
. . . M A K E S Y O U R N E T W O R K S M A R T E R

AXIS Communications
A world of intelligent networks

. . . M A K E S Y O U R N E T W O R K S M A R T E R

ETRAX

Per Zander

Axis Communications AB

per.zander@axis.com

What to learn from this?

This presentation goes through details
that might seem unimportant for
learning how Internet applications
work.
But, to design embedded Internet
applications, the understanding of all
aspects of the system is crucial.

Inside a typical network product

Ethernet/
Token ring/

Coax/
Twinax/

CPU
Network
Interface

Memory

serial i/o

parallel i/o

SCSI
Memory
Interface

...

Product requirements

Low price in moderately high volumes.
¬ Integrate as much as possible into a

single chip.
¬ Memory is a large part of the

manufacturing cost and the choice of
size, speed and type is therefore crucial.

High performance
¬ The network and the I/O interface should

limit performance. Not internal
processing.

What is ETRAX?

A family of chips designed by Axis for
products that connect peripheral equipment
to a LAN (local area network).
First chip (ETRAX 1) released 1993.
Latest versions (produced until 2011):

¬ ETRAX 100LX (100 Mbit/s Ethernet)
¬ ETRAX FS (dual 100 Mbit/s Ethernet)

ETRAX 4 (10 Mbit/s Ethernet) will be used
in this course.

ETRAX 4 Overview

Ethernet/
Token ring CPU

Network
Interface

Memory

serial i/o

parallel i/o

SCSI
Memory
Interface

...

ETRAX 4

ETRAX 4 is not a CPU!
It’s a System on a Chip.

ETRAX 4 Overview

Network controller for Ethernet (802.3)
and Token ring (802.5) networks.
CPU with an architecture (CRIS)

optimized for this type of embedded
systems.
Two advanced parallel ports for

connecting all types of printers and
other parallel devices.
SCSI-2 interface.
RS-232 serial port.

ETRAX 4 Overview

Two DMA channels.

Timer for generating periodic
interrupts.

Memory interface that can connect
standard memory types and speeds
without external logic.

General purpose I/O pins.

Internal registers (mode registers) for
controlling all I/O interfaces.

. . . M A K E S Y O U R N E T W O R K S M A R T E R

Data Communication Repetition

Ethernet

Ethernet is a communication protocol
at OSI layer 1 and 2 (physical and
data link).
It was created in the early 80:s and

has then evolved from 10 Mbit/s
performance to today's 1 Gbit/s and
10 Gbit/s.
The original usage was for

communication between a small
number of scientific computers.

Ethernet Packet Format

Data is divided into variable length packets.

Minimum frame size 64 bytes and maximum 1518 bytes.

Minimum inter packet gap 96 bits.

dst addr src addr type data CRC

bytes: 6 6 2 46-1500 4

preamble Ethernet frame preamble preambleEthernet frameIPG IPG Ethernet frame

t

Ethernet Access Protocol

Access protocol: CSMA/CD
¬ Carrier Sense Multiple Access with

Collision Detect
¬ Wait for medium free, then transmit.
¬ If collision then retransmit after a random

period.
¬ If repeated collisions then backoff

exponentially.

¬ One shared medium.

Full duplex mode option
¬ Point-to-point connections, no CSMA/CD
¬ Commonly used in switched networks

today

Ethernet First Generation

10 Mbit/s.

Coaxial cable.

Shared medium.

10-100 machines on
one network.

Physical size limited.

TE TE TE TE

Ethernet First Generation PHY: 10Base-5

One sender and multiple receivers.

Half duplex, i.e. it’s not possible to
send and receive at the same time.

Collisions are detected by sensing the
voltage levels on the line.

Cable and cable connectors are
expensive and fragile.

Ethernet PHY: 10Base-T

The shared coaxial cable is replaced
with hubs and dedicated cables.
10 Mbit/s.
Unshielded twisted pair cable (UTP).

hub

TE

hub

hub

TETETE

Ethernet PHY: 10Base-T

Logically but not physically shared
medium. Still CSMA/CD.

¬ Point-to-point links, i.e. the cable is
dedicated to one station.

¬ Hubs are active devices that propagate
all transmissions and collisions to all
stations with no delay or buffering.

Half duplex (one sender at a time).

Ethernet PHY: 10Base-T

The cable is a cheap unshielded
twisted pair cable (voice grade
telephone cable). One twisted pair for
transmission and one pair for
receiving.

Collisions are detected by
simultaneous activity on receive and
transmit pair.

Ethernet PHY: 100Base-T and 1000Base-T

Higher speed (100 Mbit/s or 1 Gbit/s)

Half duplex and full duplex modes.
¬ Half duplex mode similar to 10Base-T
¬ Full duplex mode ignores CSMA/CD

protocol, only possible with switches or
point-to-point connections

Ethernet network controller

In hardware:
¬ Physical encoding and access protocol.
¬ Address recognition.
¬ CRC generation and checking.
¬ Retransmission on collision.
¬ Receive/transmit frames to/from buffer

structure in memory.

Ethernet network controller

In software
¬ Initialization (station address, etc.).
¬ From higher level protocols, assemble

frames in the transmit buffer.
¬ On receive interrupt, decode frames from

the receive buffer and dispatch to higher
level protocols.

Buffer structures: linear buffer

Frames are laid out in memory
consecutively.

Receive buffer memory management
is difficult.

No internal fragmentation.

Buffer structures: ring buffer

Buffer memory is divided into smaller
pages arranged in a ring.

Memory management is simple.

A single frame isn’t necessarily
located on consecutive addresses
(buffer wrap around).

Small internal fragmentation.

Buffer structures: ring buffer

frame frame

Buffer structures: linked list 1

Each frame is located in a separate
block, linked together with other
frames in a linked list.

Increased hardware complexity.

Large internal fragmentation in receive
list since each block must be capable
of holding a max sized frame.

Buffer structures: linked list 1

frame

Buffer structures: linked list 2

A frame is fragmented into a number
of small blocks linked together with
other frames in a linked list.

Small internal fragmentation.

Efficient memory management.

Frame data isn’t consecutive.

Buffer structures: linked list 2

frame frame

ETRAX 4 buffer structure

Ring buffer, size: 2k - 64k.

Divided into 256-byte blocks.

Protocol headers fit within first block.

Frames linked together by an end of
frame pointer.

ETRAX 4 Frame structure

cmd endptr data data data

Frame data

256-byte block

ETRAX 4: Frames in ring

Frames wrap around at ring buffer end.

End of list is indicated by a 256-byte
block with cmd == 0.

c3 c4 end a1 a2 b1 c1 c2

frame frame frame--frame

ETRAX 4 Transmit ring buffer

Start transmission by setting
R_TR_START to point to first block to
be transmitted and then enable
transmitter in R_TR_CMD. (SW)

Packet transmitted interrupt is issued
for each packet transmitted. (HW)

c3 c4 end a1 a2 b1 c1 c2

frame frame frame--frame

R_TR_START

ETRAX 4 Transmit ring buffer

R_TR_START is updated during
transmission and points to the block
after the last completely transmitted
packet. (HW)

Transmission stops when reaching end
of list. (HW)

c3 c4 end a1 a2 b1 c1 c2

frame frame frame--frame

R_TR_START

1 2 34

ETRAX 4 Receive ring buffer

Receiver starts at block 0 in ring buffer
after reset. (HW)

When a complete packet is received,
CMD and ENDPTR for the packet is
updated, and CMD for the block after the
packet is set to “end of list” (cmd == 0).
(HW)

a1 a2 end

ENDPTR

R_REC_END

frame

ETRAX 4 Receive ring buffer

Receive packet interrupt is issued for
each packet written into buffer. (HW)

Buffer full condition occurs when data is
written into the block pointed to by
R_REC_END. (HW)

Received packets are handled by
traversing the buffer from last previously
processed receive packet till end of list
(cmd == 0). (SW)

ETRAX 4 Receive ring buffer

When a receive packet has been
handled, the space it occupies is made
available for new packets by moving
R_REC_END forward to the end of the
handled packet. (SW)

a1 a2 b1 c1 c2 c3 c4 end

R_REC_END

Handled packets

frame frame frame

12

ETRAX 4 mode registers

address register name initial
value

00 write R_LATE_WS<7:0> FF

01 write R_EARLY_WS<1:0> 03

02 write R_BUS_MODE<7:0> 00

04 write R_DRAM_MODE<7:0> 00

06 write R_CLOCK_MODE<7:0> FF

07 write R_DMA_CONFIG<7:0> 00

.......

ETRAX 4 mode reg. example: R_EARLY_WS

7 2 1 0

+---+---+---+---+---+---+---+---+

| x x x x x x |earlyws|

+---+---+---+---+---+---+---+---+

|

+---- Early
waitstates,inserted

before RD_ WR_ or
INTA_.

ETRAX 4 interrupt handling

Each group of interrupts has a mask
register that enables/disables the
interrupts in that group.

When an interrupt occurs, the CPU
jumps to a common interrupt handler for
each group. To determine which
interrupt that occurred, each interrupt
group has a status register with one bit
for each interrupt in the group.

ETRAX 4 interrupt handling

Before the interrupt handler returns,
the interrupt must be cleared
(acknowledged). There is therefore an
interrupt acknowledge register (or
register bit) for each interrupt.

The CRIS CPU Architecture

The main goals of the architecture:
¬ Efficient execution on a 16- or 8-bit data

bus with standard memories and no
cache.

¬ 32-bit address space to avoid problem
with segmented address space which
many embedded processors have.

CRIS Characteristics

32-bit data and addresses.

16-bit instruction width with some
variable size instructions.

15 general registers.

 A program counter, a condition code
register and nine special function
registers.

RISC inspired instruction set but with
complex addressing modes.

operand 2 operand 1mode opcode size

15 12 11 10 9 6 5 4 3 0

CRIS Instruction format

Basic instruction format is 16-bits and must
be word aligned.

Two register operands.

Byte (8-bit), word (16-bit) , dword (32-bit)
operand size.

Addressing mode field.

CRIS basic addressing modes

There are four basic addressing modes
that are coded in the mode field of the
instruction.

¬ quick immediate mode: r2, 4
¬ register mode: r2, r3
¬ indirect mode: r2, [r3]
¬ indirect with auto-increment: r2, [r3+]

CRIS long immediate constants

Special case of indirect with auto-
increment using PC as index register
The word or dword following the

instruction holds the immediate
constant

move.d [pc+], r3
The assembler accepts long

immediate constants, e.g.:

move.d 0x12345678, r3

CRIS complex addressing modes

All other addressing modes are
implemented using prefix instructions.

The prefix instruction generates an
address that replaces one of the
operands of the next instruction.

Examples of complex addressing modes

add.b r1,[1234]

add.w r1,[r2+r3.b]

add.w r1,[r4=r2+r3.w]

add.d r1,[r2+123]

add.d r1,[r2=r3+123]

add.d r1,[r2+[r3].d]

CRIS branches

Conditional branch instructions test
the flags in the condition code
register.

The branches are relative with an 8-
bit or 16-bit offset and are therefore 1
or 2 words long.

Branches have one delay slot.

CRIS branch conditions

There are 16 different branch
conditions:

bcc bcs bne beq bvc bvs
bpl bmi bls bhi bge blt
bgt ble ba bext

CRIS subroutine calls

The subroutine call instruction, JSR,
saves the return address in the
subroutine return point register, SRP.

Leaf subroutines therefore don’t have
to push the return address on the
stack.

Leaf Subroutine Call

JSR leaf_subr ; SRP = PC+2
….

leaf_subr:

….

RET ; PC = SRP

NOP ; delay slot

Nested Subroutine Call

JSR subr ; SRP = PC + 2
….

subr:

PUSH SRP ; M[-SP] = SRP

….

JUMP [SP+] ; PC = M[SP+]

CRIS move multiple instruction

The MOVEM instruction reads/writes
a specified number of registers into
consecutive memory addresses.

This is used for pushing/popping
parameters to/from the stack in
procedure calls.

MOVEM r7,[sp+]

CRIS interrupts

CRIS uses vectorized interrupts.
¬ The interrupt source produces an 8-bit

vector number. The CPU then jumps to
IBR + <vector nr> * 4.

Enabling/disabling all interrupts is
done by setting/clearing the interrupt
enable bit in the CCR (EI/DI
instruction).

Vectorized interrupts

IBR register

Interrupt vector
table in RAM

Interrupt routines
in RAM

vector 0

00vector nr vector n

+

In CPU

From I/O

Interrrupt
routine 0

Interrrupt
routine n

Data organization in memory

CRIS is a little endian CPU.

Data has no alignment restrictions, but
there is a performance penalty for
unaligned data accesses.

Instructions must be word aligned.

byte
word

dword

lsb

lsb

msb

msb

lsbmsb An
An+1
An+2
An+3
An+4
An+5
An+6

07

Little endian data

Least significant bit in a word is placed
in the lowest address.

. . . M A K E S Y O U R N E T W O R K S M A R T E R

ETRAX 100LX overview

A highly integrated network

peripheral controller

ETRAX 100LX features (1)

100 MIPS RISC CPU.

8 kbyte on-chip cache memory.

MMU

100Mbit/10Mbit Ethernet controller.

Serial and parallel ports, SCSI, ATA,
USB and shared RAM interfaces.

DMA controlled network and I/O
interfaces.

ETRAX 100LX features (2)

Support for DRAM, SRAM, Flash
PROM and external I/O interfaces.

Two DMA channels for external I/O.

PLL for clock multiplying. 20 MHz
clock input.

Two timers, plus a watchdog timer.

Bootstrap load support over network,
parallel and serial port.

ETRAX 100LX block diagram

ETRAX 100LX characteristics

256-pin BGA package, 27x27x2.15
mm.

3.3 V, 105 mA (typ).

5 V-tolerant I/O.

0-70 C ambient temp.

0.25 m process, chip size 5.6x5.6
mm.

Print server block diagram:

ETRAX 100LX

Printer
driver
(TTL)

Network
transceiver

Flash
PROM

DRAM

20 MHz
oscillator

MII

Disk server block diagram:

ETRAX 100LX

SCSI
driver
(TTL)

Network
transceiver

Flash
PROM

DRAM

20 MHz
oscillator

MII

ETRAX 100LX CPU

100 MIPS

16-bit instruction width.

8, 16 and 32-bit data width.

Little endian

Supports unaligned data accesses.

Axis CRIS instruction set

Compatible with ETRAX1-4

ETRAX 100LX cache

Combined instruction and data cache.

Direct mapped.

Write allocate.

Copy back.

8 kbyte

256 entries x 32 byte cache lines

32-bit read/write port.

ETRAX 100LX cache organization

ETRAX 100LX DMA Characteristics

Provides low-latency high-throughput data
transfer capability to/from peripheral
interfaces

Optimized for block transfers between
peripheral interfaces and ETRAX100LX
memory

One DMA controller serving 10 DMA
channels

Connects to 14 peripheral interfaces

Throughput limited by peripheral interface

DMA
controller

External memory

Cache

PI

PI=Peripheral Interface

PI

PI

PI

PI

PI

PI

PI

PI

PI
ETRAX 100LX

ETRAX 100LX DMA overview

packet packet

eop
wait

eol,
eop,
wait

R_DMA_FIRST

ETRAX 100LX DMA Transmit list

packet

eol

R_DMA_FIRST

eop

ETRAX 100LX DMA Receive list

ETRAX 100 (Predecessor to ETRAX 100LX)

Floorplan Chip photo

ETRAX 100LX MCM 4+16

Multi-Chip-Module containing:
¬ ETRAX 100LX
¬ 4 Mbyte Flash PROM
¬ 16 Mbyte DRAM
¬ 100 Mbit/s Ethernet transceiver
¬ Some other components

An almost complete Linux system
in a single 27 x 27 mm package

¬ Only needs a power supply, an
Ethernet connector and a 20 MHz
oscillator externally.

ETRAX FS

200 MHz CPU

Dual 100 Mbit/s Ethernet interface

I/O processor for flexible I/O handling

128 kbyte internal memory

Crypto accelerator

ETRAX FS characteristics

256-pin BGA package, 27x27x2.15 mm.

3.3 V I/O, 1.5 V core, 0.5 W typ.

5 V-tolerant I/O.

0-85 C ambient temp.

0.13 m process, chip size 5.6x5.6 mm.

