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. . .  M A K E Y O U R    N E T W O R K    S M A R T E R

Real-time Programming in 
Embedded Systems

ETRAX

Real-time embedded?

8Real-time
- Not multi-tasking
- Not safety-critical

8Embedded
- Little memory
- Low speed
- Runs unattended…
- …but interacts with reality
- Development environment often not so well 

supported
- Target environment often custom
- May be located in interesting places

What is a real-time system?

8A system that must react on 
external/internal events and deliver 
the right results on time.

8There are of course varying degrees 
of requirements on timeliness.
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Example: HTTP server

server client

http request

http response

t

Implementation Methods: Polling

8while (true) {
if ( packet_received )

handle_packet();
if ( timer_expired )

blink_leds();
}

Implementation Methods: Polling

8Very efficient for small systems.
8What happens if a subroutine 

takes very long time to complete?
8Time consuming subroutine must 

return to main loop regularly to 
avoid locking out other tasks.

8The code becomes very complex 
when number of tasks increase.
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Implementation Methods: Foreground/Background

8The background task is similar to the 
main loop in a polled system.

8The foreground task is interrupt 
service routines (ISRs) that handle 
critical events. 

Implementation Methods: Foreground/Background

background loop

ISR
asynch event

Real-time and other aspects

8Scheduling analysis
8Performance (interrupts, packets etc)

- Throughput
- Latency
- Jitter

8Simplicity, understandability, 
correctness, provability

8Quality of service
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Implementation Methods: Multitasking

8Partition the system into 
tasks/processes that execute in 
pseudo parallel.

Implementation Methods: Multitasking

task1

task2

idle

time-out
time-out

task1 wait
task2 wait

external event

Events that cause
rescheduling.

Implementation Methods: Multitasking

8A scheduler determines which task to 
execute and when.

8Tasks are preempted, i.e., scheduler 
changes to another task after a certain 
time, to guarantee fair access to CPU.

8External events can also preempt a 
running task.
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Implementation Methods: Multitasking

8A task can voluntarily release control 
to other tasks.

- when waiting for external events.
- when waiting for a time interval (sleep).
- when waiting for access to shared 

resources.
- when task is finished.

Implementation Methods: Multitasking

8What happens if a task is preempted 
while updating a shared object?

8Shared objects must be protected.
8Atomic operations are operations that 

are guaranteed to never be interrupted 
or preempted.

8 In a single processor system this is 
usually accomplished by disabling 
interrupts.

Inter-task Communication: Shared Variables

8Shared variables
- Reading and writing a byte/dword variable is 

atomic in most processors and can 
therefore be used for communicating 
between tasks.

- Requires (volatile) declaration in C/C++ to 
guarantee that variable isn’t cached in a 
register.

- Access to larger objects can be 
implemented by disabling interrupts.

- This method doesn’t transfer control to other 
tasks.
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Inter-task Communication: Monitors

8Monitors
- Protects an object by mutual exclusion 

(mutex) and also coordinates multiple 
tasks trying to access the same object.

- Tasks that try to enter a monitor when it’s 
locked by another task is put in a waiting 
queue and will be started when the 
monitor is free.

Inter-task Communication: Monitors

task 1

lock()

release()

task 2

lock()

release()

task 1 accesses
shared object
(critical region)

task 2 waits for
access to shared
object

task 2 accesses
shared object

Inter-task Communication: Messages

8Message passing
- Tasks communicate by sending/receiving 

messages containing data/objects.
- Multiple messages to a task is usually 

kept in a message queue.



7

Inter-task Communication: Messages

task 1

send(m)

task 2

receive(m)
task 2 waiting for
any message

task 1 task 2

Inter-task Communication: Events

8Events
- Events can be considered a special case 

of message passing. Events are 
messages without any data and without 
message queues.

- Note that, since there is no event queue, 
it’s possible to get an event overrun 
where multiple events is seen as one by 
the receiving task.

Inter-task Communication: Rendezvous

task 1

send(m)

task 2

receive(m)

task 1 waits
for task2 to 
make 
rendezvous

task 1

send(m)

task 2

receive(m)
task 2
waits

task 1 
arrives first

task 2 
arrives first
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Inter-task Communication: Rendezvous

8Both tasks must enter their 
send/receive call before the message 
is send.

8Which task comes first to the 
rendezvous doesn’t matter.

Inter-task Communication: Semaphores

8Semaphore is a classical 
synchronization primitive, introduced 
by Dijkstra in 1965.

8Since then the name semaphore has 
been used for many different 
synchronization methods.

Dijkstra Semaphore

8A semaphore has two atomic 
operations, P() and V() and an integer 
state variable S. (Proberen, Verhogen)

P() { // wait()
while ( S <= 0 ) ;
S--;

}

V() { // signal()
S++;

}
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Dijkstra Semaphore

8The example implementation uses 
busy wait when a task waits for a 
semaphore. In reality, a semaphore is 
never implemented like that. Tasks 
that are waiting for a semaphore are 
placed in a waiting queue and started 
one at a time for each signal().

Monitor implemented with a semaphore

task 1

wait()

signal()

task 2

wait()

signal()

task 1 in critical
section

Task communication in our server.

main
thread

network
controller

packet
interrupt

task 1 task 2 task 3 task 4

Job queue

Thread pool

Semaphore

signal()

wait()
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Priorities

- One common source of problems in 
multitasking system is that some tasks 
are more important than others, e.g., it’s 
more important to handle an Ethernet 
packet than to blink the status LED.

- One way of reflecting the importance of 
different tasks is to assigning priorities to 
all tasks and then letting the scheduler 
always run the highest priority task.

Problems with priorities

8It can be difficult to assign fixed 
priorities. Often the importance of a 
task varies over time.

8Although priorities can be used to 
ensure mutex, it’s not recommended.

8Fixed priorities can lead to deadlock.

Priority inversion problem

8A resource shared between high and 
low priority tasks.

8During the time the low priority task 
locks the shared resource, the high 
priority task will be blocked if it also tries 
to access the resource.

8The solution is priority inheritance which 
must be implemented in the 
synchronization primitives.
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Example: The Mars Rover Pathfinder

8 Landed July 4th 1997
8 Everything was perfect!
8 Everything?
8 After a few days…
8…the system began to 

reset sporadically
8 L. Sha, R. Rajkumar, and J. P. 

Lehoczky. Priority Inheritance 
Protocols: An Approach to 
Real-Time Synchronization. In 
IEEE Transactions on 
Computers, vol. 39, pp. 1175-
1185, Sep. 1990.

Deadlock

8Simplified, deadlock occurs when a 
set of tasks wait on each others 
resources to become free.

8There are algorithms both to avoid 
deadlocks and to detect and resolve 
deadlocks.

8However, often deadlocks are avoided 
by a design and debug process which 
can’t guarantee deadlock-free 
systems.

Starvation

8Starvation happens when a task 
always becomes locked out from 
accessing a resource. 

8This can happen in a under-
dimensioned system.

8It can also be caused by unfair 
synchronization methods.
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Hard vs. Soft

8Hard real-time systems is a class of 
systems where you must be able to 
guarantee that the system works under 
all work-loads, e.g., control system for
Ariane’s engines.

8Some hard aspects:
- Maximum response time.
- Long term and short term frequency 

deviation in periodic tasks.
- Maximum task timing jitter.

Scheduling methods

8 In hard real-time systems it’s necessary 
to guarantee timing correctness of the 
system.

8Rate monotonic scheduling (RMS)
- If the system consists of periodic tasks with 

fixed-length execution time, rate monotonic 
scheduling can guarantee that the 
application meets it’s deadlines.

- RMS: assigns priority according to how 
frequently a task executes.

Scheduling methods

8Deadline driven scheduling (DDS)
- When the system also has aperiodic

tasks, deadline driven scheduling can be 
used.

- DDS: schedule the task with the earliest 
deadline first.
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Performance aspects

8Throughput, both in number of 
events/s and bytes/s is often an 
important performance aspect.

8Latency/response time is often also 
important.

8The critical path concept from 
hardware design can be a useful way 
of analyzing a system.

Performance Aspects: Task Creation

8Dynamic task creation can be a 
performance problem, especially if task 
creation is in the critical path (e.g., http-
server that creates a task per 
connection request).

8Static task creation, i.e., all tasks are 
created at system start. This is very 
efficient. Even scheduling and task 
communications become more efficient. 
Drawback is of course the difficulty to 
adapt to system load.

Performance Aspects: Task Creation

8A pool of tasks is often a good 
solution. 

- Tasks are created in advance and then 
used upon demand. When the pool is 
starting to become fully allocated, a 
chunk of new tasks can be created. The 
system can therefore adapt to varying 
demands.
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Performance Aspects: Context Switching

8Context switches is often a fairly 
expensive operation, involving 
saving/restoring all processor 
registers etc.

8It’s important to use appropriate task 
communication methods that don’t 
introduce unnecessary context 
switches, e.g., don’t use message 
passing for accessing a shared 
database.

Performance Aspects: Context Switching

8Task partitioning can often influence 
the amount of context switches.

8A partitioning that makes sense for 
software modularization is not always 
the best partitioning for high 
performance, e.g., use one task per 
protocol layer.

Performance Aspects: Critical Regions

8Non-preemptive scheduling has one 
interesting performance advantage. 
Resources shared among the non-
preempted tasks doesn’t need mutex
which reduces overhead in accessing 
shared data.



15

Performance Aspects: Critical Regions

8Since mutex is implemented by 
disabling interrupts, the amount of 
time when  interrupts are disabled, 
influences how fast an event (e.g., 
timer or packet interrupt) can be 
handled.

8It’s therefore important to minimize 
these regions.

Memory Management

8The memory allocation/deallocation
system is a very important shared 
resource.

8 In most embedded systems, memory is 
a scarce resource and therefore 
reallocation and defragmentation must 
be used. This results in slower memory 
allocation.

8Running out of memory must never 
happen which puts demands on how 
memory is managed.

Memory Management

8A large part of the memory allocation 
code must be performed with mutex. 
Performance therefore makes it 
important to minimize memory 
allocation calls.

8One solution is to allocate memory in 
advance and manage it in block-pools 
within each sub-system. This reduces 
allocation calls and also makes it 
easier to predict memory 
requirements.
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Memory Management

8Memory leaks is a very common 
problem in complex system. This 
usually stems from that it’s unclear 
who is responsible for deallocating
memory of data that is passed 
between subsystems.

8Automatic methods for deallocation
memory is therefore interesting.

Memory Management

8Smart pointers is one solution to 
automatic deallocation. By counting 
how many references there are to a 
memory block, it’s possible to know 
when to deallocate that block. This 
can be implemented quite nicely in 
C++.

Garbage Collect

8Garbage collect is another solution 
where the system periodically scans for 
unused memory blocks (i.e., garbage).

8Contrary to what many believe, it’s 
possible to implement garbage collect 
in C/C++.

8The straight forward garbage collect 
algorithms halts the system while 
scanning. This is of course 
unacceptable in real-time systems.
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Garbage Collect

8Special real-time garbage collection 
algorithms have been developed but 
this is still a somewhat immature area 
and consequently not used in many 
systems.

Debugging Real-time Systems

8The biggest problem in debugging is to 
avoid influencing the system.

8Debug printouts is very slow and 
changes behavior, often to a degree 
where the system stops functioning 
correctly.

8Source level debugging with 
breakpoints, single stepping, etc. isn’t 
very useful in a real-time system

8An in-circuit emulator (ICE) is very nice 
but not always feasible

Debugging Real-time Systems

8One non-intrusive method is to use a 
logic analyzer to trace what is 
happening in the system. A logic 
analyzer with large trace depth and 
good triggering functions can be as 
useful as a source-level debugger.

8If the processor has an internal cache, 
the usefulness of a logic analyzer is 
reduced since much of what’s going 
on inside is hidden.
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Debugging Real-time Systems

8 There are many other tricks of the trade
- Prevent and find errors earlier!

- Design for quality
- Test-driven development
- Reviews
- Static analysis
- Software instrumentation

- Post mortem debugging. Trace a small part of 
what’s happening in the system, into memory. 
After an error has occurred, the trace can be 
printed.

- Write trace data (e.g., one byte task-id, state) to 
an i/o port that can easily be traced with a cheap 
logic analyzer.

- Use a memory emulator, that lets you inspect the 
memory of the running system without significant 
disturbance.

- JTAG

Special considerations for embedded

systems

8Exception handling
8Graceful degradation
8Self-testing and watchdog


