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Channel Noise

» In almost all applications the received signal r(z) is disturbed by
some additive noise N(z):

r(t) =z(t) + N(1)
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» Since the received noise disturbs that transmitted signal, we
need to characterize its influence on the performance
in terms of bit error rate or achievable information bit rate
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White Gaussian Noise

» White Gaussian noise w(r) is a common model for background
noise, such as created by electronic equipment

» The samples of w(r) have a zero-mean Gaussian distribution
» Any two distinct samples of w(r) are uncorrelated

1 (5) = E{w(i-+ Ty w(0)} = "2 8(2)

» This leads to a constant power spectral density
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All frequencies are disturbed equally strongly
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Filtered Gaussian Noise

> In reality we usually deal with filtered noise of limited bandwidth,
so-called colored noise

» Assuming that white Gaussian noise w(r) passes a filter v(r) we
obtain colored noise c(¢) with power spectral density

R() = RNV =22 Vi)

» For an ideal bandpass filter v(¢) with bandwidth W the spectrum

is shown below:
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Filtered Gaussian Noise

» Since R(f) is constant within the bandwidth W, such a process
¢(t) is usually referred to as "white" bandpass process

» Let the noise process c(r) be sampled at some time ¢ = #5. Then
the sample value c¢(1y) is a Gaussian random variable with

L (empj2e?

PO= e

with mean m = 0 and variance 6> = Ny/2 E, = Ng W = P.

Example: matched filter output (recall Chapter 4)
The additive noise A is sampled from a filtered noise process

N() % vit) =z (T )z (T ) }—?L» N

t=(n+1)T s

6% =Ny/2-E, = Ny/2 /OTX (z1(7) —z()(t))2 dt
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Linear-Filter Channels

» The channel is often modeled as time-invariant filter with noise

Channel

w(t)
z(t) z(t) l r(t)
h(t) O}

> h(t) is the channel impulse response and w(¢) the additive noise
» The received signal becomes

1) =x(0) +h(O)+w(t) = [~ h(E)x(1—7) de-+w(r)

» The simplest case is an attenuated noisy channel:

h(t)=ad(t) =r(t)=as(t)+w(r)
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N-ray Channel Model

» In many applications (wired and wireless) the transmitted signal
x(r) reaches the receiver along several different paths
» Such multi-path propagation motivates the N-ray channel model

» The output signal becomes

x(t) z(t)

N
2(t) =Y aix(t— 1) = x(1) % h(t)
i=1

» The impulse response h(r) and its Fourier transform are given by
N N
W)=Y 0;8(t—7), H(f)=Y are ™
i=1 h

i=1
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Example 3.19: multipath propagation

O3

Delay 2 us
Delay 1 us

tps]

sy (t) ENU) -0.01A
A, 0<t<107°
s1(t) = —so(t) = { 0 otherwise
a; =0.01,0p = —0.01, 3 = 0.01

» The channel (= filter) increases the length of the signals

» Signals exceed their time interval and will overlap if T is not
increased accordingly = inter-symbol interference (ISI)

Michael Lentmaier, Fall 2019 Digital Communications: Lecture 9




Example 3.20
EXAMPLE 3.20
Calculate and sketch |H(f)|? for the 2-ray channel model.

Solution:
From (3.128) we obtain,

H(f) — ale*ﬂﬂfﬂ + aze—;z«frz _
B ks (al + aw—ﬂwf(mfn))
H(H]? = (041 +026—J27rf(72—n)) (al +a2e+12ﬂf(72—n)) _

= of+altaria (eﬂ"f(”’”) + eijgwf(”*”)) =

= of + a3+ 210z cos(2n f (T2 — 1))

T T f [Hz]
1 2
U]

Channel fading: some frequencies are attenuated strongly
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Features of Multipath Channels

Challenges:
» the receiver needs to know the channel
» training sequences need be transmitted for channel estimation
» the impulse response can change over time
» the line-of-sight (LOS) component is sometimes not received

Opportunities:
» with multiple paths we can collect more signal energy
» receiver can work without direct LOS component

» channel knowledge, once we have it, can give useful information:
Examples: distance, angle of arrival, speed (Doppler)

» positioning/navigation is often based on channel estimation

If you want to know more:
EITN85: Wireless Communication Channels, VT 1
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Receiver for linear filter channel model

» For a simple channel with a direct transmission path only

h(t) =0 d(t) = z(t) = ouse(t)

» In case of multipath propagation the channel filter can change
the shape and duration of the signals z(z)

» It can be shown that the matched filter of the overall system can
be replaced with a cascade of two separate matched filters

ZZ(Ts - t) = h(Th - t) y SZ(Tmax - t) v Ty =Tuax+ Ty

» The channel matching filter (T, — ) simplifies the
implementation of the receiver
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ML receiver with channel matching filter
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Example: three-ray channel
» Consider a channel with three signal paths
h()=a16(t—11)+0d(t—1)+azd(t—13)

» Assuming 7 < T, < T3 we have T, = 13
» The channel matching filter becomes
/’l(Th — t) = ]’l(T3 — l‘)
=3 0()+mdé(t—(3—m))+a;8(t— (13 —11))

RAKE receiver structure: oy

Three-ray channel Channel matching
filter h(Tp-t)

To matched

Sminj(t-nTs) filters
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Recall: receiver for M-ary signaling

» Consider the general receiver structure from Chapter 4:

! RECEIVER !
} 7(0) -Ey/2 i
! —= [t =2 !
| 0 |
: z1(t) -E2 :
No T !
! = [ O = =
o8 SELECT ‘
z2(t) ——= . 0 . !
i : : LARGEST | 1
M-1 | .
{2} ! : |
20 ! 2 © EM.172 !
| Tg !
| s |
: JegT - EM-1 !
| 0 |
| |
| |

» Decision variables are computed by correlators or matched filters
» Each possible signal alternative is recreated in the receiver
» Question: can we apply this to bandpass signals? Yes!

But: recreating signals at large frequencies f. is a challenge
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Example: QAM Signaling

» Recall the simplified receiver considered in Example 4.4:

Select
MAX

—» Decision
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Transmission of bandpass signals

» Recall from last lecture:

cos(2rf t)
Xq 0]
Original Digital
information —= signal ——= x(t)
(digital or analog) processor | Xy ®
-sin(2mfct)

» A general bandpass signal can always be written as
x(t) =x;(t) cos(2mfet) — xo(t) sin(2xfet), —oo<t< oo

» x;(7): inphase component xp(): quadrature component
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QPSK Example

z1(t) cos(2m f.t)

1

0 05 1 15 2 25 3 35 4 45 5
2q(t) sin(27 fot)

T

What are x;(r) and xo(z) in this case?

Michael Lentmaier, Fall 2019 Digital Communications: Lecture 9




Receivers for bandpass signals

» Our goal: reproduce components x;(r) and xy(¢) at the receiver
» In the transmitted bandpass signal x(¢) these components were
shifted to the carrier frequency f,

X0 U
[\ T A
- fe 0 fe

» Idea: shifting the signal back to the baseband by multiplying with
the carrier waveform again (see Ex. 2.19 and Problem 3.9)

» A lowpass filter Hrp(f) is then applied in the baseband to remove
undesired other signals or copies from the carrier multiplication

H 5 ()1

jL
f [Hz]

Wip Wi
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Homodyne receiver frontend

Acos( ® t+¢err( )

-Asin( ® t+¢err( )

» Receiver is not synchronized to transmitter: phase errors ¢.,.(t)
» Assume first r( ) —xl(t) cos(2xf.t) (xo(r) =0 and no noise)

[xl cos(2mf. 1) - A cos 2mfet+ Perr(1)) ], p

al (cOS(Porr (1)) + cOS(QA 2t + G (1)) ] . p

=[5
4 ——A COS(¢err( ))

» Likewise MQ(t) — _XITO)A Sin((berr(t))

()
2
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The impact of phase errors

» Assuming r(r) = x;(t) cos(2rf.t) we have found that

(1) = xl—ét)A c08(Perr (1)), up(t) = —’C’T(’)A sin(@urr (1))

» Ideal case: ¢,,.(1) =0
ur(t) =x;(1)/2-A and ug(r)=0
= the inphase branch is independent of the quadrature branch
» Phase errors: ¢,..(t) #0
ur(t) <xp(r)/2-A and ug(r) #0 (crosstalk)
» If ¢.,-(¢) changes randomly (jitter) the average () can vanish

» Ignoring the effect of phase errors can lead to bad performance

Question: what can we then do about phase errors?
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Coherent receivers

» Assume now that we can estimate ¢,,.(¢)
» The signal x;(z) is contained in both u;(¢) and uy(¢)

Lét)A cos(@err (1)), up(t) = —#A sin(@err (1))

MI(I) =

» Coherent reception:
by combining both components the signal can be recovered by

i1y (1) = s (1) -cOS(Qerr (1)) — g (1) -sin(Perr (1))

_ u(1)
= ITA 08 (e, (1)) + 5

2
» Observe: same result as in the ideal case ¢.,.(t1) =0

0 4 02 (0o (1)) = 1) 4

can be used if phase estimation is not possible
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Overall transmission model

cos@ct) Acos(@ct+ e (1)

W(O+y](O+..+yN(D)

xp(© ug®

Original Signal x(t) 2(t) () V()
H;
information | processor|x Q(L) c Bp("
° -HLP(f) uQ(®

-Asin( oct+ Perr (1))

-sin(®¢)

! Transmitter side ! Channel Homodyne reception !

» The signal y(¢) is given by
y(1) = z(1) + w(t) = x(1) * h(t) +w(r)
» |t can be written as

(1) = yi(t)cos(2mfe 1) — yo(r) sin(27f. 1)

Can we express u;(r) and up(t) in terms of x;(r) and x(#)?
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Inphase and quadrature relationship

» With the complete signal »(¢) entering the receiver the output
signals become

up(t) = [y(t)A cos (2nfot + Perr(2)) ]LP o2
= yIT(t)A cos(@err(1)) HO Jx\ () e
o L
+ ) A sin(@err(1))
Sin(Perg(DA2

uQ(t) :[_ (t)A sin (anct'i'(Perr(t))}Lp T .
=200 cos(pun) A

cos@ e ()A/2
yi(t)

2

A sin(9err (1))
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Including the channel filter

» Before we can relate y(r) = z(r) + w(r) to x(r) we need to consider
the effect of the channel

z(t) = x(t) * h(r) x(t) (1)

» We assume that the impulse response h(¢) can be represented
as a bandpass signal

h(t) = hy(t) cos(2mfet) — ho(t) sin(2mfe. 1)
» With some calculations the signals can be written as (p. 159-160)

X0 ! =4 0

xq® % hp®

2Q
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Equivalent baseband model

» Combining the channel with the receiver frontend we obtain
w (D) cos(@epp ())A/2

X o uy©
L~ hq®
2
Sin(Qgr©)A/2
—={"Q® é
2
xQ(® hlz(t) @H uQ(
/N\ +

wQ (t) Co8(@erp(1)A/2

» Observe that all the involved signals are in the baseband
» The same is true for channel filter, noise and phase error

Digital signal processing can be applied easily in baseband
What happened with the carrier waveforms?
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