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Receiver noise: repetition

Antenna noise is usually given as a noise temperature!

Noise factors or noise figures of different system components
are determined by their implementation.

When adding noise from several sources, remember to
convert from the dB-scale noise figures that are usually given,
before starting your calculations.

A passive attenuator in (room temperature), like a transmission line, has
a noise figure/factor equal to its attenuation.
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Receiver noise
A final example
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Let’s consider two (incomplete) receiver chains with equal
gain from point A to B:

A B

A B

1

2

G1 G2

G1 G2

5 April 2017 4

Receiver noise

A final example
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Equivalent noise sources at point A for the two cases would have the

power spectral densities:

( ) ( ) ( )( )0 1 1 2 1 01 1 / 1 /a f fN kT k F L G F L G T= + - + - + -1

( ) ( ) ( )( )0 1 2 1 01 1 1 /a f f fN kT k L F L F L G T= + - + - + -2

Two of the noise contributions are equal and two are larger in (2),

which makes (1) a better arrangement.

This is why we want a low-noise amplifier (LNA) close to the antenna.
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Receiver noise
The link budget

Noise reference level

Transmitter Receiver

”POWER” [dB]

!TX $f, TX'a, TX $p

'a, RX $f, RX
+

= k(T0)= -204 dB[W/Hz]

The receiver
noise calculations
show up here.

In this version the reference point is here

F [dB] is the noise figure of the equivalent 
noise source at the reference point and

B [dBHz] the system bandwidth .

⁄+ -
-
.
-/0

5 April 2017 6

OPTIMAL RECEIVER
AND

BIT ERROR PROBABILITY
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Optimal receiver
What do we mean by optimal?

Every receiver is optimal according to some criterion!

We would like to use optimal in the sense that we achieve a
minimal probability of error.

In all calculations, we will assume that the noise is white and
Gaussian – unless otherwise stated.
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Optimal receiver
Transmitted and received signal

t

t

Transmitted signals

1:

0:

s1(t)

s0(t)

t

t

Received (noisy) signals
r(t)

r(t)

n(t)

Channel

s(t) r(t)
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Optimal receiver
A first “intuitive” approach

“Look” at the received signal and compare it to the possible received
noise free signals. Select the one with the best “fit”.

t

r(t)

Assume that the following
signal is received:

t

r(t), s2(t)

0:

Comparing it to the two possible
noise free received signals:

t

r(t), s1(t)

1: This seems to be 
the best “fit”. We 
assume that “0” 

was the 
transmitted bit.
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Optimal receiver
Let’s make it more measurable

To be able to better measure the “fit” we look at the energy of the
residual (difference) between received and the possible noise free signals:

t

r(t), s0(t)

0:

t

r(t), s1(t)

1:
t

s1(t) - r(t)

t

s0(t) - r(t)

!" = $∣ &" ' − ) ' ∣*+'

!, = $∣ &, ' − ) ' ∣*+'

This residual energy is much 
smaller. We assume that “0” was 

transmitted.
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Optimal receiver
The AWGN channel

( )s t

a

( )n t
( )r t

The additive white Gaussian noise (AWGN) channel

( )s t

a

( )n t

( )r t

- transmitted signal

- channel attenuation

- white Gaussian noise

- received signal

( ) ( )s t n ta= +

In our digital transmission
system, the transmitted
signal s(t) would be one of,
let’s say M, different alternatives
s0(t), s1(t), ... , sM-1(t).
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Optimal receiver
The AWGN channel, cont.

It can be shown that finding the minimal residual energy (as we
did before) is the optimal way of deciding which of s0(t), s1(t), ... , sM-1(t)
was transmitted over the AWGN channel (if they are equally probable).

For a received r(t), the residual energy ei for each possible transmitted
alternative si(t) is calculated as

Same for all i Same for all i,
if the transmitted
signals are of
equal energy.

The residual energy is minimized by
maximizing this part of the expression.

!" = $∣ & ' − α*" ' ∣+,' = $(& ' − α*" ' )(& ' − α*" ' )∗,'

= $∣ & ' ∣+,' − 2Re α∗ $& ' *"∗ ' ,' +∣ α ∣+ $∣ *" ' ∣+,'
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Optimal receiver
The AWGN channel, cont.

The central part of the comparison of different signal alternatives
is a correlation, that can be implemented as a correlator:

( )r t

( )*
is t

or a matched filter

( )r t
( )*

i ss T t-

where Ts is the symbol time (duration).

The real part of 
the output from
either of these
is sampled at t = Ts

*a

*a

!
"#
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Optimal receiver
Antipodal signals

In antipodal signaling, the alternatives (for “0” and “1”) are

( ) ( )
( ) ( )
0

1

s t t

s t t

j

j

=

= -
This means that we only need ONE correlation in the receiver
for simplicity:

( )r t

( )* tj *a

If the real part
at T=Ts is
>0 decide “0”
<0 decide “1”

!
"#



8

4/11/18

8

5 April 2017 15

Optimal receiver
Orthogonal signals

In binary orthogonal signaling, with equal energy alternatives s0(t) and s1(t)
(for “0” and “1”) we require the property:

( )r t ( )*
0s t

*a

The approach here is to use two correlators:

( )*
1s t

*a

Compare real
part at t=Ts
and decide in
favor of the
larger.

(Only one correlator is needed, if we correlate with (s0(t) - s1(t))*.)

!
"#

!
"#

$% & , $( & = !$* & $(∗ & ,& = 0
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Optimal receiver
Interpretation in signal space

The correlations performed on the previous slides can be seen as
inner products between the received signal and a set of basis functions
for a signal space.

The resulting values are coordinates of the received signal in the
signal space.

( )tj

“0”“1”

Antipodal signals

( )0s t

“0”

“1”
( )1s t

Orthogonal signals

Decision
boundaries
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Noise pdf.

Optimal receiver
The noise contribution

Noise-free
positions

sE

sE
This normalization of
axes implies that the
noise centered around
each alternative is
complex Gaussian

( ) ( )2 2N 0, N 0,js s+
with variance σ2 = N0/2
in each direction.

Assume a 2-dimensional signal space, here viewed as the complex plane

Re

Im

sj

si

Fundamental question: What is the probability
that we end up on the wrong side of the decision
boundary?
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Optimal receiver
Pair-wise symbol error probability

sE

sE

Re

Im

sj

si

What is the probability of deciding si if sj was transmitted?

jid
We need the distance
between the two symbols.
In this orthogonal case:

2 2
2ji s s sd E E E= + =

The probability of the noise
pushing us across the boundary
at distance dji / 2 is

Pr("# → "%) = ( ( ⁄*#% 2
⁄,- 2
) = ( ( ./

,-)

The book uses erfc()
instead of Q(). = 1

2erfc (
./
2,-

)
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When s0 is the transmitted
signal, an error occurs when
the received signal is outside
this polygon.

Optimal receiver
The union bound

Calculation of symbol error probability is simple for two signals!

When we have many signal alternatives, it may be impossible to
calculate an exact symbol error rate.

s0

s1

s2

s3

s4

s6

s7

s5

The UNION BOUND is the sum
of all pair-wise error probabilities,
and constitutes an upper bound
on the symbol error probability.

The higher the SNR, the better 
the approximation!

5 April 2017 20

Optimal receiver
Symbol- and bit-error rates

The calculations so far have discussed the probabilities of selecting
the incorrect signal alternative (symbol), i.e. the symbol-error rate.

When each symbol carries K bits, we need 2K symbols.

Gray coding is used to assigning bits so that the nearest neighbors only
differ in one of the K bits. This minimizes the bit-error rate.

000

001
011

010

110

111
101

100

Gray-coded 8PSK
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Optimal receiver
Bit-error rates (BER)

2PAM 4QAM 8PSK 16QAM

Bits/symbol 1

Symbol energy Eb

BER !� 2#$
%& �

2

2Eb

!� 2#$
%& �

3

3Eb

~23!� 0.87 #$%&�

4

4Eb

~32!�
#$, max
2.25%&

�

EXAMPLES:

Gray coding is used when calculating these BER.
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Optimal receiver
Bit-error rates (BER), cont.

0/  [dB]bE N

Bit-error rate (BER
)

2PAM/4QAM
8PSK
16QAM
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Optimal receiver
Where do we get Eb and N0?

Where do those magic numbers Eb and N0 come from?

The bit energy Eb can be calculated from the received
power C (at the same reference point as N0). Given a certain
data-rate db [bits per second], we have the relation

!" = ⁄% &" ⇔ !"∣dB = %∣dB − &"∣dB

The noise power spectral density N0 is calculated according to

where F0 is the noise factor of the “equivalent” receiver noise source.

,- = ./-0- ⇔ ,-∣dB = −204 + 0-∣dB

THESE ARE THE EQUATIONS THAT RELATE DETECTOR
PERFORMANCE ANALYSIS TO LINK BUDGET CALCULATIONS!
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Optimal receiver

What about fading channels?

We have (or can calculate) BER expressions for non-fading AWGN

channels.

If the channel is Rayleigh-fading, then E
b
/N

0
will have an

exponential distribution (N
0

is assumed to be constant)

The BER for the Rayleigh fading channel is obtained by averaging:

-- E
b
/N

0

-- average E
b
/N

0

!"#Rayleigh(γ.) = 1
2

3

!"#AWGN(γ.)×9:;(γ.):γ.

γ.

γ.
9:;(γ.) =

1
γ.
= ⁄?@A @A
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Optimal receiver
What about fading channels?

0 2 4 6 8 10 12 14 16 18 20
10-6

10-5

10-4

10-3

10-2

10-1

100
Bit error rate (4QAM)

Eb/N0 [dB]

Rayleigh fading10 dB

10 x

No fading

THIS IS A SERIOUS PROBLEM!
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DIVERSITY ARRANGEMENTS
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Diversity arrangements
Let’s have a look at fading again

Illustration of interference pattern from above

Transmitter

Reflector

Movement

Position

A B

A B

Received power [log scale]

Having TWO separated antennas in this case may increase
the probability of receiving a strong signal on at least one of them.
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Diversity arrangements
The diversity principle

The principle of diversity is to transmit the same information on
M statistically independent channels.

By doing this, we increase the chance that the information will
be received properly.

The example given on the previous slide is one such arrangement:
antenna diversity.



15

4/11/18

15

5 April 2017 29

Diversity arrangements
General improvement trend

0 2 4 6 8 10 12 14 16 18 20
10-6

10-5

10-4

10-3

10-2

10-1

100
Bit error rate (4PSK)

Eb/N0 [dB]

Rayleigh fading
No diversity

10 dB

10 x

No fading

Rayleigh fading
M:th order diversity

10 dB

10M x
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Diversity arrangements
Some techniques

Spatial (antenna) diversity

...

Signal combinerTX

Frequency diversity

TX

D D D

Signal combiner

Temporal diversity

Inter-
leavingCoding De-inter-

leaving De-coding

We will focus on this
one today!

(We also have angular and polarization diversity)
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Spatial (antenna) diversity
Fading correlation on antennas

Isotropic
uncorrelated
scattering.

With several
antennas, we
want the fading on
them to be as
independent
as possible.

E.g.: An antenna 
spacing of about 0.4 

wavelength gives 
zero correlation.
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Spatial (antenna) diversity
Selection diversity

RSSI = received
signal strength
indicator
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Spatial (antenna) diversity
Selection diversity, cont.

By measuring BER instead of RSSI, we have a better guarantee
that we obtain a low BER.
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Spatial (antenna) diversity
Maximum ratio combining

This is the optimal way (SNR sense) of combining antennas.
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Spatial (antenna) diversity

Simpler than MRC, but almost the same performance.
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Spatial (antenna) diversity

Performance comparison

Cumulative distribution of SNR

RSSI selection

MRC
Comparison of

SNR distribution

for different number

of antennas M and

two different diversity

techniques.

These curves can be used to calculate fading margins.

[Fig. 13.10]
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Spatial (antenna) diversity
Performance comparison, cont.

Comparison of
2ASK/2PSK BER 
for different number
of antennas M and
two different diversity
techniques.

RSSI selection
MRC

[Fig. 13.11]


