

# Exam in Digital Communications, EITG05

## May 4, 2019

| Name:          |        |            |           |          |           |  |
|----------------|--------|------------|-----------|----------|-----------|--|
| Id Number:     |        |            |           |          |           |  |
| Programme:     |        |            |           |          |           |  |
| Nbr of sheets: |        |            |           |          |           |  |
|                | Mark w | ith a cros | s the pro | blems yo | u solved. |  |
|                | 1      | 2          | 3         | 4        | 5         |  |
|                |        |            |           |          |           |  |
|                |        |            |           |          |           |  |
|                |        |            |           |          |           |  |

| Control protocol |   |   |                    |   |        |       |  |  |
|------------------|---|---|--------------------|---|--------|-------|--|--|
| 1                | 2 | 3 | $ $ $\overline{4}$ | 5 | $\sum$ | Grade |  |  |
|                  |   |   |                    |   |        |       |  |  |
|                  |   |   |                    |   |        |       |  |  |



# Exam in Digital Communications, EITG05

## May 4, 2019

- During this exam you are allowed to use a calculator, the compendium, a printout of the lecture slides, and Tefyma (or equivalent).
- Please use a new sheet of paper for each solution. Write your anonymized assessment code + a personal identifier on each paper.
- Solutions should clearly show the line of reasoning and follow the methods presented in the course. If you use results from the compendium or lecture slides, please add a reference in your solution.
- ▶ If any data is lacking, make reasonable assumptions.

### Good luck!

Determine for each of the five statements below if it is true or false. Give a motivation for each of your answers.

- (a) "For 4-PAM signaling the energy of the signal s(t) depends on the transmitted data."
- (b) "The signals  $s_1(t)$  and  $s_2(t)$  in the figure below are orthogonal to each other."



- (c) Consider *M*-ary QAM signaling with a triangular pulse shape  $g(t) = g_{tri}(t)$  of amplitude *A* and duration  $T = T_s = 1 \text{ ms.}$ "If *M* is increased, then the bandwidth decreases."
- (d) "The signals in the figure below satisfy the equation:  $s_2(t) = g_{rec}(t) \cdot s_1(t + T/8)$ "



(e) "QAM signaling allows for efficient power amplifiers because the variation of the squared envelope  $e^2(t)$  is small."

(10p)





- (a) Determine the message sequence m, the carrier frequency  $f_c$ , and the bit rate  $R_b$ .
- (b) Draw a constellation diagram for this signaling method, and use some Gray mapping to assign bits to the signal alternatives.Determine the corresponding sequence of transmitted bits b.

Consider now the following 8-QAM signal constellation, which can be constructed as superposition of two 4-PSK constellations with different radius  $R_1$  and  $R_2 > R_1$ :



- (c) Determine the average energy per symbol  $\bar{E}_s$  and the minimum Euclidean distance  $D_{\min}^2$  for this constellation. All signal alternatives are transmitted with equal probability.
- (d) For comparison, determine the value  $\overline{E}_s$  for an 8-PSK constellation with the same  $D_{\min}^2$  as obtained in (c). Which of the two constellations requires less energy?

*Remark:* Parts (c) and (d) can be solved independently from (a) or (b).

Consider a 2-ray multi-path channel with impulse response

$$h(t) = \sum_{i=1}^{2} \alpha_i \,\delta(t - \tau_i)$$
, where  $\alpha_1 = 1, \alpha_2 = 0.5, \tau_1 = 0 \,\mu s, \tau_2 = 2 \,\mu s$ .

Binary antipodal signaling with rectangular pulse  $g_{rec}(t)$  of amplitude A and duration  $T = 3 \,\mu s$  is used for transmission over this channel.

- (a) Draw the signal z(t) at the output of the channel if  $s_1(t) = +g_{rec}(t)$  is transmitted.
- (b) What is the largest symbol rate  $R_s$  for which no overlap of signal alternatives will occur after the channel?
- (c) Assume now a minimum Euclidean distance receiver that operates at the rate  $R_s$  from (b). Determine the decision variables  $\xi_0$  and  $\xi_1$  computed by the receiver if no noise is present, i.e., r(t) = z(t).

The frequency spectrum X(f) of a bandpass signal x(t) is given as in the figure below:



(d) Before the signal is digitized at the receiver it is converted to an intermediate frequency as follows:

 $y(t) = x(t) \cdot \cos(2\pi (f_1 + f_2) t)$ , where  $f_1 = 4$  MHz,  $f_2 = 1$  MHz.

Draw the spectrum Y(f) of the signal.

Remark: Part (d) can be solved independently from (a), (b), or (c).

(10p)

Consider a communication system employing 2-PAM modulation with equally likely signal alternatives. The combination of the transmit pulse g(t), channel filter h(t), and receiver filter v(t) can be written as x(t) = g(t) \* h(t) \* v(t). The signal is sampled in the receiver at time instants  $\mathcal{T} + i T_s$ , i = 0, 1, 2, ...



- (a) Assume that  $T_s = 2 \mu s$  and that we want to transmit the amplitude sequence A[0] = 1, A[1] = -1, A[2] = -1, A[3] = 1. Draw the signal y(t) at the output of the receiver filter in the interval  $0 < t < 11 \mu s$  in the absence of noise, i.e., w(t) = 0. Does ISI occur?
- (b) Assume now that  $T_s = 1 \mu s$  and draw the discrete impulse response x[i]. Does ISI occur in this case?
- (c) For the case  $T_s = 1 \mu s$ , give an example of an amplitude sequence A[i] for which the worst case ISI occurs. Is there a risk for erroneous decisions if w(t) = 0?
- (d) Determine the largest symbol rate  $R_s$  that can be achieved without ISI.

(10p)

Consider a communication system with *M*-ary QAM signaling and a triangular pulse shape  $g(t) = g_{tri}(t)$  with amplitude *A* and duration  $T = T_s$ . All signal alternatives are transmitted with equal probability and the system bandwidth *W* is measured by the main-lobe. The parameter of the additive white Gaussian noise is equal to  $N_0 = 4 \cdot 10^{-20} \text{ W/Hz}$  and the propagation attenuation is  $\alpha = 0.01 \cdot d[\text{m}]^{-1}$ , where d = 200 m.

A requirement is that the symbol error probability  $P_s$  satisfies  $P_s \leq 10^{-9}$ .

- (a) For M = 4, determine the bandwidth efficiency  $\rho$  and the smallest amplitude A that fulfills these requirements.
- (b) How does the required pulse amplitude A change if the modulation order is increased to M = 16? Explain this result.
- (c) Assume now that the distance to the transmitter is reduced to d = 150m. How much can the average transmitted energy  $\bar{E}_s$  be reduced if M = 16?
- (d) Repeat part (a) if a rectangular pulse  $g(t) = g_{rec}(t)$  is used instead.