
Advanced Computer Security 2021

Department of Electrical and Information Technology
Lund University

Project: Anatomy of an Exploit

Learning goals:

• Introduce the steps of reverse engineering.

• Get familiar with the x86 assembler language.

• Get an understanding for how ROP exploitation works.

Computer Security
(EITA25)

Advanced Computer Security
(EITN50)

Web Security
(EITF05)

Advanced Web Security
(EITN41)

Cryptography
(EDIN01)

Data Security
(EITF55)

Helsingborg



version 2021-10-06

Preparations

• Read the master’s thesis, http://www.eit.lth.se/index.php?gpuid=288&L=0&eauid=829,
and study the following chapters: Buffer Overflows (2.2), Return-Oriented Programming
(2.4) and Address Space Layout Randomization (2.6).

• Read the entire project description (this document) before you begin.

Instructions for Project Approval

The project consists of a number of assignments that guide your work and you should use the
assignment numbers to structure your report.

• Indicate on the front page your group number in addition to your name(s).

• In the report, give clear indications with reference to the related assignment and question
numbers where you put your answers.

• Document your work with logs and printouts.

• You should submit the report electronically in pdf format. Give the file the following name:
“adsecxy projectD.pdf”, where xy is the number of your group and use the subject ”EITN50”
in the email that contains the report. Send it to ben.smeets.lu@analys.urkund.se.

2

http://www.eit.lth.se/index.php?gpuid=288&L=0&eauid=829


version 2021-10-06 2 PREREQUISITES

1 Introduction

In this assignment you will study a real-world exploit. The objective of this project is for you to
explain its behaviour through static and dynamic analysis. This particular exploit utilizes a tech-
nique called Return-Oriented Programming, which grants attackers new vectors of exploitation.

The exploit is written in Python and is available here: http://www.exploit-db.com/exploits/
33610. The installation program for the vulnerable software is also available at that link. Note
that this application is vulnerable and may be exploited by a third party if you allow
connections through the port of your choice (default 80) in your firewall.

You will be given a VirtualBox virtual machine with the above software included. The VM is
located at S:\Courses\eit\EITN50\Project - Exploit but can also be downloaded via the link
given on the Canvas page
https://canvas.education.lu.se/courses/13677/pages/vm-and-image-downloads.

Because of network capacity problems and changes in the labcomputer configurations special steps
are needed to make the VM run. Basically it is about making VirtualBox to create the VM instance
on the computer’s c:\Temp instead of on a directory on a net drive. Instructions will be posted.
See also last section of this document.

2 Prerequisites

In order to execute the exploit you need Python 2.7.x 64-bit1.

In order to analyze the exploit dynamically you need a debugger. A common Windows based
debugger is OllyDbg2, which gives you fine-grained control over the program execution.

The above software is already installed on the virtual machine.

Preparatory assignment 1

If you have no experience with debuggers, begin by reading the following tutorials on
OllyDbg:

http://octopuslabs.io/legend/blog/archives/31.html

http://octopuslabs.io/legend/blog/archives/115.html

You should be able to:

• Start a program / Attach a running program

• Step through the program

• Enable/disable breakpoints

• Follow data in the dump and stack windows

A cheat sheet for OllyDbg is available here: http://ollydbg.de/quickst.htm.

Preparatory assignment 2

To get familiarized with the x86 assembly language, read (and I mean really read!!)

Mandatory: http://www.eit.lth.se/fileadmin/eit/courses/eitn50/Project_
Exploit/assembly_intro.pdf

1https://www.python.org/download
2http://www.ollydbg.de/

3

http://www.exploit-db.com/exploits/33610
http://www.exploit-db.com/exploits/33610
https://canvas.education.lu.se/courses/13677/pages/vm-and-image-downloads
http://octopuslabs.io/legend/blog/archives/31.html
http://octopuslabs.io/legend/blog/archives/115.html
http://ollydbg.de/quickst.htm
http://www.eit.lth.se/fileadmin/eit/courses/eitn50/Project_Exploit/assembly_intro.pdf
http://www.eit.lth.se/fileadmin/eit/courses/eitn50/Project_Exploit/assembly_intro.pdf
https://www.python.org/download
http://www.ollydbg.de/


version 2021-10-06 3 ASSIGNMENTS

Optional: http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

It is not the purpose of this course (or project) to teach you assembly programming and do not
expect the course assistant to teach you assembly. You learn best by doing that yourself and do
some own coding of small problems. It is also more fun.

If you get stuck on assembly show the assistant the code you are trying and what your particular
problem is.

3 Assignments

3.1 Part A

The exploit’s payload is sent as a UserID string in an HTTP GET request, as is clearly seen in
the exploit code.

Assignment 1

Try to run the exploit and report, in detail, what happens.

Assignment 2

Study the exploit code and extract the gadgets and parameters used for the ROP-part of the
attack. Illustrate what the stack looks like. Ignore the NOPs and shellcode.

It can be rather difficult to see the meaning behind each gadget by just looking at static code, even
if it is relatively well documented. It is much easier to see what is going on by actually executing
the code and observing what each instruction in the exploit achieves in the end.

Assignment 3

You will now perform dynamic analysis on the exploit and document as much information
about it as possible. The execution of the exploit begins at address 0x00468702 in module
fmws. The program should be in “running” mode in Olly before executing the exploit.
Executing the exploit should make Olly break at the address above. You might have to run
through the program a couple of times before the exploit’s code is executed. The following
information is required:

• A complete listing of all instructions executed by the exploit from the instruction at the
above mention address, up until the shellcode. Redundant instructions like the NOPs
can be simplified in the listing.

• Highlight the instructions that you find essential for the exploit.

• Clearly motivate what purpose each essential instruction has on the outcome of the
exploit, e.g. for the instruction mov eax, ebx, do not write “moves ebx to eax”,
rather explain why the instruction is present and what purpose it serves. Make sure you
number your instruction listing so that you can refer to them in your documentation.
Hint: Analyze the gadgets from bottom up. It is easier to understand what needs to
happen in order to run the shellcode if you begin your analysis from the last gadget.

• What about the rest of the instructions? Discuss.

• What is the purpose of the filler code in the exploit? When performing the dynamic
analysis, try to figure out why the fillers are needed. Add images when discussing to
make it easier to follow.

4

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html


version 2021-10-06 4 HOW TO USE LAB COMPUTERS FOR PROJECT D.

ASLR (Address Space Layout Randomization) makes sure that executable modules in memory
has different base addresses each time it is executed in order to hinder code-reuse attacks such as
ROP. It is obvious that the vulnerable application has at least some parts of memory unprotected
with this defense.

Assignment 4

Which parts of the memory in the vulnerable application are not protected by ASLR? How
can you tell?

Assignment 5

How does the exploit use the non-protected parts to be able to execute arbitrary code?

There are many defenses that are aimed at hindering both code injection attacks and code reuse
attacks. The WˆX (Write xor eXecute) defense hinders memory pages from being writeable
and executeable at the same time. In Windows this defense is labeled DEP for Data Execution
Prevention.

Assignment 6

Is DEP enabled for the vulnerable application? How can you tell?

Assignment 7

Propose a way to extend the exploit to work when DEP is enabled for the application.
Research other ROP attacks on google and http://exploit-db.com.

3.2 Part B
Assignment 8

Implement a working exploit under DEP. You may use the Immunity Debugger plugin
“Mona” https://github.com/corelan/mona, https://www.corelan.be/index.php/2011/
07/14/mona-py-the-manual/.

4 How to use lab computers for project D.

When you import the VM ova file and have the virtual box image on the C:\Temp disk you can
make a copy to a USB drive to save it for the next day.

1. Download the VM from the courses Canvas page.

2. Move it to the Temp directory in the C disk.

3. Import the VM image to the Temp directory.

(a) Select the Temp directory as “Machine Base Folder”

• Create a subdirectory to avoid conflicts. The Temp directory is used systemwide.
Others could overwrite your work.

4. When you are done, export the VM image to a USB drive.

(a) Right click on the VM and select “Export to OCI. . . ”

(b) Select format: “Open Virtualization Format 1.0”

(c) Select your USB drive as destination.

5

http://exploit-db.com
https://github.com/corelan/mona
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/
https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/


version 2021-10-06 4 HOW TO USE LAB COMPUTERS FOR PROJECT D.

5. When you get back, check if your subdirectory remains in the Temp directory. If not, you
can import the image that you exported earlier to resume your work.

6. You can now export a new updated VM image and repeat from step 3.

6


	Introduction
	Prerequisites
	Assignments
	Part A
	Part B

	How to use lab computers for project D.

