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Channel Noise
I In almost all applications the received signal r(t) is disturbed by

some additive noise N(t):

r(t) = z(t)+N(t)176 Chapter 3. Information Transmission with Carrier Modulation ...
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Figure 3.18: An example of noise N(t) over the interval 0 ≤ t ≤ 5Ts.
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Figure 3.19: An example of output (filtered) noise u(t), see (3.146). The input
noise is shown in Figure 3.18.

I Since the received noise disturbs that transmitted signal, we
need to characterize its influence on the performance
in terms of bit error rate or achievable information bit rate
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White Gaussian Noise
I White Gaussian noise w(t) is a common model for background

noise, such as created by electronic equipment
I The samples of w(t) have a zero-mean Gaussian distribution
I Any two distinct samples of w(t) are uncorrelated

rw(τ) = E{w(t+ τ)w(t)}= N0

2
δ (τ)

I This leads to a constant power spectral density

Rw(f ) =
∫

∞

−∞

rw(τ)e−j2π f τ dτ =
N0

2
, −∞≤ f ≤ ∞

3.5. Interference and Noise 179
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Figure 3.21: The power spectral density of white noise.

and it is seen that the (infinite) noise power is evenly distributed over all fre-
quencies, see Figure 3.21.

Often we are dealing with a filtered version of white noise, so-called colored
noise, see Figure 3.22a. In this figure, the coloured noise process c(t) has the
power spectral density (compare with Figure 3.20),

Rc(f) = Rw(f)|V (f)|2 =
N0

2
|V (f)|2 (3.150)

Consequently, the power spectral density is modified by the energy spectrum
|V (f)|2 of the filter. Note that the average power Pc of the output random
process c(t) is finite since,

Pc =

∫ ∞

−∞
Rc(f)df =

∫ ∞

−∞

N0

2
|V (f)|2df = N0Ev/2 (3.151)

where Ev is the energy of the impulse response v(t).
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Figure 3.22: a) White noise w(t), and coloured noise c(t). b) Power spectral
density of c(t) if v(t) is an ideal bandpass filter.

Furthermore, from, e.g., [37], [43], it is known that if the input process to a
linear filter is Gaussian, then also the output process will be Gaussian.

All frequencies are disturbed equally strongly
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Filtered Gaussian Noise
I In reality we usually deal with filtered noise of limited bandwidth,

so-called colored noise
I Assuming that white Gaussian noise w(t) passes a filter v(t) we

obtain colored noise c(t) with power spectral density

Rc(f ) = Rw(f ) |V(f )|2 = N0

2
|V(f )|2

I For an ideal bandpass filter v(t) with bandwidth W the spectrum
is shown below:
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Furthermore, from, e.g., [37], [43], it is known that if the input process to a
linear filter is Gaussian, then also the output process will be Gaussian.
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Filtered Gaussian Noise
I Since R(f ) is constant within the bandwidth W, such a process

c(t) is usually referred to as "white" bandpass process
I Let the noise process c(t) be sampled at some time t = t0. Then

the sample value c(t0) is a Gaussian random variable with

p(c) =
1√

2π σ2
e−(c−m)2/2σ2

with mean m = 0 and variance σ2 = N0/2 Ev = N0 W = Pc

Example: matched filter output (recall Chapter 4)

The additive noise N is sampled from a filtered noise process

4.4. Binary Signaling 251

Message m0 sent:

PF = Pr{m̂[0] = m1|m0 sent} = Pr

{
β0 + N >

β0 + β1

2

}
=

= Pr

{
N >

β1 − β0

2

}
= Pr

{N
σ

>
β1 − β0

2σ

}
=

= Q

(
β1 − β0

2σ

)
(4.46)

Message m1 sent:

PM = Pr{m̂[0] = m0|m1 sent} = Pr

{
β1 + N <

β0 + β1

2

}
=

= Pr

{
N < −β1 − β0

2

}
= Pr

{
N

σ
< −β1 − β0

2σ

}
=

= Q

(
β1 − β0

2σ

)
= PF (4.47)

Hence, PM = PF , and the bit error probability Pb in (4.31) is,

Pb = P0PF + P1PM = (P0 + P1)PF = PF = PM (4.48)

Let us here define the signal-to-noise ratio in the decision variable ξ, denoted
SNRξ, as

SNRξ =
((β1 − β0)/2)2

σ2
(4.49)

Then the bit error probability Pb in (4.48) can be expressed as,

Pb = Q
(√

SNRξ

)
(4.50)

The additive noise N is the result of sampling a filtered noise process, and this
is illustrated in Figure 4.13, see also Figure 4.10 on page 247.

v(t) = z 1(Ts-t)-z 0(Ts-t) N
t=(n+1)T s

N(t)

Figure 4.13: Generation of N .

Since it is assumed that the noise N(t) is a zero-mean wide sense stationary
white Gaussian random process, N is a zero-mean Gaussian random variable,
and it is characterized by its variance σ2. From (3.154) and (4.44) we have,

σ2 =
N0

2
Ev =

N0

2

∫ Ts

0

(z1(t)− z0(t))
2dt =

N0

2
D2

0,1 =
N0

2
(β1 − β0) (4.51)

σ
2 = N0/2 ·Ev = N0/2

∫ Ts

0

(
z1(t)− z0(t)

)2 dt
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Linear-Filter Channels
I The channel is often modeled as time-invariant filter with noise

t

r(t)

h(t) +

w(t)Channel

x(t) z(t)

I h(t) is the channel impulse response and w(t) the additive noise
I The received signal becomes

r(t) = x(t)∗h(t)+w(t) =
∫

∞

−∞

h(τ)x(t− τ) dτ +w(t)

I The simplest case is an attenuated noisy channel:

h(t) = α δ (t) ⇒ r(t) = α s(t)+w(t)
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N-ray Channel Model
I In many applications (wired and wireless) the transmitted signal

x(t) reaches the receiver along several different paths
I Such multi-path propagation motivates the N-ray channel model

168 Chapter 3. Information Transmission with Carrier Modulation ...

signal x(t), a so-called multi-path channel, see Figure 3.15. The output signal
z(t) equals,

z(t) = x(t) ∗
(

N∑

i=1

αiδ(t− τi)

)

︸ ︷︷ ︸
Impulse response h(t)

=
N∑

i=1

αix(t− τi) (3.126)

where αi and τi here are assumed to be constants, representing attenuation and
delay, respectively, for path number i, i = 1, 2, ..., N .

The impulse response h(t) of the multi-path channel in Figure 3.15 (from x(t)
to z(t)), and its Fourier transform H(f), is

h(t) =
N∑

i=1

αiδ(t− τi) (3.127)

H(f) = F{h(t)} =

N∑

i=1

αie
−j2πfτi (3.128)

+

Nα δ (t-     )τN

α δ (t-    )2 τ2

α1δ (t-    )τ1

....

x(t) z(t)

Figure 3.15: N -ray (multi-path) channel model.

EXAMPLE 3.19
In a specific application antipodal equally likely signal alternatives are used, where

s1(t) = −s0(t) =
A , 0 ≤ t ≤ 10−6

0 , otherwise

The (baseband) communication channel studied here gives signal attenuation and re-
flexions, see below,

I The output signal becomes

z(t) =
N

∑
i=1

αi x(t− τi) = x(t)∗h(t)

I The impulse response h(t) and its Fourier transform are given by

h(t) =
N

∑
i=1

αi δ (t− τi) , H(f ) =
N

∑
i=1

αi e−j2π f τi
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Example 3.19: multipath propagation3.4. Bandpass Filtering 169

α1

α2

α3

Delay 2 µs

Delay 1 µs

z1(t)
or

z0(t)

s1(t)
or

s0(t)

The signal zi(t) = si(t) ∗ h(t) is the output signal corresponding to the input signal
si(t), i = 0, 1. Determine and sketch z0(t) and z1(t) if α1 = 0.01, α2 = −0.01, and
α3 = 0.01.

Your conclusions concerning choice of bit rate to avoid overlapping signal alternatives
after the channel?

Solution:

zℓ(t) =
3

i=1

αisℓ(t − τi) = 0.01sℓ(t) − 0.01sℓ(t − 10−6) + 0.01sℓ(t − 2 · 10−6), ℓ = 0, 1

yields,

z1(t) =  -z0(t)

0.01A

-0.01A
3

t [µs]

Observe that the signal alternatives are changed significantly by the
channel (filtering), and that the duration of both signal alternatives is
increased from 1 [µs] before the channel, to 3[µs] after the channel!

If the bit rate is reduced to at most 106/3 bps, then no overlap of signal alternatives
will exist after the channel. ✷
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α1 = 0.01,α2 =−0.01,α3 = 0.01

I The channel (= filter) increases the length of the signals
I Signals exceed their time interval and will overlap if Ts is not

increased accordingly⇒ inter-symbol interference (ISI)
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Example 3.20170 Chapter 3. Information Transmission with Carrier Modulation ...

EXAMPLE 3.20
Calculate and sketch |H(f)|2 for the 2-ray channel model.

Solution:
From (3.128) we obtain,

H(f) = α1e
−j2πfτ1 + α2e

−j2πfτ2 =

= e−j2πfτ1 α1 + α2e
−j2πf(τ2−τ1)

|H(f)|2 = α1 + α2e
−j2πf(τ2−τ1) α1 + α2e

+j2πf(τ2−τ1) =

= α2
1 + α2

2 + α1α2 ej2πf(τ2−τ1) + e−j2πf(τ2−τ1) =

= α2
1 + α2

2 + 2α1α2 cos(2πf(τ2 − τ1))

Rough sketch:

|H(f)|2

τ2- τ1
2

τ2- τ1
1

α( 1 α2)2+

α( 1- α2)2
f [Hz]

It is seen in this figure that the two signal paths add constructively or de-
structively (fading) depending on the frequency. Furthermore, if α1 ≈ α2

then |H(f)| is very close to zero at certain frequencies (so-called deep fades)!

✷

3.5 Interference and Noise

Interfering signals and/or noise always exists in every communication applica-
tion. Typical sources of interference are: other users of the transmission medium,
non-linear effects in the transmission medium, and other signals (intentional
or un-intentional) that corrupt the information bearing signal. Typical noise
sources are background noise, and thermal noise generated by electronic equip-
ment.

In this section we will study how information carrying signals are disturbed by
additive or multiplicative interference (and/or noise). It is especially impor-
tant to understand how the quadrature components, and how the envelope- and
the phase-function are corrupted. Throughout this subsection the information
carrying signal is denoted by z(t) and the interference (or noise) is denoted by
w(t).

170 Chapter 3. Information Transmission with Carrier Modulation ...
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✷
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Interfering signals and/or noise always exists in every communication applica-
tion. Typical sources of interference are: other users of the transmission medium,
non-linear effects in the transmission medium, and other signals (intentional
or un-intentional) that corrupt the information bearing signal. Typical noise
sources are background noise, and thermal noise generated by electronic equip-
ment.

In this section we will study how information carrying signals are disturbed by
additive or multiplicative interference (and/or noise). It is especially impor-
tant to understand how the quadrature components, and how the envelope- and
the phase-function are corrupted. Throughout this subsection the information
carrying signal is denoted by z(t) and the interference (or noise) is denoted by
w(t).

Channel fading: some frequencies are attenuated strongly

Michael Lentmaier, Fall 2019 Digital Communications: Lecture 9



Features of Multipath Channels
Challenges:

I the receiver needs to know the channel
I training sequences need be transmitted for channel estimation
I the impulse response can change over time
I the line-of-sight (LOS) component is sometimes not received

Opportunities:
I with multiple paths we can collect more signal energy
I receiver can work without direct LOS component
I channel knowledge, once we have it, can give useful information:

Examples: distance, angle of arrival, speed (Doppler)
I positioning/navigation is often based on channel estimation

If you want to know more:
EITN85: Wireless Communication Channels, VT 1
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Receiver for linear filter channel model
I For a simple channel with a direct transmission path only

h(t) = α δ (t) ⇒ z`(t) = α s`(t)

I In case of multipath propagation the channel filter can change
the shape and duration of the signals z`(t)

I It can be shown that the matched filter of the overall system can
be replaced with a cascade of two separate matched filters

z`(Ts− t) ⇔ h(Th− t) , s`(Tmax− t) , Ts = Tmax +Th

I The channel matching filter h(Th− t) simplifies the
implementation of the receiver
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ML receiver with channel matching filter288 Chapter 4. Receivers in Digital Communication Systems – Part I

+

+

+

+

s        (T       -t)M-1 max

s  (T       -t)max0

s  (T       -t)max1
ξ [n]1

ξ [n]0

SYNCHRONIZATION

t=(n+1)Ts

m[n]^
h(t)

m[n](t-nT  )szsm[n] s(t-nT  )

h(T  -t)h
r(t)

. .
 .

LARGEST
SELECT

R E C E I V E R
-E  /20

-E  /21N(t)

-E       /2

ξ [n]

M-1

M-1

Figure 4.17:
An implementation of the minimum Euclidean distance receiver (i.e. the ML
receiver), including an explicit channel matching filter h(Th− t). The energy Eℓ

is the same as in Figures 4.8–4.9, and it is associated with zℓ(t) = sℓ(t) ∗ h(t).

If the channel is a so-called three-ray channel, then

h(t) = α1δ(t− τ1) + α2δ(t− τ2) + α3δ(t− τ3) (4.145)

Consequently, the transmitted signal reaches the receiver through three trans-
mission paths, each with different gain α and delay τ . The channel matching
filter is in this case (assuming τ1 ≤ τ2 ≤ τ3, and Th = τ3),

h(Th − t) = h(τ3 − t) =

= α1δ(τ3 − t− τ1) + α2δ(τ3 − t− τ2) + α3δ(τ3 − t− τ3) =

= α3δ(t) + α2δ(t− (τ3 − τ2)) + α1δ(t− (τ3 − τ1)) (4.146)

The three-ray channel, and an implementation of the channel matching filter are
illustrated in Figure 4.18.

Example 4.23 illustrates the importance of channel knowledge in the receiver.
In this example, 4-ary PAM is considered.
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Example: three-ray channel
I Consider a channel with three signal paths

h(t) = α1 δ (t− τ1)+α2 δ (t− τ2)+α3 δ (t− τ3)

I Assuming τ1 < τ2 < τ3 we have Th = τ3
I The channel matching filter becomes

h(Th− t) = h(τ3− t)

= α3 δ (t)+α2 δ (t− (τ3− τ2))+α1 δ (t− (τ3− τ1))

RAKE receiver structure:

4.6. A Receiver Structure for the Linear Filter Channel Model 289

s      (t-nT  )m[n] α1δ(t-τ1)

α2δ(t-τ2)

α3δ(t-τ3) Delay
τ3-τ2

Delay
τ3-τ1

α1

α2

α3

r(t) To matched
filters

Channel matching
filter h(T  -t)

N(t)

Three-ray channel

s

h

Figure 4.18: Illustrating the three-ray channel, and the corresponding channel
matching filter h(Th − t), Th = τ3 ≥ τ2 ≥ τ1. This receiver structure is also
referred to as a RAKE receiver structure. See also Figure 4.17.

EXAMPLE 4.23
Assume that the transmitter uses 4-ary PAM signal alternatives: s0(t) = −3g(t),
s1(t) = −g(t), s2(t) = g(t), and s3(t) = 3g(t). Furthermore, the channel h(t) is
assumed to be h(t) = αδ(t) = − 1

3
δ(t). Hence, the received signal alternatives are

zℓ(t) = −sℓ(t)/3, ℓ = 0, 1, 2, 3.

Let us here also assume that the receiver ignores the effect of the channel h(t), i.e,
assume that the receiver is designed to be ML for the case α = 1 (and AWGN). Hence,
this receiver compares the received signal r(t) with the signal alternatives {sℓ(t)}3

ℓ=0!

If the noise is zero, then this receiver always makes symbol error decisions
(i.e. Ps = 1)!

Verify this statement!

Solution:
The noise is here N(t) = 0.

If message m0 is sent, then r(t) = z0(t) = g(t) and the receiver finds that r(t) is closest
to s2(t). Hence, the decision of the receiver is m̂ = m2 ̸= m0.

If message m1 is sent, then r(t) = z1(t) = g(t)/3 and the receiver finds that r(t) is
closest to s2(t). Hence, the decision is m̂ = m2 ̸= m1.

In the same way we obtain that the decision of the receiver is m̂ = m1 if r(t) = z2(t) =
−g(t)/3, or if r(t) = z3(t) = −g(t).

So, this receiver always makes symbol error decisions if the noise is zero!

Comment:
It is seen in this 4-ary PAM example that if the influence of the channel h(t) is not
considered in the receiver, then a non-acceptable performance is obtained! As we know
from this chapter (see, e.g., Figure 4.8 on page 241) the receiver should compare r(t)
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Recall: receiver for M-ary signaling
I Consider the general receiver structure from Chapter 4:4.3. The Minimum Euclidean Distance Receiver 241

m̂

Ts

0
(   )dt +

Ts

0
(   )dt +

SELECT
LARGEST

ξ1

ξ0

ξM-1

{z  (t)} =0
M-1

+

z  (t)1

z  (t)0

z       (t)M-1
Ts

0
(   )dt +

z(t)

N(t)

r(t)

RECEIVER

. .
 .

. .
 .

. .
 .

-E  /2

-E  /2

-E        /2M-1

0

1

Figure 4.8: The minimum Euclidean distance receiver, see (4.33).

EXAMPLE 4.3
Assume in Figure 4.8 that M = 2, and that the received signal alternatives z0(t) and
z1(t) are,

z  (t)0 z  (t)1

Ts Ts

A A

-A

tt

Furthermore, assume a noisefree situation, and also that r(t) = z0(t) (i.e. message m0

is sent).
Calculate the decision variables ξ0 and ξ1 in Figure 4.8.

Solution:

ξ0 =
Ts

0

r(t)z0(t)dt − E0

2
=

Ts

0

z2
0(t)dt − E0

2
=

E0

2
=

A2Ts

2

ξ1 =
Ts

0

r(t)z1(t)dt − E1

2
=

Ts

0

z0(t)z1(t)dt − E1

2
= −E1

2
= −A2Ts

2

Note the relatively large difference between the decision variables ξ0 and ξ1. It is clear
that a correct decision is made in this noisefree situation since ξ0 > ξ1. Also observe
that if r(t) = zℓ(t), then the output from the ℓ:th correlator equals Eℓ. ✷

Figure 4.8 shows the receiver implementation for an arbitrary received signal
constellation {zℓ(t)}M−1

ℓ=0 . However, for several signal constellations, Figure 4.8

I Decision variables are computed by correlators or matched filters
I Each possible signal alternative is recreated in the receiver
I Question: can we apply this to bandpass signals? Yes!

But: recreating signals at large frequencies fc is a challenge
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Example: QAM Signaling
I Recall the simplified receiver considered in Example 4.4:

242 Chapter 4. Receivers in Digital Communication Systems – Part I

can be simplified considerably. Example 4.4 below illustrates this for a received
64-ary QAM signal constellation {zℓ(t)}63

ℓ=0.

EXAMPLE 4.4
Assume that {zℓ(t)

M−1
ℓ=0 is a 64-ary QAM signal constellation. Draw a block-diagram

of a minimum Euclidean distance receiver that uses only two integrators.

Solution:
A QAM signal alternative can be written as zi(t) = Aig(t) cos(ωct) − Big(t) sin(ωct),
where g(t) is a baseband pulse. The output value from the i:th correlator in Figure 4.8
is,

Ts

0

r(t)zi(t)dt = Ai

Ts

0

r(t)g(t) cos(ωct)dt

x

−Bi

Ts

0

r(t)g(t) sin(ωct)dt

−y

=

= Aix + Biy

Observe that x and y do not depend on the index i.
Hence, a possible implementation of the receiver is to first generate x and y, and then
calculate the M correlations Aix + Biy, i = 0, i, . . . , M − 1. By subtracting the value
Ei/2 from the i:th correlation, the decision variables ξ0, . . . , ξM−1 are finally obtained.
The implementation of this receiver is shown below:

Select
MAX Decision

r(t)

A0

B0

A63

B63

-E0/2

-E63/2

ξ0

ξ63

. . .

. . .
Ts

0
(  ) dt

Ts

0
(  ) dt

-sin( ωct)

cos( ωct) g(t)

g(t)

y

x

The complexity of this receiver is significantly reduced compared to the receiver in Figure
4.8 on page 241! Only two integrators are here used, instead of 64 (= M) in Figure
4.8.

For the receiver implementation above, several important observations are
made:

1. The operations performed in the receiver to obtain x and y can be interpreted as
demodulation combined with baseband correlation (correlation with g(t)). The lo-
cal oscillator signals cos(ωct) and sin(ωct) in the receiver have the same phase as
the signal alternatives {zℓ(t)}M−1

ℓ=0 have. This is referred to as coherent reception.

2. Since M-ary bandpass PAM and M-ary PSK can be viewed as special cases of
M-ary QAM, the implementation above can be used also for these signal constel-
lations. Actually, by setting fc = 0 a receiver implementation for M-ary baseband
PAM is also obtained (which implies that y = 0).

I Only two correlator branches are required instead of M
I Separation of carrier waveforms from baseband pulse possible

Our aim: a general baseband representation of the receiver
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Transmission of bandpass signals
I Recall from last lecture:

3.1. Bandpass Signals: Basic Concepts 119

signal
Digital

processor
information
Original

(digital or analog) xQ (t)

x I (t)

cos(2  f  t)cπ

x(t)

-sin(2  f  t)π c

Figure 3.2: A transmitter structure for information transmission via carrier
modulation. First the information is placed in the I- and Q-components xI(t)
and xQ(t). After that a frequency conversion is made from baseband to the
carrier frequency fc.

To see that the expression in (3.1) represents a bandpass signal we calculate its
Fourier transform X(f). Here, it is assumed that xI(t) and xQ(t) are baseband
signals with Fourier transforms XI(f) and XQ(f) respectively. The duration of
x(t) can be finite or infinite. By using (2.157) X(f) is obtained as,

X(f) =
1

2
(XI(f + fc)− jXQ(f + fc))

︸ ︷︷ ︸
around −fc

+

+
1

2
(XI(f − fc) + jXQ(f − fc))

︸ ︷︷ ︸
around +fc

(3.2)

In most applications, the carrier frequency fc is much larger than the bandwidth
of the baseband signals xI(t) and xQ(t). Then the first two terms in (3.2)
(with argument f + fc) are essentially nonzero only for frequencies around f =
−fc, and the last two terms (with argument f − fc) are significant only for
frequencies around f = +fc. Consequently, x(t) in (3.1) represents a bandpass
signal, compare with Figure 3.1. Normally, the quadrature components have
baseband (lowpass) characteristics, and (3.2) then represents a frequency shift
(translation) from baseband to higher frequencies.

Observe that (3.2) is valid for any sample function (realization) of the informa-
tion carrying quadrature components, as long as the Fourier transforms XI(f)
and XQ(f) exist. In test situations (3.2) is also very useful. Assume that a
periodic test signal, e.g. a periodic data pattern, a sinusoid or a square wave,
is used as the input signal. The quadrature components xI(t) and xQ(t) of the
output bandpass signal x(t) will then also be periodic signals, and they can be
expressed by their Fourier series (see (C.20)). Hence, with periodic test signals
as input signals the properties of the output bandpass signal can quite easily
be calculated exactly in the time domain (and also in the frequency domain).

I A general bandpass signal can always be written as

x(t) = xI(t) cos(2π fc t) − xQ(t) sin(2π fc t) , −∞≤ t ≤ ∞

I xI(t): inphase component xQ(t): quadrature component
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QPSK Example

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
fTs

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
fTs

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
fTs

-1

0

1

xI(t) cos(2⇡ fc t)

xQ(t) sin(2⇡ fc t)

x(t) = xI(t) cos(2⇡ fc t) � xQ(t) sin(2⇡ fc t)

t/Ts

What are xI(t) and xQ(t) in this case?
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Receivers for bandpass signals
I Our goal: reproduce components xI(t) and xQ(t) at the receiver
I In the transmitted bandpass signal x(t) these components were

shifted to the carrier frequency fc

Chapter 3

Information Transmission
with Carrier Modulation
Techniques

This chapter deals with bandpass signals carrying digital or analog information.
The characteristic feature of a bandpass signal x(t) is that its frequency content
is “concentrated” around a carrier frequency fc [Hz], see Figure 3.1. Band-
pass signals occur frequently in practice: mobile telephony, television, radio,
satellite communication, wireless local area networks, navigation, optical fiber
communication, etc.

|X(f)|2 W

f c- f c

|X(f)|2

f c- f c

W

a)

f [Hz]
0

b)
f [Hz]

0

Figure 3.1: Examples of the frequency content in a bandpass signal x(t). a)
Symmetric spectrum around fc. b) Non-symmetric spectrum around fc.

M-ary PSK, M-ary FSK, M-ary bandpass PAM, M-ary QAM, OFDM, and

117

I Idea: shifting the signal back to the baseband by multiplying with
the carrier waveform again (see Ex. 2.19 and Problem 3.9)

I A lowpass filter HLP(f ) is then applied in the baseband to remove
undesired other signals or copies from the carrier multiplication
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3.6.1 Homodyne Reception

It is seen in Figure 3.24b that if the signal v(t) is shifted (translated) in frequency
by an amount fc [Hz], then the desired signal y(t) will be shifted to baseband.
This is precisely what is achieved with homodyne reception.

The homodyne technique is illustrated in Figure 3.25a. Note in this figure that
the locally generated sinusoidal signals oscillate with a frequency that ideally is
exactly the same as the carrier frequency fc of the desired signal y(t). This is
referred to as homodyne reception.

HLP(f)

HLP(f)

-Asin( ωct+φerr(t))

Acos( ωct+φerr(t))

v(t)
uI(t)

uQ(t)

a) b)

-W lp Wlp

1

|HLP(f)|

f [Hz]

Figure 3.25: a) Homodyne reception. Here a non-ideal phase function φerr(t) is
included. b) Amplitude function of the lowpass filters.

In Figure 3.25a, the locally generated sinusoidal signals contain a non-ideal phase
function φerr(t), where ideally φerr(t) = 0. The analysis below is restricted to
situations where φerr(t) can be written as,

φerr(t) = ωerrt + νerr (3.168)

Hence, here the effects of a frequency error ferr and a phase error νerr is consid-
ered (to a certain extent). The bandwidth Wlp of the lowpass filters in Figure
3.25 is matched to the bandwidth Wrf of the desired bandpass signal y(t), such
that

Wlp = Wrf/2 + ferr,max (3.169)

where the additional bandwidth ferr,max is needed due to a possible frequency
error. This will be clarified below. From Figure 3.25 it is found that the output
signals uI(t) and uQ(t) can be written as,

uI(t) = [v(t)A cos(ωct + φerr(t))]LP = (3.170)

= [{y(t) + y1(t) + . . . + yN (t)}A cos(ωct + φerr(t))]LP

uQ(t) = [−v(t)A sin(ωct + φerr(t))]LP =

= [−{y(t) + y1(t) + . . . + yN(t)}A sin(ωct + φerr(t))]LP
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Homodyne receiver frontend
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included. b) Amplitude function of the lowpass filters.

In Figure 3.25a, the locally generated sinusoidal signals contain a non-ideal phase
function φerr(t), where ideally φerr(t) = 0. The analysis below is restricted to
situations where φerr(t) can be written as,

φerr(t) = ωerrt + νerr (3.168)

Hence, here the effects of a frequency error ferr and a phase error νerr is consid-
ered (to a certain extent). The bandwidth Wlp of the lowpass filters in Figure
3.25 is matched to the bandwidth Wrf of the desired bandpass signal y(t), such
that

Wlp = Wrf/2 + ferr,max (3.169)

where the additional bandwidth ferr,max is needed due to a possible frequency
error. This will be clarified below. From Figure 3.25 it is found that the output
signals uI(t) and uQ(t) can be written as,

uI(t) = [v(t)A cos(ωct + φerr(t))]LP = (3.170)

= [{y(t) + y1(t) + . . . + yN (t)}A cos(ωct + φerr(t))]LP

uQ(t) = [−v(t)A sin(ωct + φerr(t))]LP =

= [−{y(t) + y1(t) + . . . + yN(t)}A sin(ωct + φerr(t))]LP
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φerrsin(       (t))A/2

φerrcos(       (t))A/2

φerrcos(       (t))A/2

y  (t)I u  (t)I

u   (t)Q+

+

y   (t)Q +

-

Figure 3.26: Illustrating how the output signals from the homodyne receiver in
Figure 3.25a, depend on the desired signals and on the phase function error. See
also (3.171)–(3.172).

Channel Filtering, Additive Noise and Homodyne Reception:

By combining some of the results in this section, the complete transmission
model in Figure 3.27 can be analyzed.

x   (t)Q

x  (t)I

+ H(f) +

H     (f)LP

H     (f)LP u   (t)Q

u  (t)I

cos(    t)ωc

-sin(    t)cω

w(t)+y  (t)+...+y   (t)1 N

Acos(     t+        (t))φerrωc

-Asin(     t+        (t))ωc φerr

H     (f)BPinformation
Original

processor
Signal x(t) z(t) r(t) v(t)

Transmitter side Channel Homodyne reception

Figure 3.27: Channel filtering, aditive noise and homodyne reception.

To simplify the description below, it is assumed that the bandpass filter HBP (f)
is ideal (ignoring the effects of group- and phase-delay). In (3.171)–(3.172) the
relationship between the signals uI(t), uQ(t), and the desired signals yI(t) and
yQ(t) are given, where

y(t) = z(t) + w(t) (3.175)

and where w(t) represents inband interference and noise. Furthermore, (3.133)-
(3.134) show the relationship between the signals yI(t), yQ(t) and the signals
zI(t) and zQ(t). Finally, in (3.101)-(3.102) the relationship between the signals

I Receiver is not synchronized to transmitter: phase errors φerr(t)
I Assume first r(t) = xI(t) cos(2π fc t) (xQ(t) = 0 and no noise)

uI(t) =
[
xI(t) cos(2π fc t) ·A cos(2π fc t+φerr(t))

]
LP

=
[xI(t)

2
A (cos(φerr(t))+ cos(2π 2fc t+φerr(t)))

]
LP

=
xI(t)

2
A cos(φerr(t))

I Likewise uQ(t) =−
xI(t)

2
A sin(φerr(t))
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The impact of phase errors
I Assuming r(t) = xI(t) cos(2π fc t) we have found that

uI(t) =
xI(t)

2
A cos(φerr(t)) , uQ(t) =−

xI(t)
2

A sin(φerr(t))

I Ideal case: φerr(t) = 0

uI(t) = xI(t)/2 ·A and uQ(t) = 0

⇒ the inphase branch is independent of the quadrature branch

I Phase errors: φerr(t) 6= 0

uI(t)< xI(t)/2 ·A and uQ(t) 6= 0 (crosstalk)

I If φerr(t) changes randomly (jitter) the average uI(t) can vanish

I Ignoring the effect of phase errors can lead to bad performance

Question: what can we then do about phase errors?
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Coherent receivers
I Assume now that we can estimate φerr(t)
I The signal xI(t) is contained in both uI(t) and uQ(t)

uI(t) =
xI(t)

2
A cos(φerr(t)) , uQ(t) =−

xI(t)
2

A sin(φerr(t))

I Coherent reception:

by combining both components the signal can be recovered by

ûI(t)= uI(t)·cos(φerr(t))−uQ(t)·sin(φerr(t))

=
xI(t)

2
A cos2(φerr(t))+

xI(t)
2

A sin2(φerr(t)) =
xI(t)

2
A

I Observe: same result as in the ideal case φerr(t) = 0

Compare: non-coherent DPSK receiver (last lecture, p. 400-403)
can be used if phase estimation is not possible
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Overall transmission model
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also (3.171)–(3.172).

Channel Filtering, Additive Noise and Homodyne Reception:

By combining some of the results in this section, the complete transmission
model in Figure 3.27 can be analyzed.
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Figure 3.27: Channel filtering, aditive noise and homodyne reception.

To simplify the description below, it is assumed that the bandpass filter HBP (f)
is ideal (ignoring the effects of group- and phase-delay). In (3.171)–(3.172) the
relationship between the signals uI(t), uQ(t), and the desired signals yI(t) and
yQ(t) are given, where

y(t) = z(t) + w(t) (3.175)

and where w(t) represents inband interference and noise. Furthermore, (3.133)-
(3.134) show the relationship between the signals yI(t), yQ(t) and the signals
zI(t) and zQ(t). Finally, in (3.101)-(3.102) the relationship between the signals

I The signal y(t) is given by

y(t) = z(t)+w(t) = x(t) ∗ h(t)+w(t)

I It can be written as

y(t) = yI(t)cos(2π fc t)− yQ(t)sin(2π fc t)

Can we express uI(t) and uQ(t) in terms of xI(t) and xQ(t)?
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Inphase and quadrature relationship

I With the complete signal r(t) entering the receiver the output
signals become

uI(t) =
[
y(t)A cos(2π fc t+φerr(t))

]
LP

=
yI(t)

2
A cos(φerr(t))

+
yQ(t)

2
A sin(φerr(t))

uQ(t) =
[
− y(t)A sin(2π fc t+φerr(t))

]
LP

=
yQ(t)

2
A cos(φerr(t))

− yI(t)
2

A sin(φerr(t))

188 Chapter 3. Information Transmission with Carrier Modulation ...

φerrsin(       (t))A/2

φerrcos(       (t))A/2

φerrcos(       (t))A/2

y  (t)I u  (t)I

u   (t)Q+

+

y   (t)Q +

-

Figure 3.26: Illustrating how the output signals from the homodyne receiver in
Figure 3.25a, depend on the desired signals and on the phase function error. See
also (3.171)–(3.172).

Channel Filtering, Additive Noise and Homodyne Reception:

By combining some of the results in this section, the complete transmission
model in Figure 3.27 can be analyzed.
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To simplify the description below, it is assumed that the bandpass filter HBP (f)
is ideal (ignoring the effects of group- and phase-delay). In (3.171)–(3.172) the
relationship between the signals uI(t), uQ(t), and the desired signals yI(t) and
yQ(t) are given, where

y(t) = z(t) + w(t) (3.175)

and where w(t) represents inband interference and noise. Furthermore, (3.133)-
(3.134) show the relationship between the signals yI(t), yQ(t) and the signals
zI(t) and zQ(t). Finally, in (3.101)-(3.102) the relationship between the signals
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Including the channel filter
I Before we can relate y(t) = z(t)+w(t) to x(t) we need to consider

the effect of the channel

z(t) = x(t) ∗ h(t)

3.4. Bandpass Filtering 159

x(t) z(t)h(t)

Figure 3.11: Bandpass filtering.

h(t), or by its frequency function H(f) = F{h(t)}. It is here assumed that x(t)
and h(t) are bandpass signals,

x(t) = xI(t) cos(2πfct)− xQ(t) sin(2πfct) (3.92)

h(t) = hI(t) cos(2πfct)− hQ(t) sin(2πfct) (3.93)

To calculate the output signal z(t), we may first calculate the Fourier transform
Z(f),

Z(f) = X(f)H(f) (3.94)

Hence, the energy spectrum is changed from |X(f)|2 to |X(f)|2|H(f)|2 by the
filter.

If the Fourier transforms X(f) and H(f) are expressed in terms of the Fourier
transforms of the quadrature components, see (3.2), then Z(f) can be written
as,

Z(f) =
1

2
[XI(f + fc)− jXQ(f + fc) + XI(f − fc) + jXQ(f − fc)] ·

· 1

2
[HI(f + fc)− jHQ(f + fc) + HI(f − fc) + jHQ(f − fc)] =

=
1

4
([XI(f + fc)− jXQ(f + fc)] [HI(f + fc)− jHQ(f + fc)] +

+ [XI(f − fc) + jXQ(f − fc)] [HI(f − fc) + jHQ(f − fc)]) +

+Zct(f) (3.95)

Where Zct(f) equals the sum of the “cross terms”,

Zct(f) =
1

4
([XI(f + fc)− jXQ(f + fc)] [HI(f − fc) + jHQ(f − fc)]+

+ [XI(f − fc) + jXQ(f − fc)][HI(f + fc)− jHQ(f + fc)]) (3.96)

Now let us assume that the bandwidth of the (baseband) quadrature compo-
nents xI(t), xQ(t), hI(t) and hQ(t) are assumed to be much smaller than the
carrier frequency fc. This means that Zct(f) is essentially equal to zero for all
frequencies, and Z(f) in (3.95) can then be very well approximated by,

Z(f) =
1

2
(ZI(f + fc)− jZQ(f + fc) + ZI(f − fc) + jZQ(f − fc)) (3.97)

where,

ZI(f) =
1

2
(XI(f)HI(f)−XQ(f)HQ(f)) (3.98)

ZQ(f) =
1

2
(XI(f)HQ(f) + XQ(f)HI(f)) (3.99)

I We assume that the impulse response h(t) can be represented
as a bandpass signal

h(t) = hI(t) cos(2π fc t)−hQ(t) sin(2π fc t)

I With some calculations the signals can be written as (p. 159-160)
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Figure 3.12: Bandpass filtering. a) Bandpass filter; b) Illustrating the calculation
of the quadrature components zI(t) and zQ(t), see (3.101)–(3.102).

By comparing (3.97) with (3.2), it is concluded that the output signal z(t) from
the bandpass filter can be written as,

z(t) = zI(t) cos(2πfct)− zQ(t) sin(2πfct) (3.100)

From (3.98)–(3.99) it is found that the quadrature components zI(t) and zQ(t)
are,

zI(t) =
1

2
(xI(t) ∗ hI(t)− xQ(t) ∗ hQ(t)) (3.101)

zQ(t) =
1

2
(xI(t) ∗ hQ(t) + xQ(t) ∗ hI(t)) (3.102)

Observe that the calculation of zI(t) and zQ(t) are made at baseband. The re-
lationships between the quadrature components, (3.101)–(3.102), are illustrated
in Figure 3.12b.

EXAMPLE 3.16
Assume that the input signal x(t) in figure 3.12a is x(t) = Ag(t) cos(ωct), where

g(t) =
g0 , 0 ≤ t ≤ T
0 , elsewhere

Furthermore, assume that h(t) = Bg(t) cos(ωct), and fcT ≫ 1. Calculate the output
signal z(t), and sketch zI(t).

Solution:
z(t) = zI(t) cos(ωct) − zQ(t) sin(ωct)

zI(t) =
1
2
(
xI(t) ∗ hI(t)− xQ(t) ∗ hQ(t)

)

zQ(t) =
1
2
(
xI(t) ∗ hQ(t)+ xQ(t) ∗ hI(t)

)
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Equivalent baseband model
I Combining the channel with the receiver frontend we obtain
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zI(t), zQ(t) and the modulated quadrature components xI(t) and xQ(t) are
found. These equations are illustrated in Figure 3.28. Note that all calculations
in this figure are made at baseband. Therefore, the input-output analysis (from
xI(t), xQ(t) to uI(t), uQ(t)) of the transmission system in Figure 3.27 can be
made at baseband. This is very convenient, and it is also the reason why Figure
3.28 often is referred to as the equivalent baseband model of Figure 3.27.

h   (t)Q
2

h   (t)Q
2

h  (t)I
2

+ +

φerrcos(       (t))A/2

φerrsin(       (t))A/2

u   (t)Q

h  (t)I
2

+
z  (t)I

+ + u  (t)I

φerrcos(       (t))A/2

y   (t)Q
+

z   (t)Q

y  (t)I

w   (t)Q

w  (t)I

x  (t)I

x   (t)Q

-

+

+

Figure 3.28: Illustrating the relationship between uI(t), uQ(t) and xI(t), xQ(t)
in Figure 3.27.

EXAMPLE 3.25
Assume in Figure 3.27 that hQ(t) = 0 and φerr(t) = 0. Is it then true that xI(t)
influences only uI(t), and that xQ(t) influences only uQ(t)?

Solution:
From Figure 3.28 we have,

uI(t) =
xI(t) ∗ hI(t)

2
+ wI(t) A/2

uQ(t) =
xQ(t) ∗ hI(t)

2
+ wQ(t) A/2

So, the answer is yes.
Observe that this means that two independent information signals (xI(t) and
xQ(t), respectively) can in this case be transmitted simultaneous within the
same bandwidth (the same channel), without disturbing each other in the
receiver! ✷

3.6.2 Heterodyne Reception

In heterodyne reception, the desired signal y(t) is first frequency shifted to a
new carrier frequency, the so-called intermediate frequency fim . This is

I Observe that all the involved signals are in the baseband
I The same is true for channel filter, noise and phase error

Digital signal processing can be applied easily in baseband
What happened with the carrier waveforms?
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