Comparison between RADIUS and Diameter

Anna Hosia
Helsinki University of Technology
Telecommunications Software and Multimedia Laboratory

May 28, 2003

Abstract

RADIUS is a widely deployed protocol for AAA (Authentication, Authorization,
and Accounting) control, while Diameter is a draft planned as its successor. The
protocols resemble each other in many ways. For example, their packet formats are
quite similar, and they provide support for same kind of AAA mechanisms. However,
while RADIUS is a pure client-server protocol, Diameter is more of a peer-to-peer
protocol, as also Diameter servers can ask for certain services.

On the transport layer RADIUS uses connectionless UDP, while Diameter utilizes
either SCTP or TCP. Diameter’s operation is more reliable, mainly because its spec-
ification addresses issues such as fail-over procedure and proxy/agent support, while
RADIUS specification omits these subjects.

One of Diameter’s strengths is that it is backward compatible with RADIUS. Di-
ameter contains also mechanisms for version compatibility support, while RADIUS
specification hardly discusses the issue. For instance, Diameter supports error mes-
sages while RADIUS does not. Both protocols are designed to be extensible, but
Diameter provides more extension mechanisms. Diameter also scales far better than
RADIUS, mainly because RADIUS has no provisions for congestion control.

Diameter always uses some kind of transport layer security scheme, such as IPSe-
curity or TLS, while for example IPSecurity support for RADIUS is optional. This
affects mechanisms for entity authentication and overall data security making Diam-
eter a more secure protocol.

1 Introduction

RADIUS and Diameter are both protocols for AAA (Authentication, Authorization, and
Accounting) control. Nowadays, RADIUS is widely implemented and used, but since it
has some severe limitations, Diameter is planned as its successor. [1, 2]

The basic operation of RADIUS and Diameter is similar. They both carry authentication,
authorization and configuration information between a Network Access Server (NAS) and
a shared Authentication Server. Users wishing to have a link outside contact their NAS, and
the NAS asks the server for access. The server has a database containing authentication and
configuration information for making decisions. [1, 2] The AAA architecture is presented
in Fig. 1.



HUT TML 2003 T-110.551 Seminar on Internetworking

AAA Server

Autherticaton Authorraton Accomime

Metwo s

NAS
AAA Client| [®

End -User

Figure 1: AAA architecture. The AAA client at the network point of entry (NAS) commu-
nicates with the AAA server to provide AAA services. [10]

The first RADIUS (Remote Authentication Dial In User Service) RFC was published in
1997, and was originally developed to provide dial-up PPP and terminal server access.
However, since those days network access servers and routers have changed enourmously
with the rise of new access technologies, such as DSL, Mobile IP, and wireless techniques.
This development has put new demands on AAA protocols. [1, 2]

There are two more RADIUS RFCs, which fix faults found in older ones. However, revis-
ing all problems of RADIUS - for example the lack of provisions for congestion control -
would require major changes to the protocol. Thus IETF AAA Working Group has taken
the mission to develop RADIUS a successor, Diameter, which addresses the problems en-
countered with RADIUS. At the moment Diameter is still an Internet Draft and subject to
changes. [1, 2]

As the technological evolution has not stopped, Diameter is designed to be extensible.
There is a common base specification that can be used by itself for accounting purposes
only. In addition, there are separate applications, which provide extra functionality for
different environments. Currently there are two applications, Mobile IPv4 for mobile nodes



HUT TML 2003 T-110.551 Seminar on Internetworking

and NASREQ for PPP/SLIP dial-up and terminal server access environment. [2]

This document compares multiple aspects of RADIUS and Diameter. It starts with an
overview section handling for example the AAA mechanisms of the protocols. This is fol-
lowed by an examination of the suitability of the protocols for evolving, changing environ-
ments. After that overall usability issues, such as reliability and scalability, are discussed.
Finally, the end of the document is devoted to security issues.

2 Protocol overview

As Diameter has evolved from RADIUS, the operation of the protocols resembles each
other. They use same kind of packets and support many same AAA functionalities. On the
other hand, there are many both minor and major differences, since Diameter’s purpose is
to improve the operation of RADIUS.

2.1 Protocol basics

Diameter extends many functionalities of RADIUS. As a result the packet format has
evolved, transport mechanisms have changed, and the overall concept has shifted from
client-server towards peer-to-peer.

Operation paradigm

RADIUS operates in a pure client-server paradigm, where the NAS acts as client. The
RADIUS server does not initiate any messages, but only replies to the messages sent by
the clients. RADIUS is also a protocol of stateless nature. Nodes maintain a very limited
amount of information - this includes for example message identifiers in order to associate
incoming replies with sent requests. [1]

Diameter operation resembles that of RADIUS, as NASes act as Diameter clients to the
Diameter server. However, with Diameter any node can initiate a request, which makes
Diameter more of a peer-to-peer protocol. Diameter maintains also more state information
than RADIUS. It defines the concepts of both transaction and session states, and even so
called "stateless agents" have to maintain transaction state information. [2]

Packet formats

The basic format of RADIUS and Diameter packets is similar. They include first a fixed-
size header, and after that a variable number of attributes, which are generally referred to
as AVPs (Attribute Value Pairs). [1, 2]

Both RADIUS and Diameter headers include only basic information necessary to the pro-
tocol operation. This includes the code field, which contains the message type, and the
message length field. RADIUS has an identifier field and Diameter a so called hop-by-hop
identifier, which are both used for matching incoming replies with former requests and for
detecting duplicates. RADIUS header contains also an Authenticator field for message au-
thentication. Diameter has a field for version number, application ID, end-to-end identifier,
and some command flags. [1, 2]



HUT TML 2003 T-110.551 Seminar on Internetworking

In both protocols AVPs are used for carrying all specific data. Each AVP consists of at-
tribute code, length, and value, and in Diameter’s case also of some control flags and
vendor ID. The value field contains information concerning authentication, authorization,
or accounting, as well as for example routing. There are some limitations that particular
AVPs must or must not be present in certain types of packets. [1, 2]

Transport issues

RADIUS and Diameter use different transport protocols for information delivery. RADIUS
runs over UDP (User Datagram Protocol), while Diameter can use either SCTP (Stream
Control Transmission Protocol) or TCP (Transmission Control Protocol). [1, 2]

UDRP is a natural choice for RADIUS, since it is a stateless protocol. UDP is also a light-
weight protocol, and it is simple to create multi-threaded RADIUS servers with it. The cost
of using UDP is that RADIUS implementations have to create and manage retransmission
timers themselves, as UDP provides no retransmission strategy. [1]

Contrary to RADIUS, Diameter runs over reliable transport mechanisms, that is, over
SCTP or TCP. At the moment Diameter clients have to support either of them, and servers
both. However, it may become mandatory for clients to support SCTP. Both protocols pro-
vide acknowledged, error-free, non-duplicated transfer of user data. Thus they offer better
service than UDP, but on the other hand, they are heavier to implement and operate. [2, 3]

As typical AAA protocols, RADIUS and Diameter are both application-driven. This means
that the rate by which they send messages depends mostly on how quickly the applica-
tion generates them, not on the size of the congestion window or network settings. With
application-driven protocols there is not usually enough traffic to piggyback acknowledge-
ment messages. Thus reliable protocols, such as TCP and SCTP, may double the traffic
amount compared with implementations using UDP. [4]

Proxies and agents

Both RADIUS and Diameter allow additional nodes on the path between the communicat-
ing client and server. With RADIUS these nodes are generally referred to as proxies. [1]
With Diameter the term agent is used, because Diameter specifies several agent types, of
which "proxy" is one type. [2]

Diameter defines four kinds of agents, which provide relay, proxy, redirect or translation
services. Relays forward messages based on routing-related AVPs and realm routing infor-
mation. Proxies forward messages similarly to relays, but also make policy enforcement
decisions. Redirects refer clients to servers, and the actual data are not routed via them.
Translation agents perform protocol conversion between Diameter and other AAA proto-
cols, such as RADIUS. [2]

Both protocols allow creating proxy (or agent) chains, where there are several intermediate
nodes. It is also possible in both protocols that a node acts as a server to some requests,
and as an agent to other kinds of requests. However, there is one important difference con-
cerning proxies in the specifications: The RADIUS specification does not define precisely
the behaviour of proxies, and thus it may vary between implementations. Contrary to that,
Diameter defines its agents’ behaviour explicitly. [1, 2]



HUT TML 2003 T-110.551 Seminar on Internetworking

2.2 AAA mechanisms

Both being usable AAA protocols, RADIUS and Diameter have many similart AAA skills.
However, the capabilities of Diameter are sometimes more expansive.

This section is based on RFC 2989, "Criteria for Evaluating AAA Protocols for Network
Access" ([5]), and RFC 3127, "Authentication, Authorization, and Accounting: Protocol
Evaluation" ([6]) unless otherwise stated. The former describes how protocols can be
evaluated, and the latter gives evaluation results for some protocols including RADIUS
and Diameter.

Authentication capabilities

Both RADIUS and Diameter support authentication using NAIs (Network Access Iden-
tifier), CHAP (Challenge Handshake Authentication Protocol), EAP (Extensible Authen-
tication Protocol), and PAP (Password Authentication Protocol); according to RFC 3127
they both meet requirements for using these authentication methods totally. However,
RADIUS has some limitations: Its CHAP authentication is subject to dictionary attacks,
and it protects clear-text passwords (PAP) only on a hop-by-hop basis. The EAP support in
RADIUS is not described in the generic RFC, but in RFC 2869 "RADIUS Extensions". Di-
ameter base protocol offers support for NAIs, while the NASREQ application (see Sec. 1)
for CHAP, EAP and PAP.

With RADIUS only clients can make reauthentication requests. This is done by simply
sending a new authentication request to the server. However, the server cannot demand
reauthentication on demand, as it cannot initiate messages (for server-initiated messages
see Sec. 2.3). [1] Diameter instead specifies two message types, Re-Auth-Request and
Re-Auth-Answer, which allow also server-initiated reauthentication. [2]

Diameter supports also authorization without authentication, while the support of RADIUS
is two-folded. For the time being, RADIUS requires some form of credential in all autho-
rization request messages. On the other hand, it is possible to create new message types to
support authorization without authentication in RADIUS.

Authorization capabilities

According to RFC 3127 both RADIUS and Diameter offer some support for access rules,
authorization restrictions, and filters. However, neither of them meets the requirements
concerning this area totally, but for example the abilities of proxy brokers to deny access
are good in both protocols.

As with reauthentication, Diameter supports reauthorization on demand better than RA-
DIUS. In RADIUS reauthorization is currently coupled with reauthentication, and thus it
suffers from the same problems. In Diameter reauthorization is possible at any time.

Protocols differ also in the ability of the AAA server to ask client NASes to disconnect
a session of a particular user for authorization policy reasons. Diameter supports such
unsolicited disconnects, while radius doesn’t. [1, 2] For more information, see Sec. 2.3.

Accounting capabilities

Basic accounting capabilities of RADIUS and Diameter are similar. Both protocols support



HUT TML 2003 T-110.551 Seminar on Internetworking

real-time accounting, meaning that account reporting happens synchronously with events
in a time-scale of seconds. Diameter base protocol supports also accounting timestamps
and dynamic accounting - that is, accounting for dynamic authentication and authorization.
RADIUS Extensions, RFC 2869, supports the same capabilities.

Both protocols also support guaranteed delivery of accounting information with applica-
tion level acknowledgements, and have extensible accounting records. The delivery mech-
anisms relates to the retransmission procedure described in Sec. 4.1, and the protocol ex-
tensibility is discussed in Sec. 3.2.

2.3 Message handling

Diameter and RADIUS systems have different message handling capabilities. With Diam-
eter any of the involved parties can ask for certain services, while only RADIUS clients can
initiate communication. Diameter supports also an error reporting scheme, while RADIUS
does not.

Server-initiated messages

RADIUS specification does not support server-initiated messages. RADIUS acts a pure
client-server implementation: the client makes a request, and the server replies. [1] How-
ever, there is an IETF work in progress, "Dynamic Authorization Extensions to RADIUS",
which defines RADIUS server-initiated messages. On the other hand, supporting the draft
is optional. [2]

In Diameter support for server-initiated messages is mandatory. This allows the server
for example to request to abort service to a particular user or demand reauthentication or
reauthorization. [2]

Silent discarding and error messages

RADIUS does not support error messages. When faults occur, RADIUS simply silently
discards packets - drops them without further processing. This applies for example to
packets with an unknown code, or packets the length of which is shorter than it says on the
length field. In other words, invalid packets are always silently discarded. [1]

Contrary to RADIUS, Diameter has an error reporting mechanism. Diameter messages are
silently discarded only, when it is the most suitable way to solve the problem. For example
received duplicate answers are still silently discarded. [2]

In general there are two different types of Diameter errors: protocol and application errors.
Application error messages are informational, or tell about a transient or permanent failure
- or even about success. The error explanation is stored in Result-Code AVP, which is
read by the peer the message of which originated the error. Protocol errors differ from
application errors in the way that each proxy and relay agent on the transfer path may try
to correct the error. That is why the presence of protocol errors is always stated in the
protocol header as one of the control bits, the "E" bit, set. [2]



HUT TML 2003 T-110.551 Seminar on Internetworking

3 Suitability for evolving environments

When tested in real environments, needs for new protocol versions or extensions may be
discovered. Thus overall compatibility should be considered already in the protocols de-
sign phase. The issue is especially important for Diameter, since the protocol is meant to
be extensible and compatible with RADIUS.

3.1 Compatibility

The version compatibility support of RADIUS is fairly poor. The RADIUS specification
simply states, that messages arriving with an invalid Code field are silently discarded,
and attributes with an unknown type may be ignored. RADIUS does not support any
capability negotiation, and its attributes do not contain information, whether the support
for an attribute is necessary. [1] Thus different RADIUS versions will work together only
as long as they use same code and type information. As RADIUS does not support even
error messages, the entities which do not receive any replies to their requests have no way
of knowing whether the other party drops messages of if there is for example network
congestion.

Diameter is more developed in compatibility issues than RADIUS. Diameter supports ca-
pability negotiation, attribute flags, and error handling. Every time when two Diameter
peers establish a transport connection, they must exchange the Capabilities Exchange mes-
sages. These allow the peers to discover each other’s protocol version number, supported
Diameter applications and security mechanisms among other things. [2]

In Diameter every AVP also contains a "mandatory (M) bit", which specifies whether sup-
port of the AVP is required. When a party receives a message with an unrecognized manda-
tory AVP, it sends back an answer specifying the failed AVP. [2]

Diameter header also contains an eight-bit field for protocol version, while RADIUS header
doesn’t. [1, 2] Currently there is only one Diameter version, but in the future the version
field may appear to be important.

Diameter is also designed to be backward compatible with RADIUS. For example Di-
ameter AVP numbers 1 through 255 are reserved for RADIUS attributes, and similarly
command codes O through 255 are reserved for RADIUS packet type codes. [2]

Diameter specification defines also translation agents (see Sec. 2.1), which provide proto-
col conversion between Diameter and other AAA protocols. [2] With RADIUS the trans-
lation agents must change for example transport layer protocol data units and message
formats, and also manage the differences concerning state information.

3.2 Extensibility

Both protocols are designed to be extensible. However, Diameter contains for that more
mechanisms.

RADIUS REFC states extensibility as one of the key features of the protocol. As RADIUS



HUT TML 2003 T-110.551 Seminar on Internetworking

transactions are comprised of AVPs, extensions are made by creating AVPs. This allows
vendors for example to create new authentication methods. [1]

The actual mechanism for these extensions is the use of RADIUS attribute 26 "Vendor-
Specific". In this attribute the first four bytes of the value section identify the vendor, and
the rest of the value field is used for the vendor-specific information, the exact format of
which is defined by the vendor itself. [1]

Extensions must be created carefully so that they do not affect the common operation of
the protocol. If a RADIUS server does not recognize a vendor-specific attribute it must
ignore it. In that case the client should try to cope without the vendor-specific data even if
in a degraded mode. [1]

RADIUS is designed to be extended, when the original base attributes do not offer desired
functionality. Diameter instead is designed to be extended even for common applications.
The base protocol may be used by itself only for accounting applications - for all other
purposes some extension application must be used. [2]

There are several mechanisms to extend base Diameter protocol. These include defining
new AVP values or creating new AVPs, creating new authentication/authorization or ac-
counting applications, and defining new application authentication procedures. [2]

While RADIUS extensions are vendor-specific, in Diameter the extensions are for public
use. Thus IANA controls the address spaces of AVP values, AVP types, and application
identifiers, and for new allocations one must send a request to IANA (Internet Assigned
Numbers Authority) with a proper explanation or specification. New command codes can
be created only by IETF Consensus. Although Diameter is supposed to be extended, cre-
ating new extensions is encouraged only, when there are no existing solutions available.
Otherwise the standardization and implementation issues could become too complicated.

(2]

One point with affects the protocol extensibility, is the difference in the attribute address
spaces of RADIUS and Diameter. In RADIUS the attribute type field is eight bits long
allowing only 256 attributes. Thus all the other attributes must be used inside the "Vendor-
Specific" attribute limiting somewhat the flexibility of the protocol. In Diameter there are
32 bits for the AVP code allowing over 4 billion different AVPs. [1, 2]

4 Protocol usability

Protocol reliability deals with aspects such as the quality and failure detection of transport
services. It covers the fail-over to another server, when the primary server is unable to
answer. Scalability relates to how many clients a shared AAA server can serve at the same
time.

4.1 Reliability

RADIUS does not define exact retransmission behaviour. The specification simply states
with regard to the Access-Request messages that "if no response is returned within a length



HUT TML 2003 T-110.551 Seminar on Internetworking

of time, the request is re-sent a number of times". [1] Thus the details of the RADIUS re-
transmission algorithm are implementation-specific, which makes also the protocol relia-
bility vary between implementations. Similarly the RADIUS specification does not contain
precise fail-over mechanisms, but the behaviour varies again between implementations. [2]
When a RADIUS client finds the server to be down or unreachable, it can forward its re-
quest to an alternate server. [1]

In Diameter the transport failure behaviour is far better defined. There is a transport fail-
ure algorithm defined in "AAA Transport Profile" ([4]), which all Diameter implemen-
tations must support. The protocol has two special messages, Device-Watchdog-Request
and Device-Watchdog-Answer to detect transport failures. The Diameter specification also
contains explanation of fail-over procedure. [2]

The Diameter fail-over procedure is more precise than in RADIUS. Diameter nodes main-
tain a pending message queue, which contains sent messages which haven’t received an
answer yet. After detecting a transport failure, messages in the queue are sent to an al-
ternate agent. This excludes some messages - for example, if the unavailable peer was
the fixed destination of some message, there’s no point to resend that message. When the
failed peer is again available, the transport connection is re-established. This is referred to
as failback. [2]

RFC 3127 ([6]) evaluates both RADIUS and Diameter to meet fail-over requirements only
partially. For example, Diameter is blamed for not specifying how and when to switch
back to the primary server, when it has recovered.

4.2 Scalability

One of the main reasons for creating Diameter is the poor scalability of RADIUS. As
RADIUS lacks any support for congestion control, it is unsuitable for many network envi-
ronments.

Protocol headers

Both RADIUS and Diameter contain identifier header fields to associate replies with the
original requests (see Sec. 2.1). As the identifier field of RADIUS is eight bits long, RA-
DIUS can in principle have only 256 pending request at the same time. For Diameter with
its 32-bit field the theoretical maxmimum is over 4 billion. [1, 2]

However, this scalability limitation of RADIUS can be worked around. The identifier is
actually used to identify connections between two endpoints described by a 5-tuple (client
IP address, client port, UDP, server IP address, server port). Thus one of the well known
techniques is to change the source UDP port number of the request. [4]

RADIUS and Diameter headers differ also with regard to alignment rules. With RADIUS
header fields are simply put one after other without any special care for alignment. [1]
With Diameter the fields are 32-bit aligned, which makes many modern processors able to
handle the transactions faster. [2]

States

States information can be kept on two different layers - on the transport layer or on the



HUT TML 2003 T-110.551 Seminar on Internetworking

session level. The scalability on the transport layer is proportional to the number of
client/server relationships, and on the session level to the number of users. However, main-
taining any state information consumes resources. [7]

On the transport layer RADIUS implementations are lighter than Diameter implementa-
tions. As RADIUS runs over stateless UDP, the only state information it has to maintain
are the identifiers for matching replies with requests. [1] Contrary to that, the stateful trans-
port protocols used by Diameter - TCP and SCTP - require keeping track of window sizes
and timers. [2] Thus Diameter’s transport layer can be considered less scalable than UDP
operation.

On the session level RADIUS does not maintain any real-time states. However, it maintains
an off-line "state" for accounting purposes, so that accounting stops and accounting starts
can be matched together. [7] Diameter instead maintains much more session level state
information. So called stateful agents (for agents see Sec. 2.1) keep track of all authorized
active sessions. All agents - also stateless ones - must also keep track of transactions state
for fail-over purposes. [2]

Congestion control

To avoid congestion, the client should not retransmit a packet to the same server or choose
another server until it can be reasonably sure, that previous packet has exited the network
on the same path. Thus the client should discover the available bandwidth by examining
the response messages, and then self-clock - that is, adjust its transmission rate based on
that information. [4]

RADIUS has no provisions for congestion control. That is one reason for why RADIUS
may not be suitable for large-scale systems, as it may suffer degraded performance and
lose data. [1]

Diameter does not either have any application level support for congestion control. How-
ever, it runs over TCP or SCTP, both of which are reliable transport protocols and able to
self-clock. The self-clocking and congestion control work fine as long as the client is com-
municating directly with the server. However, end-to-end self-clocking may be impossible,
if there are other AAA agents between the client and the server. With agents such as relays
or proxies, there are two separate connections - one between the additional agent and the
client, the other between the agent and the server. Thus responses do not flow directly from
end to end, and self-clocking is not possible. However, agents such as transport proxies
and redirects do allow self-clocking, since there is only one transport connection. [4]

Shared secrets

RADIUS always uses shared secrets, and also Diameter may utilize them. The distribution
and safe storage of the secrets may present major problems, especially with RADIUS. This
topic is discussed in Sec. 5.1.

4.3 Other usability issues

IPv6

The Internet is slowly starting to change over from IPv4 to IPv6. That fact is taken into

10



HUT TML 2003 T-110.551 Seminar on Internetworking

account in the Diameter design process, but the RADIUS specification is originally made
considering IPv4 as the network protocol. However, RFC 3127 ([6]) states, that both RA-
DIUS and Diameter meet the requirements of running over IPv4 and IPv6 totally.

The operation of RADIUS when run over IPv6 is specified in RFC 3162, "RADIUS and
IPv6". Using IPv6 requires some new attributes, mainly because IPv6 addresses are longer
than IPv4 addresses. Anyway, there are actually few changes, and thus IPv6 does not seem
to represent major problems. [8]

The specification of RADIUS over IPv6 also respects the fact that the change from IPv4 to
IPv6 is going to be slow. The specification states, that the client may not know in advance,
whether the server supports IPv6 or not. The client may also provide IPv6 access natively,
using [Pv6 within IPv4 tunnels, or using IPv6 over IPv4 without explicit tunnelling. The
choice of IPv6 usage has necessarily no effect on RADIUS functions. [8]

Diameter does not have any problem related to the differences of address lengths in IP
versions. That is because the Diameter "Address" data type includes the address type,
which specifies the actual length of the address. [2]

Firewalls

RFC 3127 discusses also the firewall friendliness of the protocols. By firewall friendli-
ness it means not making the firewall look into the packets too deeply, but mainly to work
with the mere application port number. In this check RADIUS is stated to be totally com-
pliant with the requirement, as it uses an officially assigned port 1812. RADIUS is also
generally known to be operational in environments, where there are firewalls acting as a
proxy. However, Diameter meets the requirement only partially. Diameter’s problem is the
SCTP transport protocol, which is not widely recognized yet. [6] There are no officially
assigned TCP and SCTP port numbers for Diameter operation yet. However, they have
been requested of IANA. [2]

5 Security

AAA nodes are tempting targets for attackers, because they provide network access ser-
vices. In general, Diameter gives better attention to security related issues than what RA-
DIUS does.

IP Security (IPSec) offers protection against many security threats. All Diameter clients
must support IPSec and may support TLS (Transport Layer Security) protocol, and Diam-
eter servers must support both. Diameter implementations must always use some kind of
transmission-level security. RFC 3162, "RADIUS and IPv6" ([8]), defines the use of [IPSec
for RADIUS, but supporting it is not mandatory. [2]

Diameter has also a separate end-to-end security framework, "Diameter CMS Security
application", which provides many security services. It offers wider transport-layer pro-
tection than mere IPSec or TLS do. It is strongly recommended but not obligatory for the
Diameter implementations to support the end-to-end security.

The text mentions shortly some of the most common security attacks and if the protocol

11



HUT TML 2003 T-110.551 Seminar on Internetworking

specifications offer protection against them. The structure of this section is partly based on
reference [7], which is a comparison between older versions of RADIUS, Diameter, and
COPS protocols.

5.1 Entity authentication

Proper entity authentication - ensuring the identity of the other party involved in communi-
cation - offers protection against many common attacks. It enables one to counter attacks
based on masquerading, man-in-the-middle, and unauthorized access, and may also help
protection against information forgery and denial of service attacks.

Entity authentication can happen on hop-by-hop basis, when adjacent nodes discover each
other’s identities. The other, more comprehensive alternative is end-to-end authentication,
when the identities are solved even if there are proxies or other agents (see Sec. 2.1) on the
path between the client and the server.

RADIUS authentication

RADIUS entity authentication applies only between two adjacent nodes. Thus there is no
end-to-end authentication with proxy RADIUS. RADIUS authentication scheme is based
on the concept of shared secrets, where each two directly communicating parties must have
a shared secret.

RADIUS authentication is based on using the authenticator header field (see Sec. 2.1). The
field is called the Request Authenticator when travelling from the client to the server, and
the Response Authenticator the other way round. When PAP authentication is used, the
authentication is guaranteed in the following way: The client sends an Access-Request
message, and the Request Authenticator contains a random number. The message also
contains a User-Password attribute, the value of which is a one-way MDS3 hash calculated
over the concatenation of the shared secret and the Request Authenticator, finally xored
with the user password. When the server replies, the Response Authenticator contains a
one-way MDS5 hash over the concatenation of the RADIUS packet (where the authenticator
field is replaced with the Request Authenticator from the previous Access-Request packet),
and the shared secret. Thus the endpoints of the communication can repeat the calculation
and verify, that the other party used the right secret (and password). [1]

With RADIUS proxies each two directly communicating entities have their own shared
secret. With Access-Request messages the proxy first decrypts the user password by using
its shared secret with the client, and then encrypts the password again using the secret with
the server. In the other direction proxies must recalculate the Response Authenticator. [1]

Problems with RADIUS authentication scheme

The shared secrets scheme used by RADIUS calls forth many problems. While the secrets
are stored on the RADIUS servers they must be protected against attacks trying to discover
them. Also the distribution of shared secrets must be organized so as not to reveal the
secrets to unauthorized parties. The difficulties are emphasized with the large number of
secrets to protect, as there must be own secret for each hop in a proxy chain. [1] This
results in a large administrative burden, which may turn out as administrators reusing the
shared secrets. [2]

12



HUT TML 2003 T-110.551 Seminar on Internetworking

The poor quality of the random number a the Request Authenticator may also cause se-
curity problems. If the same Request Authenticator and shared secret combination occurs
more than once, an attacker may use it for replay attacks. Thus the random numbers of the
Request Authenticators should be unique over the lifetime of the shared secret in use. As
the same secret may be used over other connections in other geographic regions as well,
the Request Authenticator should be both globally and temporally unique. [1]

Besides being unique, the Request Authenticator should also be unpredictable. Otherwise
an attacker may send an Access-Request message to the server with a certain Request
Authenticator and get an answer. Then if the real client would use the same Request
Authenticator, the attacker could replay the former answer masquerading as the server. [1]

Diameter authentication

Diameter’s hop-by-hop authentication is guaranteed by TLS or IPSec. They both provide
security across a transport connection as long as there are no untrusted third party agents
on the transport path. In those cases end-to-end security in needed. [2]

Diameter agents complicate the entity authentication procedure. As data is routed via re-
lays or proxies, the former authentication method is not sufficient any more. However, Di-
ameter’s end-to-end security framework provide message origin authentication also when
there are relays or proxies present. [2] The security offered by translation agents depends
on the other protocol as well, and is not covered here.

Problems with Diameter authentication

Diameter implementations must support peer authentication between communication end-
points using a pre-shared key. This brings forth same kind of key management problems
as RADIUS has. Luckily, as there are other authentication methdods, such as using certifi-
cates, available as well, the management problem is smaller in scale. [2]

Diameter security framework uses digital signatures along with digital certificates and/or
asymmetric encrypting techniques. The latter includes the problem of distributing public
keys, the former the management of certificates - especially the verification of certificate
revocations may create a security hole. [9]

5.2 Data security

Data security deals with the quality of data transfer. Data integrity check should be pro-
vided in order to prevent data corruption. Data confidentiality instead links to eavesdrop-
ping and traffic flow analysis - its purpose is to prevent unauthorized parties to gain infor-
mation about the data.

RADIUS data security

As RADIUS packet data are used when calculating the Response Authenticator, it pro-
vides an authentication and integrity check for the data. However, as the calculation of
the Request Authenticator does not include the RADIUS packet, it does not offer the same
protection. RADIUS Extensions (RFC 2869) defines an additional data authentication and
integrity mechanisms, but it is only used during Extensible Authentication Protocol (EAP)
sessions. [2]

13



HUT TML 2003 T-110.551 Seminar on Internetworking

RADIUS support for confidentiality is very limited. All user passwords are always sent en-
crypted, but that’s usually the only encrypted part of the packet. [1] Neither the RADIUS
specification nor the RADIUS Extensions provide support for whole packet confidential-
ity. Also the password protections scheme does not seem to be flawless - at least some
in the IETF community are concerned that it might not provide sufficient confidentiality
protection. [2]

RADIUS data authentication, integrity and confidentiality support suffers also because
of its proxy policy. Because of the hop-per-hop shared secrets and changing identifiers,
all proxies must be able to read and modify any message. Proxies also may or may not
send Proxy-State attributes from the client side to the remote server, and they may need
to modify other attributes to enforce a local policy. Thus the messages may change when
travelling through the proxies, which makes the entire encryption difficult. As a result, the
user should be able to trust the proxies the packet is visiting. [1]

Diameter data security

As Diameter requires using either IPSec or TLS, Diameter data is automatically authen-
ticated, confidential, and replay and integrity protected as long as there are no relays or
proxies present. However, when relays or proxies route Diameter messages, they insert
and remove routing information. As proxies also implement policy enforcement, the may
have to modify other parts of the message as well. Thus in the presence of relays and
proxies AVP integrity and confidentiality is guaranteed by using the Diameter end-to-end
security framework. [2]

5.3 Other security considerations

Neither of the protocols provides direct support against denial of service (DoS) attacks.
DoS attacks are typically carried out by flooding the target equipment with bogus traffic.
Even if the target could recognize the received data as faulty, the recognition requires
certain amount of processing, which may finally submerge the target. However, the design
of SCTP protocol, over which Diameter may run, includes some resistance to flooding. [3]

Another issue, which relates to denial of services attacks, is the enabling of failover be-
tween AAA agents. Both RADIUS and Diameter support some kind of failover algorithms,
which the client starts when it has not received any answers for a certain amount of time.
This makes the protocols vulnerable for the following service of denial attack: The attacker
may try to swamp the network, so that response packets are dropped, and the client starts
its failover procedure. By repeating this attack, the client cycles between different AAA
agents without ever getting real service. [4]

Both protocols offer some protection against replay attacks, Diameter better than RADIUS.
Diameter requires transmission level security using TLS or [PSec, which guarantees replay
protection. [2] However, as IPSec can be used with RADIUS as well to protect it from the
replay attacks.

14



HUT TML 2003 T-110.551 Seminar on Internetworking

6 Conclusion

RADIUS has been in wide-scale use for years, and has thus proven itself to be a workable
AAA protocol. However, it suffers from poor scalability, which makes it an unacceptable
choice in large networks.

As Diameter is made to address RADIUS flaws, it is superior to its predecessor concerning
many issues. Consequently, the further development of RADIUS is hardly reasonable any
more, since the outcome would very likely resemble the functionality of Diameter. That is
why the resources should be directed in improving Diameter instead.

Despite its better capabilities, Diameter is far from perfect. One of its greatest disadvan-
tages is its complexity, when compared to RADIUS. However, its extensibility allows it
to satisfy very different reqirements, and thus when the standardization process is over,
Diameter is likely to become the most widely deployed AAA protocol.

References

[1] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote Authentication Dial In
User Service (RADIUS). RFC 2865, IETF Network Working Group, June 2000.

[2] PatR. Calhoun, John Loughney, Erik Guttman, Glen Zorn, and Jarki Arkko. Diameter
Base Protocol. Work in Progress, IETF AAA Working Group, December 2002.

[3] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, 1. Rytina, M.
Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Protocol. RFC 2960,
IETF Network Working Group, October 2000.

[4] Bernard Aboba and Jonathan Wood. Authentication, Authorization and Accounting
(AAA) Transport Profile. Work in Progress, IETF AAA Working Group, January
2003.

[S] B. Aboba et al. Criteria for Evaluating AAA Protocols for Network Access. RFC
2989, IETF Network Working Group, November 2000.

[6] D. Mitton, M. St.Johns, S. Barkley, D. Nelson, B. Patil, M. Stevens, and B. Wollff.
Authentication, Authorization, and Accounting: Protocol Evaluation. RFC 3127, IETF
Network Working Group, June 2001.

[7] Ronnie Ekstein, Yves T’Joens, Bernard Sales, Olivier Paridaens. AAA Protocols :
Comparison between RADIUS, DIAMETER and COPS. Internet draft (expired), IETF
AAA Working Group, April 2000.

[8] B. Aboba, G. Zorn, and D. Mitton. RADIUS and IPv6. RFC 3162, IETF Network
Working Group, August 2001.

[9] Pat R. Calhoun, Stephen Farrell, and William Bulley. Diameter CMS Security Appli-
cation. Internet draft (expired), IETF AAA Working Group, March 2002.

[10] Christopher Metz. AAA PROTOCOLS: Authentication, Authorization, and Account-
ing for the Internet. IEEE Internet Computing online, 2001.

15



