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May 7, 2019

1 Lecture 9 and 10

Special relativity

Inertial systems

An inertial system is a system that is either at rest or moves with a constant velocity.

Postulates

1. The principle of relativity. The laws of physics apply to all inertial systems.

2. The universal speed of light. The speed of light in vacuum is the same for all
inertial observers, regardless of the motion of the source.

The γ factor

γ =
1

√

1− v2/c2
(1.1)

We also introduce
β =

v

c
(1.2)

The Lorentz transformation

Let S and S̄ be two inertial systems where S̄ moves with velocity vx̂ seen from
S. At the same time S is seen to move with speed −vx̂ relative S̄. We choose
the coordinate systems that follow S and S̄ such that their origin coincide at time
t = t̄ = 0. An event that occurs at (x, y, z, t) in S occurs at (x̄, ȳ, z̄, t̄) in S̄ where

x̄ = γ(x− vt) (1.3)

ȳ = y (1.4)

z̄ = z (1.5)

t̄ = γ
(

t−
v

c2
x
)

(1.6)

An event (x̄, ȳ, z̄, t̄) in S̄ occurs at (x, y, z, t) in S where

x = γ(x̄+ vt̄) (1.7)

y = ȳ (1.8)

z = z̄ (1.9)

t = γ
(

t̄ +
v

c2
x̄
)

(1.10)
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Time dilatation

Consider that we have a clock at x = 0 in S and a clock at x̄ = 0 in S̄ and that the
origins of S and S̄ coincide when t = t̄ = 0. An observer in S watch the clock in
S̄. At time ∆t in S the clock in S̄ will, according to (1.10), be ∆t̄ = γ−1∆t. Notice
that it easier to use (1.10) than (1.6) since in (1.6) we need to first determine the
position x of the clock located in S̄.

Lorentz contraction

Let’s again have a clock at x = 0 in S and a clock at x̄ = 0 in S̄ and that the origins
coincide when t = t̄ = 0. An observer in S now observes a stick in S̄ that has one end
at r̄ = (0, 0, 0) and the other at r̄ = (∆x̄, 0, 0). At t = 0 the observer, according to
(1.3), then sees one end at r = (0, 0, 0) and the other at r = γ−1(∆x̄, 0, 0). Thus the
stick is γ−1 times shorter seen from an observer in S than what it is for an observer
in S̄. A stick in S̄ that has one end at r̄ = (0, 0, 0) and the other at r̄ = (0,∆ȳ, 0)
has, according to (1.6), the same length in both S and S̄.

Four vectors

Introduce the vector








x0

x1

x2

x3









=









ct
x
y
z








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The Lorentz transformation reads

x̄µ =

3
∑

ν=0

Λµ
νx

ν (1.12)

where Λ is the matrix

Λ =









γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1









(1.13)

The upper index µ in Λµ
ν is the the colon and the lower index is the row.

Definition: A vector aµ with four components is a four vector if it transforms ac-
cording to (1.14), i.e.

āµ =
3

∑

ν=0

Λµ
νa

ν (1.14)

Invariants under Lorentz transformations

If aµ, µ = 0, 1, 2, 3 is a four vector then it follows that

−(ā0)2 + (ā1)2 + (ā2)2 + (ā3)2 = −(a0)2 + (a1)2 + (a2)2 + (a3)2 (1.15)



3

We can write the left hand side with a short hand notation by introducing con-
travariant and covariant four vectors. The contravarint vector is aµ whereas the
covariant is aµ where

aµ = (a0, a1, a2, a3) ≡ (−a0, a1, a2, a3) (1.16)

Einstein introduced a summation rule to get rid of the summation sign

aµbµ = aµb
µ =

3
∑

n=0

anbn (1.17)

We call aµbµ the four-dimensional scalar product. From (1.15) we have that aµaµ is
invariant under the Lorentz transformation. It means that it has the same value in
all inertial systems.

If two events occur at xµ
A and xµ

B then the difference ∆xµ = xµ
A − xµ

B is a four
vector. The invariant interval between the two events is

∆xµ∆xµ = −c2∆t2 + d2 (1.18)

where d is the spatial distance. Then

−c2∆t̄2 + d̄2 = −c2∆t2 + d2 (1.19)

We have three cases (here we let ∆t > 0 and ∆t̄ > 0):

1. The events are space like if ∆xµ∆xµ > 0. It means that the distance d is larger
than c∆t. There is no way that an observer at xµ

A has got the information
about the event at xµ

B since the information cannot run faster than the speed
of light.

2. The events are light like if ∆xµ∆xµ = 0. It means that the distance d equals
c∆t. An observer at xµ

A may just receive the information about the event at
xµ
B.

3. The events are time like if ∆xµ∆xµ < 0. It means that the distance d is less
than c∆t. It is possible for observer at xµ

A to have received the information
about the event at xµ

B.



4

2 Lecture 10

2.1 Energy and momentum

Assume that we are in inertial system S and we see an object with mass m that
travels with velocity u, as measured in S. The relativistic momentum of the object
is the vector

p = (p1, p2, p3) = mγu (2.1)

where γ = 1/
√

1− β2 , and β = |u|/c. Now introduce p0 = mγc. It turns out that
pµ is a four vector. The invariant is

pµpµ = −m2c2 (2.2)

Einstein identified p0c as the relativistic energy

E ≡ mγc2 (2.3)

The energy for an object in rest is the famous E = mc2. It also follows from (2.3)
that

E2 − p2c2 = m2c4 (2.4)

This is a useful relation between the relativistic momentum of a particle and its
energy.

2.2 Equation of motion

F =
dp

dt
(2.5)

where p is the relativistic momentum.

Example

A charged particle, with mass m and charge q, moves in a uniform magnetc flux
density B = Bẑ. The particle moves in the xy plane with constant speed u. The
Lorentz force is then F = quB, directed perpendicular to the velocity. With the
same argument as in classical mechanics the particle moves in a circular orbit with
radius R. It is straightforward to see that all formulas are the same except that in
the relativistic case we have mγ everywhere where we in classical mechanics have
m. The classical radius is given by

F =
mu2

R
(2.6)

R =
mu2

F
=

mu

qB
(2.7)

The relativistic expression of the orbit’s radius is

R =
mγu

qB
=

p

qB
(2.8)

The rest of this lecture is on the solution of the equation of motion using Matlab.
It can be found in Chapter 7 of the exercise book.


