
1

. . . M A K E Y O U R N E T W O R K S M A R T E R

Real-time Programming in
Embedded Systems

ETRAX

Real-time embedded?

8Real-time
- Not multi-tasking
- Not safety-critical

8Embedded
- Little memory
- Low speed
- Runs unattended…
- …but interacts with reality
- Development environment often not so well

supported
- Target environment often custom
- May be located in interesting places

What is a real-time system?

8A system that must react on
external/internal events and deliver
the right results on time.

8There are of course varying degrees
of requirements on timeliness.

2

Example: HTTP server

server client

http request

http response

t

Implementation Methods: Polling

8while (true) {
if (packet_received)

handle_packet();
if (timer_expired)

blink_leds();
}

Implementation Methods: Polling

8Very efficient for small systems.
8What happens if a subroutine

takes very long time to complete?
8Time consuming subroutine must

return to main loop regularly to
avoid locking out other tasks.

8The code becomes very complex
when number of tasks increase.

3

Implementation Methods: Foreground/Background

8The background task is similar to the
main loop in a polled system.

8The foreground task is interrupt
service routines (ISRs) that handle
critical events.

Implementation Methods: Foreground/Background

background loop

ISR
asynch event

Real-time and other aspects

8Scheduling analysis
8Performance (interrupts, packets etc)

- Throughput
- Latency
- Jitter

8Simplicity, understandability,
correctness, provability

8Quality of service

4

Implementation Methods: Multitasking

8Partition the system into
tasks/processes that execute in
pseudo parallel.

Implementation Methods: Multitasking

task1

task2

idle

time-out
time-out

task1 wait
task2 wait

external event

Events that cause
rescheduling.

Implementation Methods: Multitasking

8A scheduler determines which task to
execute and when.

8Tasks are preempted, i.e., scheduler
changes to another task after a certain
time, to guarantee fair access to CPU.

8External events can also preempt a
running task.

5

Implementation Methods: Multitasking

8A task can voluntarily release control
to other tasks.

- when waiting for external events.
- when waiting for a time interval (sleep).
- when waiting for access to shared

resources.
- when task is finished.

Implementation Methods: Multitasking

8What happens if a task is preempted
while updating a shared object?

8Shared objects must be protected.
8Atomic operations are operations that

are guaranteed to never be interrupted
or preempted.

8 In a single processor system this is
usually accomplished by disabling
interrupts.

Inter-task Communication: Shared Variables

8Shared variables
- Reading and writing a byte/dword variable is

atomic in most processors and can
therefore be used for communicating
between tasks.

- Requires (volatile) declaration in C/C++ to
guarantee that variable isn’t cached in a
register.

- Access to larger objects can be
implemented by disabling interrupts.

- This method doesn’t transfer control to other
tasks.

6

Inter-task Communication: Monitors

8Monitors
- Protects an object by mutual exclusion

(mutex) and also coordinates multiple
tasks trying to access the same object.

- Tasks that try to enter a monitor when it’s
locked by another task is put in a waiting
queue and will be started when the
monitor is free.

Inter-task Communication: Monitors

task 1

lock()

release()

task 2

lock()

release()

task 1 accesses
shared object
(critical region)

task 2 waits for
access to shared
object

task 2 accesses
shared object

Inter-task Communication: Messages

8Message passing
- Tasks communicate by sending/receiving

messages containing data/objects.
- Multiple messages to a task is usually

kept in a message queue.

7

Inter-task Communication: Messages

task 1

send(m)

task 2

receive(m)
task 2 waiting for
any message

task 1 task 2

Inter-task Communication: Events

8Events
- Events can be considered a special case

of message passing. Events are
messages without any data and without
message queues.

- Note that, since there is no event queue,
it’s possible to get an event overrun
where multiple events is seen as one by
the receiving task.

Inter-task Communication: Rendezvous

task 1

send(m)

task 2

receive(m)

task 1 waits
for task2 to
make
rendezvous

task 1

send(m)

task 2

receive(m)
task 2
waits

task 1
arrives first

task 2
arrives first

8

Inter-task Communication: Rendezvous

8Both tasks must enter their
send/receive call before the message
is send.

8Which task comes first to the
rendezvous doesn’t matter.

Inter-task Communication: Semaphores

8Semaphore is a classical
synchronization primitive, introduced
by Dijkstra in 1965.

8Since then the name semaphore has
been used for many different
synchronization methods.

Dijkstra Semaphore

8A semaphore has two atomic
operations, P() and V() and an integer
state variable S. (Proberen, Verhogen)

P() { // wait()
while (S <= 0) ;
S--;

}

V() { // signal()
S++;

}

9

Dijkstra Semaphore

8The example implementation uses
busy wait when a task waits for a
semaphore. In reality, a semaphore is
never implemented like that. Tasks
that are waiting for a semaphore are
placed in a waiting queue and started
one at a time for each signal().

Monitor implemented with a semaphore

task 1

wait()

signal()

task 2

wait()

signal()

task 1 in critical
section

Task communication in our server.

main
thread

network
controller

packet
interrupt

task 1 task 2 task 3 task 4

Job queue

Thread pool

Semaphore

signal()

wait()

10

Priorities

- One common source of problems in
multitasking system is that some tasks
are more important than others, e.g., it’s
more important to handle an Ethernet
packet than to blink the status LED.

- One way of reflecting the importance of
different tasks is to assigning priorities to
all tasks and then letting the scheduler
always run the highest priority task.

Problems with priorities

8It can be difficult to assign fixed
priorities. Often the importance of a
task varies over time.

8Although priorities can be used to
ensure mutex, it’s not recommended.

8Fixed priorities can lead to deadlock.

Priority inversion problem

8A resource shared between high and
low priority tasks.

8During the time the low priority task
locks the shared resource, the high
priority task will be blocked if it also tries
to access the resource.

8The solution is priority inheritance which
must be implemented in the
synchronization primitives.

11

Example: The Mars Rover Pathfinder

8 Landed July 4th 1997
8 Everything was perfect!
8 Everything?
8 After a few days…
8…the system began to

reset sporadically
8 L. Sha, R. Rajkumar, and J. P.

Lehoczky. Priority Inheritance
Protocols: An Approach to
Real-Time Synchronization. In
IEEE Transactions on
Computers, vol. 39, pp. 1175-
1185, Sep. 1990.

Deadlock

8Simplified, deadlock occurs when a
set of tasks wait on each others
resources to become free.

8There are algorithms both to avoid
deadlocks and to detect and resolve
deadlocks.

8However, often deadlocks are avoided
by a design and debug process which
can’t guarantee deadlock-free
systems.

Starvation

8Starvation happens when a task
always becomes locked out from
accessing a resource.

8This can happen in a under-
dimensioned system.

8It can also be caused by unfair
synchronization methods.

12

Hard vs. Soft

8Hard real-time systems is a class of
systems where you must be able to
guarantee that the system works under
all work-loads, e.g., control system for
Ariane’s engines.

8Some hard aspects:
- Maximum response time.
- Long term and short term frequency

deviation in periodic tasks.
- Maximum task timing jitter.

Scheduling methods

8 In hard real-time systems it’s necessary
to guarantee timing correctness of the
system.

8Rate monotonic scheduling (RMS)
- If the system consists of periodic tasks with

fixed-length execution time, rate monotonic
scheduling can guarantee that the
application meets it’s deadlines.

- RMS: assigns priority according to how
frequently a task executes.

Scheduling methods

8Deadline driven scheduling (DDS)
- When the system also has aperiodic

tasks, deadline driven scheduling can be
used.

- DDS: schedule the task with the earliest
deadline first.

13

Performance aspects

8Throughput, both in number of
events/s and bytes/s is often an
important performance aspect.

8Latency/response time is often also
important.

8The critical path concept from
hardware design can be a useful way
of analyzing a system.

Performance Aspects: Task Creation

8Dynamic task creation can be a
performance problem, especially if task
creation is in the critical path (e.g., http-
server that creates a task per
connection request).

8Static task creation, i.e., all tasks are
created at system start. This is very
efficient. Even scheduling and task
communications become more efficient.
Drawback is of course the difficulty to
adapt to system load.

Performance Aspects: Task Creation

8A pool of tasks is often a good
solution.

- Tasks are created in advance and then
used upon demand. When the pool is
starting to become fully allocated, a
chunk of new tasks can be created. The
system can therefore adapt to varying
demands.

14

Performance Aspects: Context Switching

8Context switches is often a fairly
expensive operation, involving
saving/restoring all processor
registers etc.

8It’s important to use appropriate task
communication methods that don’t
introduce unnecessary context
switches, e.g., don’t use message
passing for accessing a shared
database.

Performance Aspects: Context Switching

8Task partitioning can often influence
the amount of context switches.

8A partitioning that makes sense for
software modularization is not always
the best partitioning for high
performance, e.g., use one task per
protocol layer.

Performance Aspects: Critical Regions

8Non-preemptive scheduling has one
interesting performance advantage.
Resources shared among the non-
preempted tasks doesn’t need mutex
which reduces overhead in accessing
shared data.

15

Performance Aspects: Critical Regions

8Since mutex is implemented by
disabling interrupts, the amount of
time when interrupts are disabled,
influences how fast an event (e.g.,
timer or packet interrupt) can be
handled.

8It’s therefore important to minimize
these regions.

Memory Management

8The memory allocation/deallocation
system is a very important shared
resource.

8 In most embedded systems, memory is
a scarce resource and therefore
reallocation and defragmentation must
be used. This results in slower memory
allocation.

8Running out of memory must never
happen which puts demands on how
memory is managed.

Memory Management

8A large part of the memory allocation
code must be performed with mutex.
Performance therefore makes it
important to minimize memory
allocation calls.

8One solution is to allocate memory in
advance and manage it in block-pools
within each sub-system. This reduces
allocation calls and also makes it
easier to predict memory
requirements.

16

Memory Management

8Memory leaks is a very common
problem in complex system. This
usually stems from that it’s unclear
who is responsible for deallocating
memory of data that is passed
between subsystems.

8Automatic methods for deallocation
memory is therefore interesting.

Memory Management

8Smart pointers is one solution to
automatic deallocation. By counting
how many references there are to a
memory block, it’s possible to know
when to deallocate that block. This
can be implemented quite nicely in
C++.

Garbage Collect

8Garbage collect is another solution
where the system periodically scans for
unused memory blocks (i.e., garbage).

8Contrary to what many believe, it’s
possible to implement garbage collect
in C/C++.

8The straight forward garbage collect
algorithms halts the system while
scanning. This is of course
unacceptable in real-time systems.

17

Garbage Collect

8Special real-time garbage collection
algorithms have been developed but
this is still a somewhat immature area
and consequently not used in many
systems.

Debugging Real-time Systems

8The biggest problem in debugging is to
avoid influencing the system.

8Debug printouts is very slow and
changes behavior, often to a degree
where the system stops functioning
correctly.

8Source level debugging with
breakpoints, single stepping, etc. isn’t
very useful in a real-time system

8An in-circuit emulator (ICE) is very nice
but not always feasible

Debugging Real-time Systems

8One non-intrusive method is to use a
logic analyzer to trace what is
happening in the system. A logic
analyzer with large trace depth and
good triggering functions can be as
useful as a source-level debugger.

8If the processor has an internal cache,
the usefulness of a logic analyzer is
reduced since much of what’s going
on inside is hidden.

18

Debugging Real-time Systems

8 There are many other tricks of the trade
- Prevent and find errors earlier!

- Design for quality
- Test-driven development
- Reviews
- Static analysis
- Software instrumentation

- Post mortem debugging. Trace a small part of
what’s happening in the system, into memory.
After an error has occurred, the trace can be
printed.

- Write trace data (e.g., one byte task-id, state) to
an i/o port that can easily be traced with a cheap
logic analyzer.

- Use a memory emulator, that lets you inspect the
memory of the running system without significant
disturbance.

- JTAG

Special considerations for embedded

systems

8Exception handling
8Graceful degradation
8Self-testing and watchdog

