May 7, 2019

1 Lecture 9 and 10

Special relativity

Inertial systems

An inertial system is a system that is either at rest or moves with a constant velocity.

Postulates

- 1. The principle of relativity. The laws of physics apply to all inertial systems.
- 2. The universal speed of light. The speed of light in vacuum is the same for all inertial observers, regardless of the motion of the source.

The γ factor

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$
(1.1)

We also introduce

$$\beta = \frac{v}{c} \tag{1.2}$$

The Lorentz transformation

Let S and \overline{S} be two inertial systems where \overline{S} moves with velocity $v\hat{x}$ seen from S. At the same time S is seen to move with speed $-v\hat{x}$ relative \overline{S} . We choose the coordinate systems that follow S and \overline{S} such that their origin coincide at time $t = \overline{t} = 0$. An event that occurs at (x, y, z, t) in S occurs at $(\overline{x}, \overline{y}, \overline{z}, \overline{t})$ in \overline{S} where

$$\bar{x} = \gamma(x - vt) \tag{1.3}$$

$$\bar{y} = y \tag{1.4}$$

$$\bar{z} = z \tag{1.5}$$

$$\bar{t} = \gamma \left(t - \frac{v}{c^2} x \right) \tag{1.6}$$

An event $(\bar{x}, \bar{y}, \bar{z}, \bar{t})$ in \bar{S} occurs at (x, y, z, t) in S where

$$x = \gamma(\bar{x} + v\bar{t}) \tag{1.7}$$

$$y = \bar{y} \tag{1.8}$$

$$z = \bar{z} \tag{1.9}$$

$$t = \gamma \left(\bar{t} + \frac{v}{c^2} \bar{x} \right) \tag{1.10}$$

Time dilatation

Consider that we have a clock at x = 0 in S and a clock at $\bar{x} = 0$ in \bar{S} and that the origins of S and \bar{S} coincide when $t = \bar{t} = 0$. An observer in S watch the clock in \bar{S} . At time Δt in S the clock in \bar{S} will, according to (1.10), be $\Delta \bar{t} = \gamma^{-1} \Delta t$. Notice that it easier to use (1.10) than (1.6) since in (1.6) we need to first determine the position x of the clock located in \bar{S} .

Lorentz contraction

Let's again have a clock at x = 0 in S and a clock at $\bar{x} = 0$ in \bar{S} and that the origins coincide when $t = \bar{t} = 0$. An observer in S now observes a stick in \bar{S} that has one end at $\bar{r} = (0, 0, 0)$ and the other at $\bar{r} = (\Delta \bar{x}, 0, 0)$. At t = 0 the observer, according to (1.3), then sees one end at r = (0, 0, 0) and the other at $r = \gamma^{-1}(\Delta \bar{x}, 0, 0)$. Thus the stick is γ^{-1} times shorter seen from an observer in S than what it is for an observer in \bar{S} . A stick in \bar{S} that has one end at $\bar{r} = (0, 0, 0)$ and the other at $\bar{r} = (0, \Delta \bar{y}, 0)$ has, according to (1.6), the same length in both S and \bar{S} .

Four vectors

Introduce the vector

$$\begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix} = \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$$
(1.11)

The Lorentz transformation reads

$$\bar{x}^{\mu} = \sum_{\nu=0}^{3} \Lambda^{\mu}_{\nu} x^{\nu} \tag{1.12}$$

where Λ is the matrix

$$\Lambda = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0\\ -\gamma\beta & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(1.13)

The upper index μ in Λ^{μ}_{ν} is the colon and the lower index is the row.

<u>Definition</u>: A vector a^{μ} with four components is a four vector if it transforms according to (1.14), i.e.

$$\bar{a}^{\mu} = \sum_{\nu=0}^{3} \Lambda^{\mu}_{\nu} a^{\nu} \tag{1.14}$$

Invariants under Lorentz transformations

If a^{μ} , $\mu = 0, 1, 2, 3$ is a four vector then it follows that

$$-(\bar{a}^{0})^{2} + (\bar{a}^{1})^{2} + (\bar{a}^{2})^{2} + (\bar{a}^{3})^{2} = -(a^{0})^{2} + (a^{1})^{2} + (a^{2})^{2} + (a^{3})^{2}$$
(1.15)

We can write the left hand side with a short hand notation by introducing contravariant and covariant four vectors. The contravariant vector is a^{μ} whereas the covariant is a_{μ} where

$$a_{\mu} = (a_0, a_1, a_2, a_3) \equiv (-a^0, a^1, a^2, a^3)$$
 (1.16)

Einstein introduced a summation rule to get rid of the summation sign

$$a^{\mu}b_{\mu} = a_{\mu}b^{\mu} = \sum_{n=0}^{3} a^{n}b_{n}$$
(1.17)

We call $a^{\mu}b_{\mu}$ the four-dimensional scalar product. From (1.15) we have that $a^{\mu}a_{\mu}$ is invariant under the Lorentz transformation. It means that it has the same value in all inertial systems.

If two events occur at x_A^{μ} and x_B^{μ} then the difference $\Delta x^{\mu} = x_A^{\mu} - x_B^{\mu}$ is a four vector. The invariant interval between the two events is

$$\Delta x^{\mu} \Delta x_{\mu} = -c^2 \Delta t^2 + d^2 \tag{1.18}$$

where d is the spatial distance. Then

$$-c^2 \Delta \bar{t}^2 + \bar{d}^2 = -c^2 \Delta t^2 + d^2 \tag{1.19}$$

We have three cases (here we let $\Delta t > 0$ and $\Delta \bar{t} > 0$):

- 1. The events are space like if $\Delta x^{\mu} \Delta x_{\mu} > 0$. It means that the distance d is larger than $c\Delta t$. There is no way that an observer at x_A^{μ} has got the information about the event at x_B^{μ} since the information cannot run faster than the speed of light.
- 2. The events are light like if $\Delta x^{\mu} \Delta x_{\mu} = 0$. It means that the distance *d* equals $c\Delta t$. An observer at x^{μ}_{A} may just receive the information about the event at x^{μ}_{B} .
- 3. The events are time like if $\Delta x^{\mu} \Delta x_{\mu} < 0$. It means that the distance d is less than $c\Delta t$. It is possible for observer at x_A^{μ} to have received the information about the event at x_B^{μ} .

2 Lecture 10

2.1 Energy and momentum

Assume that we are in inertial system S and we see an object with mass m that travels with velocity u, as measured in S. The relativistic momentum of the object is the vector

$$\boldsymbol{p} = (p^1, p^2, p^3) = m\gamma \boldsymbol{u} \tag{2.1}$$

where $\gamma = 1/\sqrt{1-\beta^2}$, and $\beta = |\boldsymbol{u}|/c$. Now introduce $p^0 = m\gamma c$. It turns out that p^{μ} is a four vector. The invariant is

$$p^{\mu}p_{\mu} = -m^2 c^2 \tag{2.2}$$

Einstein identified p^0c as the relativistic energy

$$E \equiv m\gamma c^2 \tag{2.3}$$

The energy for an object in rest is the famous $E = mc^2$. It also follows from (2.3) that

$$E^2 - p^2 c^2 = m^2 c^4 \tag{2.4}$$

This is a useful relation between the relativistic momentum of a particle and its energy.

2.2 Equation of motion

$$\boldsymbol{F} = \frac{d\boldsymbol{p}}{dt} \tag{2.5}$$

where p is the relativistic momentum.

Example

A charged particle, with mass m and charge q, moves in a uniform magnetic flux density $\mathbf{B} = B\hat{\mathbf{z}}$. The particle moves in the xy plane with constant speed u. The Lorentz force is then F = quB, directed perpendicular to the velocity. With the same argument as in classical mechanics the particle moves in a circular orbit with radius R. It is straightforward to see that all formulas are the same except that in the relativistic case we have $m\gamma$ everywhere where we in classical mechanics have m. The classical radius is given by

$$F = \frac{mu^2}{R} \tag{2.6}$$

$$R = \frac{mu^2}{F} = \frac{mu}{qB} \tag{2.7}$$

The relativistic expression of the orbit's radius is

$$R = \frac{m\gamma u}{qB} = \frac{p}{qB} \tag{2.8}$$

The rest of this lecture is on the solution of the equation of motion using Matlab. It can be found in Chapter 7 of the exercise book.