixed position r

the vector and scalar potentials A, V , the electric field E, and the magnetic flux
density field B, generated by q, and measured at r at time t are given by:

Retarded time

tr = t−
|r −w(tr)|

c

Vector potential A and scalar potential V

A(r, t) =
µ0

4π

qv(tr)

|r −w(tr)| − β · (r −w(tr))

V (r, t) =
1

4πε0

q

|r −w(tr)| − β · (r −w(tr))

A(r, t) =
v(tr))

c2
V (r, t)
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Electric field E and magnetic flux density B

E(r, t) =
q|r |

4πε0(r · u)3
[(c2 − v2)u+ r × (u× a)]

B(r, t) =
1

c
r̂ ×E(r, t)

r = r −w(tr)

|r | = |r −w(tr)| = c(t− tr)

u = cr̂ (tr)− v(tr)

v =
dw(tr)

dtr

a =
dv(tr)

dtr


