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Problem 1
(a) False.

Energy efficiency reduces with increasing M for PAM, QAM and PSK. But this is
not true for FSK, where dmin = log2(M).

(b) True.
With T = Ts being fixed, we see from Rb = k Rs = k/T that the information bit
rate increases proportionally with k. Since W is fixed if T is fixed, this is also true
for the bandwidth efficiency ρ = Rb/W . From M = 16 to M = 64, k increases
from 4 to 6, which corresponds to an increase of Rb and ρ by a factor 6/4 = 1.5.

(c) True.
Ps ≈ cQ

(√
d2min

Eb

N0

)
≈ 1.158 · 10−7

with c = 2 and d2min = 2 log2(M) sin2(π/M) ≈ 0.30448.

(d) True.
All real-valued signals have an even spectrum, i.e., |X(f)| = |X(−f)| is symmet-
ric around f = 0. But not all bandpass signals have to be symmetric around fc,
which means that the corresponding baseband signal may be complex.
A general bandpass transmit signal x(t) can be expressed as

x(t) = Re
{
(xI(t) + jxQ(t)) e

j 2π fc t
}
= xI(t) cos(2π fc t)− xQ(t) sin(2π fc t)

(e) False.
The bandwidth W of an OFDM system increases with the number N of carriers.
A single carrier system with the same bandwidth can thus use a smaller pulse
duration, which results in approximately the same bandwidth efficiency. In our
example, since the single carrier system uses k = 6 it actually achieves a larger
bit rate than the OFDM system with k = 4.

Answers without explanation do not give any points.
(10p)
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Problem 2
(a)

I A→ III (PSK): equal amplitude but different phases. Looking closer at the
phase transition we see that it is III and not IV.

I B → I (bandpass PAM): we can identify amplitudes −3,−1,+1,+3. It can-
not be III because we have two different magnitudes and no phase of +π/2
or −π/2.

I C → II (asymmetric QAM): BPSK in inphase and on-off keying in quadra-
ture component. Three different phases and one signal with zero amplitude.

I D→ I (baseband PAM): we can identify amplitudes −3,−1,+1,+3. Assum-
ing the shape is sinusoidal it could alternatively be interpreted as bandpass
PAM with a specific (very low) carrier frequency.

(b) fc = 3/Ts

   1    2    3    4

t/Ts

-1

-0.5

0.5

1

s(t)

0 0

0 1

1 1

1 0

(c) We can write z`(t) = z`
g(t)√
Eg

= z` φ1(t). Then

Eb =
1

k

M−1∑
`=0

1

M

∫ Ts

0

z2` (t) dt =
1

k

M−1∑
`=0

1

M
z2`

∫ Ts

0

φ2
1(t) dt =

1

k ·M
M−1∑
`=0

z2`

=
1

2
· 1
4

(
12 + 32 + 52 + 72

) 5

21
Eg = 2.5Eg

and

D2
min = (z1 − z0)2

∫ Ts

0

φ2
1(t) dt =

(
(3− 1)

√
5Eg
21

)2

=
20

21
Eg

⇒ d2min =
D2
min

2 Eb
=

20/21Eg
5Eg

=
4

21

Conventional PAM: Eb = 2.5Eg (same) and d2min = 4/5 (larger=better)

(10p)
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Problem 3
(a)

f50 MHz 52 MHz

50.1 50.4 50.7 51.15 51.75

(b) xi(t) = si(t) cos(2π fc,i t) (assuming real valued signal s(t))

or xi(t) = sI,i(t) cos(2π fc,i t)− sQ,i(t) sin(2π fc,i t) if si(t) = sI,i(t) + j sQ,i(t)

(each of the two solutions is fine)

(c) We can choose a carrier wave with frequency f2 = fc,1 − f1 = 20.1MHz to move
the signal x̃(t) to the frequency location fc,1

x1(t) = [x̃(t) 2 cos(2π f2 t)]BP

ff1 + f2 = 50.1 MHzf1 � f2 = 9.9 MHz

A bandpass filter with center frequency fc,1 = 50.1 MHz and bandwidth 200 kHz
is then applied to remove the other copies of the depicted signal.
Remark: we could alternatively use f2 = fc,1 + f1 to obtain the same result

(d) I with complex signal notation we can represent bandpass signals whose spec-
trum is not symmetric around fc in the baseband domain

I the equivalent baseband model with complex notation is more compact than
if we always have to compute the inphase and quadrature components ex-
plicitly

I the effect of noise and of the channel filter can be described within the equiv-
alent baseband model

(10p)



Solutions to final exam in Digital Communications, October 26, 2017 4

Problem 4
(a) Ts = T = 0.2µs ⇒ Rb =

2
Ts

= 10Mbps

(b)

T tT

t

x(t)

-1

-0.5

0.5

1

T

(c) 20 Mpbs⇒ Ts = 0.1µs

x[i] = 0.5 δ[i− 1] + δ[i] + 0.5 δ[i+ 1]

(d)

ξ[i] =
∞∑

k=−∞

A[n]x[i− n] (i=100)
= A[101]x[−1] + A[100]x[0] + A[99]x[1] = 2

The value ξ[100] = 2 lies directly on the decision boundary between the ideal
values +1 and +3. For this reason a correct decision is not guaranteed.

(e)
∞∑

n=−∞

Xnc(f − nRs) =
x0
Rs

I the shifted and repeated spectrum Xnc has to add up to a constant

I for the spectral raised cosine pulse, the overlapping roll-off regions satisfy
this condition

I ISI-free transmission is possible although T 
 Ts. The pulse is actually not
limited at all in time domain, but it is equal to zero at the other time instants
at which the signal is sampled.

(10p)
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Problem 5
(a) Wlobe =

2
T
= 4

Ts
⇒ Rb =

2
Ts

= Wlobe

2
= 50 kbps

(b) With cQ
(√
X
)
6 k Pb, where c = 2 and k = 2, we get X > (7.0345)2 = 49.4209.

Furthermore, we have X =
d2min α

2 Psent

RbN0
with α2 = (0.01 · 1/100)2 = 10−8, d2min = 2.

⇒ Psent > 5.115 · 10−6W

(c) Assume a time raised cosine pulse, for which the mainlobe ends at fc + 2
T

. Un-
der the given conditions, R(f) needs to be at least 45 dB below the peak of its
mainlobe at fc + 100 kHz = fc + 4/T (smallest frequency of the other system). In
Appendix D we can see that this pulse satisfies this condition.

Now Wlobe =
4
T
= 8

Ts
⇒ Rb =

1
Tb

= 2
Ts

= Wlobe

4
= 25 kbps

In the calculation of Psent, the bitrate changes by a factor 1/2 while the rest stays
the same⇒ Psent > 2.5575 · 10−6W
(since we need to lower Rb, we need less power)

On the other hand, for the triangular pulse or the half-cycle sinusoidal pulse, we
can see in Appendix D that the condition is not satisfied if we choose Wlobe =
100 kHz. In these cases we would have to reduce the bandwidth dramatically to
satisfy the requirements, and the resulting information bit rates would have to
be much smaller than for the time raised cosine pulse.

(10p)


