PageRank

\[PR(u)_t = d \sum_{v \in B_u} \frac{PR(v)_{t-1}}{N_v} + (1 - d)E(u) \]

- Random surfer model
 - Click on a random link in the page
 - Eventually gets bored and jumps to a random page
- Converges to a stable solution
- Problems
 - size of the Web
 - pages without links - ‘dangling pages’ (rank sinks)
 - converging
 - link-spamming

PageRank + TF*IDF

Relevance ranking

Combine PageRank with vector space model

\[PR(D) \ast sim(Q, D) \]

or

\[f(PR(D)) \ast sim(Q, D) \]

In practice
- proximity
- structure: title, link-anchor text
- metadata: keywords, description
- and · · ·
Previous lecture

- Text
 - Unicode character set (UTF-8) > 100000 characters
 - Zipf's law ⇒ Skewed distribution - stopwords
 - Heaps' law: Vocabulary ~ n^β; $\beta < 1$
- Metadata
 - Author, source, length
 - Dublin Core Metadata Element Set
- Word similarity models: Hamming Distance, Edit (Levenshtein) Distance
- Markup languages
- Text operations

Markup Languages

- SGML - Standard Generalized Markup Language
 - HTML - HyperText Markup Language
 - XML - eXtensible Markup Language
- TeX/ LaTeX

Representation/Indexing (fig 1.2)

Documents
 - text
 - break into words
 - words
 - stoplist
 - non-stoplist words
 - stemming*
 - stemmed words
 - term weighting*
 - terms with weights
 - assign document IDs
 - document numbers and *field numbers
 - terms with weights
 - Index / database
 - * Indicates optional operation

Lecture 4 agenda

Literature:
 - Overviews - not detailed math
 - “Text Categorization with Support Vector Machines: Learning with Many Relevant Features.”

- Reiteration
- LSI (Latent Semantic Indexing) - concepts
- SVM (Support Vector Machines) - classification
- String matching - classification
- Evaluation
- Advice
Latent Semantic Indexing

- Term-document matrices are very large
- But the number of topics that people talk about is small (in some sense)
 - Clothes, movies, politics, SuperBowl, ...
- Can we represent the term-document space by a lower dimensional space?

 Map terms \Rightarrow topics
 Map BOW \Rightarrow Concepts

How LSI works

- Decompose term-document matrix into three other special matrices by Singular Value Decomposition (SVD)
- SVD (linear algebra)
 - similar to Principal Component Analysis (PCA) and Factor analysis
 - focuses on eigenanalyses
- The matrices show a breakdown of the original relationships into linearly independent components
- Many of these components are very small and can be ignored - leading to an approximate model that contains fewer dimensions.

What LSI achieves

- We accomplish more than dimensionality reduction here:
 - Docs with lots of overlapping terms stay together
 - Terms from these docs also get pulled together.
- Example: The synonymous terms car and automobile get pulled together because both co-occur in docs with tires, radiator, and cylinder
- Car and automobile are associated indirectly through 2nd order co-occurrence
- Fewer dimensions, more 'collapsing of axes', better recall, worse precision
- More dimensions, less collapsing, worse recall, better precision
LSI - SVD

M x N matrix A (term/document) \rightarrow factorization (SVD):

$$A = U \Sigma V^T$$

- The columns of U are orthogonal eigenvectors of AA^T
- Σ is a diagonal matrix with singular values
- The columns of V are orthogonal eigenvectors of $A^T A$

LSI Interlude

$$AA^T = U \Sigma V^T V \Sigma U^T = U \Sigma^2 U^T$$

entry (i,j) measures overlap ith and jth terms in documents

- Synonymy
- (Polysemy)

LSI - reduced SVD

- Reduce dimensionality \Rightarrow retain only k largest singular values
- Saved space

LSI

- Performs a reduced dimension (k) approximation of term/document matrix
- Low-dimensional space reflects semantic associations
- Dimension reduction
 - Documents represented by vector of dimension k
 - Map also queries into the low-dimensional space
 - Queries become k-dimensional and not sparse
 - Compute similarity in this low-dimensional (k) space

$$A \approx A_k = U_k \Sigma_k V_k^T$$
Example - SVDLIBC

- `svd -d 100 -o SVDres termDocMatrix.txt`
- perform an reduced SVD on a matrix `termDocMatrix.txt`
- \(k = 100 \) dimensions
- results:
 - \(U_k^T \) in `SVDres-Ut`
 - \(\Sigma_k \) in `SVDres-S` (just the singular values)
 - \(V_k^T \) in `SVDres-Vt`
- uses file formats *Sparse text* or *Dense text*

SVDLIBC - Sparse text format

```
numRows numCols totalNonZeroValues
for each column:
  numNonZeroValues
  for each non-zero value in the column:
    rowindex value
```

<table>
<thead>
<tr>
<th>numCols</th>
<th>totalNonZeroValues</th>
<th>numNonZeroValues</th>
<th>rowindex</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td>2</td>
<td>1</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>1.3</td>
<td>3</td>
<td>0</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>1.2</td>
<td>2</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

SVDLIBC - Dense text format

```
umRows numCols
for each row:
  values
```

<table>
<thead>
<tr>
<th>numCols</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2.3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1.3</td>
</tr>
<tr>
<td>3.8</td>
<td>0.5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

LSI - SVDLIBC - example

- Doc weight vectors \(\rightarrow \) LSI concept space \((V_k^T = \Sigma_k^{-1}U_k^T doc) \)
- Query weight vectors \(\rightarrow \) LSI concept space \((q_k = \Sigma_k^{-1}U_k^T q) \)
- Calculate similarity in concept space
 \[\text{simCos}((\Sigma_k^{-1}U_k^T doc), (\Sigma_k^{-1}U_k^T q)) \]

Help functions:

- functions `saveWeightMatrixCompressed()`, `readUt()`, `readS()` writes and reads the matrix formats
 - need terms and documents to be mapped to numbers
 - handled by function `mapDocsTerms2numbers()`
- function `runSVD($dimensions)` executes SVDLIBC
LSI - Concept extraction

use rows of $\Sigma_k^{-1} U_k^T$ as concepts

<table>
<thead>
<tr>
<th>Concept 1</th>
<th>Concept 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>carlstrom</td>
<td>regia</td>
</tr>
<tr>
<td>rick</td>
<td>oct</td>
</tr>
<tr>
<td>amelnx</td>
<td>chrisp</td>
</tr>
<tr>
<td>advmar</td>
<td>problems</td>
</tr>
<tr>
<td>cuttings</td>
<td>pm</td>
</tr>
<tr>
<td>september</td>
<td>ip-forum</td>
</tr>
<tr>
<td>miller</td>
<td>stratification</td>
</tr>
<tr>
<td>re</td>
<td>uk</td>
</tr>
<tr>
<td>wants</td>
<td>bladderwort</td>
</tr>
<tr>
<td>aquatic</td>
<td>cuttings</td>
</tr>
<tr>
<td>rotundifolia</td>
<td></td>
</tr>
<tr>
<td>bladderwort</td>
<td></td>
</tr>
</tbody>
</table>

HARD to interpret

Outline

- Reiteration
- LSI (Latent Semantic Indexing)- concepts
- SVM (Support Vector Machines) - classification
- String matching - classification
- Evaluation
- Advice

Why automated classification?

- Information explosion
 - Documents increasingly available electronically
 - Lots of unstructured full-text documents on the Web
- High cost of manual classification (1-2 / hour)
- Challenging research issue
- Fun!

Text classification

- Goal: classify documents into predefined categories
- Examples
 - Subject classification: 'business', 'sports', 'engineering', ...
 - Review classification: 'positive' or 'negative'
 - Web page classification: 'Personal homepage' or others
- One approach: supervised machine learning (\Rightarrow SVM)
 - Each predefined category needs a set of training documents
 - From training sets train a classifier
 - Use classifier to classify new documents
- Many other approaches
 (Naive Bayes, Neural Networks, Nearest neighbor, String matching, ...)

Automated Classification technologies

- Machine learning methods
 - Statistical models (Bayes, SVM, ...)
 - ANN
- Information Retrieval methods
 - Clustering (no predefined categories)
- Library Science methods
 - String matching + Thesaurus

Overview - Machine learning methods

Work-flow:
- Text preprocessing and indexing
 - As before
- Training
 - Need a training set with positive and negative example documents
 - Train a classifier
- Classification
 - Apply the trained classifier to new documents

SVM

- Developed by Vapnik 1992
- Classification for linear (and non-linear) problems
 - “Kernels" handle non-linear problems (by mapping to linear case)
- Machine learning
- Data represented as n-dimensional vectors (vector space model)
- Need a training set with positive and negative documents
- General classifier
- Decision: yes/no
- Finds the optimal hyper-plane for linearly separable patterns
- Can be extended to multiclass/hierarchical classification
- Applications
 - pattern recognition, object recognition, speaker identification, text classification, ...

- Which hyper-plane?
- lots of possible solutions
- SVM finds an optimal solution
SVM

- Pick hyper-plane with max distance to nearest data point
- Support vectors = data points closest to decision hyper-plane
- They are most difficult to classify
- They have a direct influence on the optimum decision hyper-plane
- Independent of dimensionality
- Non-linear separability?
 - Use ‘kernel-trick’
 - map vectors into a new (linear) space - Kernel functions

Support vectors = data points closest to decision hyper-plane
They are most difficult to classify
They have a direct influence on the optimum decision hyper-plane
Independent of dimensionality
Non-linear separability?
Use ‘kernel-trick’
map vectors into a new (linear) space - Kernel functions
SVM maximize the margin around the separating hyper-plane
Decision function specified by support vectors (from training examples)
Quadratic programming problem
Hot text classification method

Why SVM for text categorization?

Advantages
- "Most popular and effective method"
- High dimensionality input
- Uses all features - no feature selection
- Bag-Of-Words model - document vectors
- Sound mathematical theory for optimal decision function
- Performs well when collection characteristics does not change
- Fast once trained

Problems
- Requires training examples
- Language
- Depends on a relatively homogeneous collection
- Sensitive for selection of negative examples
- Error propagation for deep classification hierarchies
- One classifier per class

Tools - libsvm

- Libsvm implementation of SVMs in C
- Homepage http://www.csie.ntu.edu.tw/~cjlin/libsvm
- Documentation in S:\Documentation\svmlib\n- We will use
 - learning module: svm-train
 - classification module: svm-predict
Tools - libsvm - Example - Train

- To train a classifier from `train.data`
 - `svm-train -t 2 -g 0.6 train.data model.data`
 - Use kernel: radial basis function ($t = 2$) with $\gamma = 0.6$
 - SVM classifier model in `model.data`

Tools - libsvm - Example - Classify

- To classify new documents in `test.data`
 - `svm-predict test.data model.data test.result`
 - Use model from training: `model.data`
 - Output (in `test.result`)
 - -1 → negative class
 - 1 → positive class

Tools - libsvm - file formats

Training data format - `train.data`

One line per training example

```plaintext
<target> <featureNo>:<value> <featureNo>:<value> ... <featureNo>:<value>
```

- `<target>` is 1 for positive; -1 for negative examples
- `<featureNo>` is feature number
- `<value>` is a real value

Must be in featureNo order

Example file:

```
-1 1:0.43 3:0.12 9284:0.2
```

Negative example (target -1) with weights

0.43 for feature 1
0.12 for feature 3
0.2 for feature 9284

Classification (test) data format - `test.data`

same format as the training examples with 0 as target label

```
0 10:0.3 37:0.12 42:0.23 284:0.21
0 101:0.02 157:0.912 478:0.99 2864:0.51
```

Classification (test) result format - `test.result`

one line per test example

containing the label for that test example
Outline

- Reiteration
- LSI (Latent Semantic Indexing) - concepts
- SVM (Support Vector Machines) - classification
- String matching - classification
- Evaluation
- Advice

Classification process

Example term triplets
- 40: ALGOL @and programming languages=723.1.1
- 15: CCTV=716.4
- 40: CAT scans=723.5
- 20: CAT scans=531, 801, 461.1
- -10000: hotel=7
String matching

Thesauri based

- Reuse intellectual effort
- Topic terms (features) from thesaurus
 - ... are they present in the text?
 - ... relevance: how many; where in the text (document structure)

\[
\text{Concept score} = \sum_{\text{all locations}} \left(\sum_{\text{all terms}} \left(\text{hits}[\text{location}] [\text{term}] * \text{weight}[\text{term}] * \text{weight}[\text{location}] \right) \right)
\]

or

\[
\sum_{\text{all terms}} \left(\sum_{\text{all matches}} \left(\text{weight}[\text{term}] \right) \right) \text{log}(k * \text{position}[\text{term}] [\text{match}] + \text{proximity}[\text{term}] [\text{match}]
\]

Normalize with respect to document size

Why String matching for text categorization?

Advantages

- Reuse intellectual effort
- Can take advantage of document structure
- Feature selection by thesaurus
- Language
- No training
- Deep hierarchies
- Multiclass classification

Problems

- No context for topic terms
- Stopwords can cause trouble
- Relies on a good thesaurus
- No generalization

Outline

1. Reiteration
2. LSI (Latent Semantic Indexing) - concepts
3. SVM (Support Vector Machines) - classification
4. String matching - classification
5. Evaluation
6. Advice

Evaluation challenge

Comparing human assigned classes to automated classification

- Collection policies
- Users vs indexers
- Inter- and intra-indexers consistency
- Availability of representative pre-classified collections

Hard to do good evaluations
Evaluation

- **SVM**
 - Most evaluations done in “lab-like environments”
 - Very good - 70 - 90 % correctness
 - Popular
- **String matching**
 - Few evaluations done
 - Good - 60 - 90 % correctness

Examples:

Precision for classification of Compendex bibliographic records:

- SVM 0.74 - 0.91
- String match 0.26 - 0.97

Advice I

- Homogeneous collection
 - Good training examples (both positive and negative)
 - Shallow hierarchy
- Mixed collection
 - Good thesaurus with subject terms
 - Multiple classes in a hierarchy

Parameters

- use SVM
 - text preprocessing
 - document vector values
 - kernel
 - gamma, coef0, cost, degree, nu, epsilon, shrinking, degree, ...
- use String match
 - text preprocessing
 - add synonyms
 - word sense disambiguation
 - word weights
 - cut-off value

Advice II

- Careful with text preprocessing (stopwords and stemming)
- Hard to do a good evaluation
- Learn strengths and weaknesses
- Experiment!
- There is no “fit all cases best” solution
- Not perfect
 - ... but useful