

What is ETRAX?

- A family of chips designed by Axis for products that connect peripheral equipment to a LAN (local area network).
- First chip (ETRAX 1) released 1993.
- Latest versions (produced until 2011):
 ETRAX 100LX (100 Mbit/s Ethernet)
 ETRAX FS (dual 100 Mbit/s Ethernet)
- ETRAX 4 (10 Mbit/s Ethernet) will be used in this course.

Ethernet First Generation PHY: 10Base-5

- One sender and multiple receivers.
- Half duplex, i.e. it's not possible to send and receive at the same time.
- Collisions are detected by sensing the voltage levels on the line.
- Cable and cable connectors are expensive and fragile.

AXIS

AXIS

AXISA

ETRAX 4: Frames in ring							
 Frames wrap around at ring buffer end. End of list is indicated by a 256-byte block with cmd == 0. 							
c3 c4 end a1 a2 b1 c1 c2 -frame -frame frame frame frame							
AXISA							

ETRAX 4 r	node	registers		- free
addres	S	register name	initial value	
00	write	R_LATE_WS<7:0>	FF	
01	write	R_EARLY_WS<1:0>	03	
02	write	R_BUS_MODE<7:0>	00	
04	write	R_DRAM_MODE<7:0>	00	
06	write	R_CLOCK_MODE<7:0>	- FF	
07	write	R_DMA_CONFIG<7:0>	00	

ETRAX 4 interrupt handling • Before the interrupt handler returns, the interrupt must be cleared (acknowledged). There is therefore an interrupt acknowledge register (or register bit) for each interrupt.

AXIS

CRIS complex addressing modes All other addressing modes are implemented using prefix instructions. The prefix instruction generates an address that replaces one of the operands of the next instruction.

AXIS 🖌

Examples of complex a	addressing modes
add.b add.w	r1,[1234] r1,[r2+r3.b]
add.w add.d add.d	r1,[r4=r2+r3.w] r1,[r2+123] r1,[r2=r3+123]
add.d	r1,[r2+[r3].d]
	AXISA

CRIS branch c	ondit	tions	48		<u>I</u> .	- fe			
 There are 16 different branch conditions: 									
bpl	bmi	bne bls ba	bhi						
						AXISA			

ETRAX 100LX CPU 100 MIPS 16-bit instruction width. 8, 16 and 32-bit data width. Little endian Supports unaligned data accesses. Axis CRIS instruction set Compatible with ETRAX1-4

ETRAX 100LX cache

- Combined instruction and data cache.
- Direct mapped.
- Write allocate.
- · Copy back.
- 8 kbyte
- > 256 entries x 32 byte cache lines
- 32-bit read/write port.

AXIS

ETRAX 100LX DMA Characteristics

- Provides low-latency high-throughput data transfer capability to/from peripheral interfaces
- Optimized for block transfers between peripheral interfaces and ETRAX100LX memory
- One DMA controller serving 10 DMA channels
- Connects to 14 peripheral interfaces
- Throughput limited by peripheral interface

