

Bandwidth

Shannon-Hartley Theorem

 $C = B \mathbf{x} \log_2(1 + S/N)$

The capacity of a communication link is linearly dependent on the bandwidth(B), and logarithmically on the signal to noise level(S/N).

Classic modulation formats

Analog formats

- On-Off keying
- Amplitude modulation
- Frequency modulation

9

16

How do we use all these spectral efficiencies?	1000 1000 1000 1000 1000 1000 1000 100
Example: Assume that we want to use MSK to transmit 50 kbit/sec, and want to know the required transmission bandwidth.	
Take a look at the spectral efficiency table:Contained percentage of total energyspectral efficiency90 %1,29 Bit / s / Hz99 %0,85 Bit / s / Hz99 %0,85 Bit / s / HzThe 90% and 99% bandwidths become: $B_{90\%} = 50000/1.29 = 38.8 \text{ kHz}$ $B_{99\%} = 50000/0.85 = 58.8 \text{ kHz}$	
	38

Summai	У		
	Modulation method	spectral efficiency for 90 % of	spectral efficiency for 99 % of
BPSK with root-raised cosine pulses		total energy Bit / s / Hz	total energy Bit / s / Hz
	$\begin{array}{c} \text{BPSK} \\ \hline \bullet \text{BAM} (\alpha=0.5) \end{array}$	0,59 1,02	0,05 0,79
	QPSK, OQPSK, MSK	1,18 1,29	0,10 0,85
	$\begin{array}{c} \text{GMSK} (\text{B}_{\text{G}} \ T=0.5) \\ \text{QAM} (\alpha = 0.5) \end{array}$	1,45 2,04	0,97 1,58
	TAB	LE 11.1 in textbook	ζ.

Another aspect:

802.11ax

- 4 1201 Mbit/s
- BPSK/QPSK/16-QAM/64-QAM/256-QAM/1024-QAM
- Coding rate ½, ¾, 2/3, 5/6,...
- Guard interval 800, 1600, 3200 ns
- Symbol duration 3.2, 6.4, 12.8 us
- OFDM
- MuMIMO
- Triggerbased random access, spatial frequency reuse,
- NAV, TWT, ...