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From Section 5.4.5: Non-coherent receivers
I With phase-shift keying (PSK) the message m[n] at time nTs is

put into the phase θn of the transmit signal

s(t) = g(t)
√

2E cos(2π fc t+θn) , nTs ≤ t ≤ (n+1)Ts

I The channel introduces some attenuation α, some additive noise
N(t) and also some phase offset ν into the received signal

r(t) = α g(t)
√

2E cos(2π fc t+θn +ν)+N(t)

I Challenge: the optimal receiver needs to know α and ν

I In some applications an accurate estimation of ν is infeasible
(cost, complexity, size)

I Non-coherent receivers:
receiver structures that can work well without knowledge
of the exact phase offset

How can we modify our PSK transmission accordingly?
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Differential Phase Shift Keying
I With differential PSK, the message m[n] = m` is mapped to the

phase according to

θn = θn−1 +
2π `

M
`= 0, . . . ,M−1

I The transmitted phase θn depends on both θn−1 and m[n]
I This differential encoding introduces memory and the transmitted

signal alternatives become dependent
I Example 5.25: binary DPSK
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s1(t)
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z(t) r(t)

N(t)

-   2sin( ωct)

s0(t) =
√

2Eg(t) cos(ωct), and s1(t) =
√

2Eg(t) cos(ωct + π) in 0 ≤ t ≤ Tb.

Eg =
Ts

0
g2(t)dt = 1, fc is a multiple of Rb. z0(t) = α

√
2Eg(t) cos(ωct + ν), and

z1(t) = α
√

2Eg(t) cos(ωct + π + ν).

The samples rc[n] and rs[n] are,

rc[n] = A cos(θn−1 + ν) + wc[n]
rs[n] = A sin(θn−1 + ν) + ws[n]

where A is a constant. wc[n] and ws[n] are independent Gaussian random variables
with zero mean, and variance N0/2.

a) Assume the sequence of information bits b[i] below,

i: 0 1 2 3 4 5 6 7

b[i]: 1 1 0 1 0 0 1 1

Calculate and sketch s(t) in the interval 4Tb ≤ t ≤ 8Tb if fc = Rb, g(t) is
rectangular and s1(t + Tb) was sent in −Tb ≤ t ≤ 0.

b) Assume ν = ν0, N(t) = 0 and θn as given in the table below,

n: 0 1 2 3 4 5 6 7

θn: 0 0 π 0 π π 0 0

Calculate ξ[3], ξ[4], ξ[5], ξ[6], ξ[7], and the corresponding decisions.
Which decisions are correct?
In what way does the phase value ν0 influence these decisions?

c) Calculate the noise component in ξ[n], and A.
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Differential Phase Shift Keying (M = 2)
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√
2Eg(t) cos(ωct + ν), and

z1(t) = α
√
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The samples rc[n] and rs[n] are,

rc[n] = A cos(θn−1 + ν) + wc[n]
rs[n] = A sin(θn−1 + ν) + ws[n]

where A is a constant. wc[n] and ws[n] are independent Gaussian random variables
with zero mean, and variance N0/2.

a) Assume the sequence of information bits b[i] below,

i: 0 1 2 3 4 5 6 7

b[i]: 1 1 0 1 0 0 1 1

Calculate and sketch s(t) in the interval 4Tb ≤ t ≤ 8Tb if fc = Rb, g(t) is
rectangular and s1(t + Tb) was sent in −Tb ≤ t ≤ 0.

b) Assume ν = ν0, N(t) = 0 and θn as given in the table below,

n: 0 1 2 3 4 5 6 7

θn: 0 0 π 0 π π 0 0

Calculate ξ[3], ξ[4], ξ[5], ξ[6], ξ[7], and the corresponding decisions.
Which decisions are correct?
In what way does the phase value ν0 influence these decisions?

c) Calculate the noise component in ξ[n], and A.

I The receiver uses no phase offset ν in the carrier waveforms
I Without noise, the decision variable is

ξ [n] = rc[n]rc[n−1]+ rs[n]rs[n−1]
= A cos(θn−1 +ν) A cos(θn−2 +ν)+A sin(θn−1 +ν) A sin(θn−2 +ν)

= A2 cos(θn−1−θn−2) ⇒ independent of ν

I Note: non-coherent reception increases variance of noise
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Chapter 3: Carrier modulation techniques

Chapter 4

Receivers in Digital
Communication Systems –
Part I

4.1 Introduction

The purpose of the receiver in a digital communication system is to extract
the digital information contained in the received noisy signal r(t), see Figure
4.1. An example of a received noisy signal r(t) is shown in Figure 2.4 on page

13. Hence, the receiver has to make decisions b̂[i] based on the input waveform
r(t). Naturally, it is desirable that these decisions are correct, so that the output

sequence b̂[i] from the receiver equals the original sequence of information bits
b[i] “most of the time”. As a measure of the performance of the receiver the bit
error probability, denoted Pb, is used.

Transmitter Channel Receiver
b[i]^b[i]

{0,1}

s(t) r(t)

{0,1}

Figure 4.1: A digital communication system.

4.2 Basic Concepts and Principles

During a time interval of length τ [s], the number of transmitted information
bits, here denoted B, is

B = Rbτ (4.1)

227

What we have done so far:
Chapter 2:

From b[i] and m[i] to signals s`(t)
2.3. The Transmitter: Basic Concepts 21

b2[i]

b1[i]

bk[i]

...

b Serial
to

parallel

Binary to
decimal

conversion,
see (2.22)

m[i]
s(t)

=0
{s  (t)}

M-1

Figure 2.6: Basic structure of the transmitter.

b[0], b[1] . . ., where each element in b equals 0 or 1. First the i:th k-tuple of infor-
mation bits (b1[i], b2[i], . . . , bk[i]) is obtained by a serial-to-parallel conversion.
After that, the decimal representation m[i] of the i:th k-tuple is calculated as,

m[i] =

k∑

n=1

bn[i]2n−1 (2.22)

The number m[i] is referred to as the i:th message (or symbol), and the
M = 2k different messages are numbered 0, 1, 2, . . . , (2k − 1). Depending on
the intended application for the communication system the value of k typically
ranges between 1 ≤ k ≤ 12.

The final step in Figure 2.6 is signal selection. It is assumed that M different
signal alternatives s0(t), s1(t), . . . . . . , sM−1(t) are stored in a ”signal library”.
Message 0 is then represented by signal alternative s0(t), message 1 by s1(t),
message 2 by s2(t) etc. Hence, each message contains k bits and it uniquely
specifies a signal alternative.

When we study coded schemes in Chapter 8, we will see that the signal selection
stage is essentially the same as in Figure 2.6, but with the difference that the
input sequence of information bits b is replaced by a sequence of coded symbols.

When M = 2 (k = 1) we have so-called binary signaling and in this case
m[i] = b[i]. With M = 4 (k = 2), 4-ary (quaternary) signaling is obtained. In
the same way: M = 8 (k = 3) yields 8-ary signaling, and M = 16 (k = 4) yields
16-ary signaling, etc. The appropriate value of M (or k) to use depends on the
application and on the design specifications.

EXAMPLE 2.3
The binary sequence b[i] is given below. Assume that the serial-to-parallel conversion
in Figure 2.6 is such that: bn[i] = b[ik + n − 1], 1 ≤ n ≤ k. Use Figure 2.6 to find the
sequence of messages m[i] if:
i) k = 1 ii) k = 2 iii) k = 3

Chapter 4:
From signals zj(t)+N(t) to m̂[i] and b̂[i]
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z  (t)jm=mj
Receiver based
on r(t) in
0    t    Ts≤ ≤

+

N(t)

r(t)
m̂

Figure 4.7: Reception of one of M possible waveforms {zℓ(t)}M−1
ℓ=0 in AWGN.

a possible received signal alternative zi(t), here denoted D2
r,i, is,

D2
r,i =

∫ Ts

0

(r(t) − zi(t))
2dt =

∫ Ts

0

(r2(t)− 2r(t)zi(t) + z2
i (t))dt =

= Er − 2

∫ Ts

0

r(t)zi(t)dt + Ei, i = 0, 1, . . . , M − 1 (4.32)

The minimum Euclidean distance receiver is defined by the decision rule:

Decision m̂ = mℓ ⇔ min
{i}

D2
r,i = D2

r,ℓ

⇕

max
{i}

{∫ Ts

0

r(t)zi(t)dt− Ei/2

︸ ︷︷ ︸
ξi

}
=
∫ Ts

0
r(t)zℓ(t)dt− Eℓ

2

(4.33)

The second equivalence in (4.33) is obtained by observing that the energy Er in
(4.32) is a constant independent of the index i, and Er can therefore be ignored
by the decision rule. Furthermore, minimizing D2

r,i yields the same decision

as maximizing −D2
r,i. The implementation of the receiver defined by (4.33) is

shown in Figure 4.8. This specific implementation of the receiver is referred to
as a correlation receiver, since it consists of M correlators (multiplication and
integration) in parallel. The i:th correlator output equals,

∫ Ts

0

r(t)zi(t)dt, i = 0, 1, . . . , M − 1 (4.34)

The decision variables ξ0, ξ1, . . . , ξM−1 in (4.33) are in Figure 4.8 obtained
by subtracting the value Ei/2 from the output of the i:th correlator, i = 0, 1, . . . ,
M − 1. In a real-time application, the correlations are calculated in real time
(on-line), while the constants Ei/2 are only calculated once (off-line) and stored
in a memory.

Now more on:
I properties of bandpass signals
I the channel: from s(t) over z(t) to r(t)
I efficient receivers for bandpass signals
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Bandpass Signals
I A general bandpass signal can always be written as

x(t) = xI(t) cos(2π fc t) − xQ(t) sin(2π fc t) , −∞≤ t ≤ ∞

I xI(t): inphase component xQ(t): quadrature component
I Corresponding transmitter structure:

3.1. Bandpass Signals: Basic Concepts 119

signal
Digital

processor
information
Original

(digital or analog) xQ (t)

x I (t)

cos(2  f  t)cπ

x(t)

-sin(2  f  t)π c

Figure 3.2: A transmitter structure for information transmission via carrier
modulation. First the information is placed in the I- and Q-components xI(t)
and xQ(t). After that a frequency conversion is made from baseband to the
carrier frequency fc.

To see that the expression in (3.1) represents a bandpass signal we calculate its
Fourier transform X(f). Here, it is assumed that xI(t) and xQ(t) are baseband
signals with Fourier transforms XI(f) and XQ(f) respectively. The duration of
x(t) can be finite or infinite. By using (2.157) X(f) is obtained as,

X(f) =
1

2
(XI(f + fc)− jXQ(f + fc))

︸ ︷︷ ︸
around −fc

+

+
1

2
(XI(f − fc) + jXQ(f − fc))

︸ ︷︷ ︸
around +fc

(3.2)

In most applications, the carrier frequency fc is much larger than the bandwidth
of the baseband signals xI(t) and xQ(t). Then the first two terms in (3.2)
(with argument f + fc) are essentially nonzero only for frequencies around f =
−fc, and the last two terms (with argument f − fc) are significant only for
frequencies around f = +fc. Consequently, x(t) in (3.1) represents a bandpass
signal, compare with Figure 3.1. Normally, the quadrature components have
baseband (lowpass) characteristics, and (3.2) then represents a frequency shift
(translation) from baseband to higher frequencies.

Observe that (3.2) is valid for any sample function (realization) of the informa-
tion carrying quadrature components, as long as the Fourier transforms XI(f)
and XQ(f) exist. In test situations (3.2) is also very useful. Assume that a
periodic test signal, e.g. a periodic data pattern, a sinusoid or a square wave,
is used as the input signal. The quadrature components xI(t) and xQ(t) of the
output bandpass signal x(t) will then also be periodic signals, and they can be
expressed by their Fourier series (see (C.20)). Hence, with periodic test signals
as input signals the properties of the output bandpass signal can quite easily
be calculated exactly in the time domain (and also in the frequency domain).

I The information is contained in the signals xI(t) and xQ(t)
(for both analog or digital modulation)

I Not only wireless systems use carrier modulation
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Spectrum of bandpass signals
I Computing the Fourier transform of x(t) we get

X(f ) =
XI(f + fc)− j XQ(f + fc)

2
+

XI(f − fc)+ j XQ(f − fc)
2

I Normally, XI(t) and XQ(t) have baseband characteristic,
and fc is much larger than their bandwidth

I The spectrum can be symmetric or non-symmetric around fc

Chapter 3

Information Transmission
with Carrier Modulation
Techniques

This chapter deals with bandpass signals carrying digital or analog information.
The characteristic feature of a bandpass signal x(t) is that its frequency content
is “concentrated” around a carrier frequency fc [Hz], see Figure 3.1. Band-
pass signals occur frequently in practice: mobile telephony, television, radio,
satellite communication, wireless local area networks, navigation, optical fiber
communication, etc.

|X(f)|2 W

f c- f c

|X(f)|2

f c- f c

W

a)

f [Hz]
0

b)
f [Hz]

0

Figure 3.1: Examples of the frequency content in a bandpass signal x(t). a)
Symmetric spectrum around fc. b) Non-symmetric spectrum around fc.

M-ary PSK, M-ary FSK, M-ary bandpass PAM, M-ary QAM, OFDM, and

117

I Remember: real signals x(t) always have even |X(f )|
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DSB-SC Carrier Modulation
I Double sideband-suppressed (DSB-SC) carrier modulation is a

special case of our general model
I In this case only xI(t) contains information and xQ(t) = 0, i.e.,

xdsb−sc(t) = xI(t) cos(2π fc t)

I The Fourier transform then simplifies to

X(f ) =
XI(f + fc)

2
+

XI(f − fc)
2

I XI(f ) is symmetric around f = 0 ⇒ X(f ) is symmetric around fc

3.1. Bandpass Signals: Basic Concepts 121

transmission (VSB), one sideband and only a fraction of the other sideband is
transmitted, see [44], [22], [59].

In Example 3.1 below, digital information is transmitted with 4-ary PAM tech-
nique and DSB-SC modulation (i.e. 4-ary bandpass PAM).

WLPWLP fc fc

WLP2

| X  (f) |I | X           (f) |dsb-sc

f [Hz]

a

f [Hz]

a) b)
Lower sideband Upper sideband

= | F{x  (t)cos(2  f  t)} |cI π

0

a/2

Figure 3.3: Illustrating the frequency content in xI(t) and xdsb−sc(t). a) |XI(f)|;
b) |Xdsb−sc(f)|.

EXAMPLE 3.1
Assume that s(t) is a 4-ary PAM signal, s(t) = ∞

n=−∞ Am[n]grec(t − nTs), and s(t)
is illustrated below in the time interval 0 ≤ t ≤ 7Ts.

–3

–2

–1

0

1

2

3

1 2 3 4 5 6 7
t/Ts

s(
t)

/A

s(t) above is transmitted with DSB-SC technique:

xdsb-sc (t)

fc tcos(2 π )

s(t)

Assume that the carrier frequency fc ≫ 1/Ts. The signal xdsb−sc(t) is also referred to
as a 4-ary bandpass PAM signal. Sketch xdsb−sc(t) in the time interval 0 ≤ t ≤ 7Ts.

Solution:
A symbol interval Ts contains many periods 1/fc, and within such a period the baseband

Where does the name come from?
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Example 3.1: 4-ary PAM

3.1. Bandpass Signals: Basic Concepts 121

transmission (VSB), one sideband and only a fraction of the other sideband is
transmitted, see [44], [22], [59].

In Example 3.1 below, digital information is transmitted with 4-ary PAM tech-
nique and DSB-SC modulation (i.e. 4-ary bandpass PAM).
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Figure 3.3: Illustrating the frequency content in xI(t) and xdsb−sc(t). a) |XI(f)|;
b) |Xdsb−sc(f)|.

EXAMPLE 3.1
Assume that s(t) is a 4-ary PAM signal, s(t) = ∞

n=−∞ Am[n]grec(t − nTs), and s(t)
is illustrated below in the time interval 0 ≤ t ≤ 7Ts.
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t/Ts

s(
t)

/A

s(t) above is transmitted with DSB-SC technique:

xdsb-sc (t)

fc tcos(2 π )

s(t)

Assume that the carrier frequency fc ≫ 1/Ts. The signal xdsb−sc(t) is also referred to
as a 4-ary bandpass PAM signal. Sketch xdsb−sc(t) in the time interval 0 ≤ t ≤ 7Ts.

Solution:
A symbol interval Ts contains many periods 1/fc, and within such a period the baseband

122 Chapter 3. Information Transmission with Carrier Modulation ...

signal s(t) above is constant. The signal xdsb−sc(t) is shown below where fc = 10/Ts

has been used.

–3

–2

–1

0

1

2

3

1 2 3 4 5 6 7
t/Ts

x
d
sb

−
sc

(t
)/

A

✷

As usual the energy Edsb−sc, and the energy spectrum of xdsb−sc(t) in (3.3), are
important parameters,

Edsb−sc =

∫ ∞

−∞
(xI(t) cos(ωct))

2dt = ExI /2 (3.6)

Using (3.4) it is found that,

|Xdsb−sc(f)|2 = Xdsc−sc(f)X∗
dsb−sc(f) =

1

4
|XI(f + fc) + XI(f − fc)|2 =

=
1

4
|XI(f + fc)|2 +

1

4
|XI(f − fc)|2 +

1

2
Re{XI(f + fc)XI(f − fc)︸ ︷︷ ︸

≈ 0

} (3.7)

If it is assumed that fc ≫ WLP , then only the first two terms in (3.7) are
significant, resulting in,

|Xdsb−sc(f)|2 =
1

4
|XI(f + fc)|2 +

1

4
|XI(f − fc)|2 (3.8)

Actually, this result is a special case of the result in (2.166). So, the energy
spectrum of xdsb−sc(t) is a frequency shifted (and scaled) version of the energy
spectrum of xI(t). We also have (Parseval’s relation in (2.150)),

Edsb−sc =

∫ ∞

−∞
|Xdsb−sc(f)|2df = ExI /2 (3.9)

In communication applications xI(t) is in general a sample function of a stochas-
tic process, due to the stochastic nature of the underlying information signal.
This means that the particular realization xI(t) (in −∞ ≤ t ≤ ∞), must be

xI(t) = s(t) =
∞

∑
n=−∞

Am[n] grec(t−nTs)
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Hence, the average signal power P̄dsb−sc in the signal xdsb−sc(t) = s(t) cos(ωct) is,

P̄dsb−sc =
∞

−∞
Rdsb−sc(f)df =

P̄

2
(1/2 + 1/2) = P̄ /2 = 5A2/2

and this is consistent with (3.11).

Since G(f) = Grec(f) we obtain,

Rdsb−sc(f) = P̄dsb−sc · Ts
1

2

sin(π(f + fc)Ts)

π(f + fc)Ts

2

+
1

2

sin(π(f − fc)Ts)

π(f − fc)Ts

2

The figure below shows
Rdsb−sc(f)

P̄dsb−scTs
versus f in the frequency interval −20/Ts ≤ f ≤

20/Ts [Hz], assuming that fc = 10/Ts [Hz].

0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20
fTs

R
d
sb

−
sc

(f
)/

(P
d
sb

−
sc
T

s
)

Comment:
The value of the power spectral density at f = fc is Rdsb−sc(fc) = P̄dsb−scTs/2 =
P̄dsb−sc/Wlobe = 5A2/2Wlobe [V2/Hz], where Wlobe = 2/Ts = Wdsb−sc = 2WLP [Hz].

✷

The example above illustrates the shift (translation) in frequency from base-
band to higher frequencies, and also the doubling of the bandwidth requirement
(Wdsb−sc = 2WLP ).
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How can we revert the frequency shift to fc?
Hint: check Example 2.19 (p. 68)

68 Chapter 2. Model of a Digital Communication System

G(f) is shown for frequencies in the interval −30/T ≤ f ≤ 30/T .

The frequency content in the bandpass signal x(t) is given by X(f). Figure 2.18
shows X(f)/AT , and X(f) is obtained by using (2.157). Comparing Figure 2.17
and Figure 2.18 it is clear that x(t) is a frequency shifted version of g(t). The
signal energy in x(t) ((2.161)) is located around ±fc [Hz], while the
signal energy in g(t) is located at baseband (i.e. around f = 0 [Hz]).

It should be observed that (2.157) is also very useful if g(t) is a high frequency
signal. The example below illustrates this case.

EXAMPLE 2.19
Find the frequency content of the signal x(t), where

x(t) = g(t) cos 2π
3fc

4
t

if the frequency content in g(t) is,

G(f)

-fc fc0
f

A

Solution:
If we apply (2.157) using G(f) above, we obtain the frequency content in x(t) as

X(f)

-fc fc0
f

A/2

fc/4 7fc/4

✷

Find the frequency content of

x(t) = g(t) cos(2π f0 t) , f0 = 3 fc/4

68 Chapter 2. Model of a Digital Communication System

G(f) is shown for frequencies in the interval −30/T ≤ f ≤ 30/T .

The frequency content in the bandpass signal x(t) is given by X(f). Figure 2.18
shows X(f)/AT , and X(f) is obtained by using (2.157). Comparing Figure 2.17
and Figure 2.18 it is clear that x(t) is a frequency shifted version of g(t). The
signal energy in x(t) ((2.161)) is located around ±fc [Hz], while the
signal energy in g(t) is located at baseband (i.e. around f = 0 [Hz]).

It should be observed that (2.157) is also very useful if g(t) is a high frequency
signal. The example below illustrates this case.

EXAMPLE 2.19
Find the frequency content of the signal x(t), where

x(t) = g(t) cos 2π
3fc

4
t

if the frequency content in g(t) is,

G(f)

-fc fc0
f

A

Solution:
If we apply (2.157) using G(f) above, we obtain the frequency content in x(t) as

X(f)

-fc fc0
f

A/2

fc/4 7fc/4

✷

How should we choose f0 to get the baseband signal back?
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Problem 3.9

3.8. Problems 211

3.6 Define emax and emin as the maximum and minimum value of the envelope,
respectively. Calculate emax/emin for the 16-ary QAM signal constellation
in Problem 3.5.

3.7 Suppose, in Example 3.5 on page 130, that the delay unit is removed, and
hence, xQ(t) = s(t). Sketch the I-Q diagram in this case for 0 ≤ t ≤ 6Tb.
Note that the transition (A,−A) → (−A, A) in the I-Q diagram is not
possible when the delay is present. Explain!

3.8 In fiber optic applications the wavelength λ is often located around λ = 850
[nm], λ = 1300 [nm] or λ = 1550 [nm] depending on the application.
Calculate the corresponding (“carrier”) frequencies.

3.9 In the three-user (digital) communication system below, the frequency con-
tent in the user information signals u1(t), u2(t) and u3(t) are,

User1:

User2:

User3:

cos(2 πf1t)

cos(2 πf2t)

cos(2 πf3t)

x(t) r(t)

d(t)

cos(2 πf4t)

b(t) Lowpass
filter

c(t)

Receiver

f [kHz]
0 100

|U2(f)| |U3(f)|

0 200
f [kHz]

0 300
f [kHz]

|U1(f)|

u1(t)

u2(t)

u3(t)

It is known that the individual carrier frequencies are: f1 = 3.5 MHz,
f2 = 4.0 MHz, f3 = 3 MHz. The disturbance d(t) is d(t) = cos(2π2fdt)
where fd = 1.7 MHz.
Only frequencies up to 100 kHz pass the lowpass filter.

Note that detailed calculations are not required below. However,
the frequency content must be clearly seen in the figures.

i) Sketch the frequency content in the signal r(t).

ii) Sketch the frequency content in b(t) and in c(t) if f4 = 4.0 MHz.
Compare c(t) with the user information signals. Conclusions?

3.10 a) An AM signal is shown below. Calculate the modulation index.
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Envelope and Phase
I A frequency shift corresponds to a multiplication with ej2π fc t

I For connecting this to the cosine and sine function we use

ej2π fc t = cos(2π fc t) + jsin(2π fc t)

I The general bandpass signal can then be written in terms of a
frequency shifted version of a complex signal xI(t)+ j xQ(t)

x(t) = xI(t) cos(2π fc t) − xQ(t) sin(2π fc t)

= Re
{(

xI(t)+ j xQ(t)
)
ej2π fc t}

I Expressing xI(t)+ j xQ(t) in terms of magnitude and phase we get

x(t) = e(t) cos(2π fc t + θ(t)) , −∞≤ t ≤ ∞

with
e(t) =

√
x2

I (t)+ x2
Q(t)≥ 0

xI(t) = e(t) cos(θ(t))
xQ(t) = e(t) sin(θ(t))

Michael Lentmaier, Fall 2019 Digital Communications: Lecture 8



I-Q Diagram
I In the representation

x(t) = xI(t) cos(2π fc t) − xQ(t) sin(2π fc t)

the information is contained in the inphase component xI(t) and
quadrature component xQ(t)

I In the representation
x(t) = e(t) cos(2π fc t + θ(t)) , −∞≤ t ≤ ∞

the information is contained in the envelope e(t) and
instantaneous phase θ(t)

126 Chapter 3. Information Transmission with Carrier Modulation ...

s7T

e(t)

3A

t
A

✷

Figure 3.4 illustrates the so-called I −Q diagram. This diagram illustrates
the relationship between the four information carrying signals xI(t),
xQ(t), e(t) and θ(t), and how they change with time. A closely related
version of this diagram for 64-ary QAM is shown in Figure 2.10 on page 48.
Note that with DSB-SC modulation, only the I-axis is used since xQ(t) then is
xQ(t) = 0.

(t)θ

(t2)

xQ(t)

xI (t)

(t1)

e(t)

I(t)

Q(t)

(t)

Figure 3.4: The I-Q diagram.

Instantaneous power and frequency:

Let E(t) here denote the energy in the bandpass signal x(t) in (3.14), over the
time interval (t− t∆/2, t + t∆/2),

E(t) =

∫ t+t∆/2

t−t∆/2

x2(u)du =

∫ t+t∆/2

t−t∆/2

1

2
[e2(u) + e2(u) cos(2π2fcu + 2θ(u))]du

(3.15)
Now two assumptions are made in (3.15):

1. The carrier frequency fc is much larger than the bandwidth of xI(t) and
xQ(t). This means that the variation in e2(t) and in θ(t) is very small over
a period 1/fc of the carrier.

2. t∆ contains several periods of the carrier, but t∆ is small enough such that
both e2(t) and θ(t) still can be considered essentially constant over the
integration interval.

connection: I-Q diagram
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Analog Information Transmission
I Suppose that the information signal is an analog waveform a(t)

Examples: music, speech, video
I If we use digital modulation, the waveform a(t) is first converted

to a binary sequence b[i], which then is mapped to signals s`(t)
I In case of analog modulation, the waveform a(t) is used directly

to modulate the carrier signal
I Let v(t) denote the bandpass signal of an analog transmitter

v(t) = vI(t) cos(2π fc t) − vQ(t) sin(2π fc t) , −∞≤ t ≤ ∞

= e(t) cos
(
2π fc t + θ(t)

)

I Amplitude modulation (AM):
the waveform a(t) modulates the envelope e(t) only

I Frequency modulation (FM):
here a(t) modulates the instantaneous phase θ(t) only
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Amplitude Modulation (AM)

140 Chapter 3. Information Transmission with Carrier Modulation ...

continuously respond to changes in a(t). So, the analog signal a(t) modulates
the quadrature components. Different analog modulation techniques are de-
fined by the specific way the information signal a(t) modulates the quadrature
components vI(t) and vQ(t). Below, conventional analog amplitude mod-
ulation (AM) and conventional analog frequency modulation (FM) are
investigated. Both methods, and modified versions of them, are common in
several applications, e.g., radio- and television broadcasting.

The characteristic feature of conventional analog amplitude modulation (AM) is
that only the envelope e(t) depends on the information signal a(t), the instanta-
neous phase θ(t) does not. Hence, a(t) modulates only the envelope e(t). This
means that the envelope changes with time, it is non-constant. A significant
advantage with AM is that the receiver can be made very simple and inexpen-
sive. An envelope detector can in principle be realized by only one diod, one
resistor and one capacitor (see Subsection 3.6.3). This advantage is obtained
at the cost of transmitter power. AM-signals do waste power, but in certain
broadcast applications AM is, in spite of this, an attractive solution.

Frequency modulation (FM) on the other hand always yields a constant envelope.
So, with FM, the envelope contains no information, all information is in the
instantaneous phase θ(t). To be more specific, FM is such that the difference
(fins(t)− fc) is proportional to the information signal a(t). Below, we will also
see that FM is a highly non-linear modulation method.

3.3.1 Amplitude Modulation (AM)

Conventional amplitude modulation can be generated according to Figure 3.5.
From this figure we deduce that the AM signal v(t) is the sum of a DSB-SC
signal and a pure carrier wave,

v(t) = a(t)B cos(2πfct + ϕ)︸ ︷︷ ︸
DSB-SC

+ C cos(2πfct + ϕ)︸ ︷︷ ︸
explicit carrier

frequency signal

(3.46)

+

cos(2πfc t+ϕ)B C

a(t) v(t)

Figure 3.5: Generation of an AM signal v(t).

Here it is assumed that a(t) does not contain any constant value (DC-compo-
nent), hence a(t) is assumed to be a zero-mean signal. If there exists a DC-
component in the information signal it is assumed that it is incorporated in
the parameter C. In (3.46) ϕ is an arbitrary phase value, and it does not

I The AM signal is the sum of a DSB-SC signal and carrier wave

v(t) =
(
a(t)B+C

)
cos(2π fc t+ϕ)

= a(t)B cos(2π fc t+ϕ) + C cos(2π fc t+ϕ)

I Let us introduce the modulation index

m =
Bamax

C
≤ 1 , where amax = max |a(t)|

I Using the normalized signal an(t) = a(t)/amax we can write

v(t) =
(
1+man(t)

)
C cos(2π fc t+ϕ)
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Example: AM signal
e(t)/C = 1+ma(t) , an(t) = sin(2π fp t) , fp = 1/Tp
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–2

–1

0

1

2

0.5 1 1.5 2 2.5 3 3.5
t/Tp

e(
t)

/
C

a
n
d

v
(t

)/
C

Figure 3.6: Shows e(t)/C = 1+ 1
2 an(t), and the bandpass AM signal v(t)/C for

the case m = 1/2 and an(t) = sin(2πfpt), fp = 1/Tp.

–2
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0

1

2

0.5 1 1.5 2 2.5 3 3.5
t/Tp

q(
t)

a
n
d

v
(t

)/
C

Figure 3.7: An example of an over-modulated AM signal v(t). The expression
for v(t) is the same as in Figure 3.6, but the modulation index is here increased
to m = 1.2. The baseband signal q(t) = (1 + 1.2an(t)) is also shown in this
figure, and it is seen that q(t) is not equal to the envelope.
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Figure 3.7: An example of an over-modulated AM signal v(t). The expression
for v(t) is the same as in Figure 3.6, but the modulation index is here increased
to m = 1.2. The baseband signal q(t) = (1 + 1.2an(t)) is also shown in this
figure, and it is seen that q(t) is not equal to the envelope.

I m = 0.5 < 1:
the information signal an(t) is contained in the envelope e(t)

I m = 1.2 > 1: (right picture)
overmodulation: the baseband signal q(t) = (1+1.2an(t))
is no longer equal to e(t)
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Frequency Modulation (FM)

148 Chapter 3. Information Transmission with Carrier Modulation ...

Controlled Oscillator (VCO), and the output signal from the VCO, the FM
signal v(t) is,

v(t) =
√

2P cos(2πfct + θ(t)) , −∞ ≤ t ≤ ∞ (3.58)

where P is the signal power in the FM signal, and where θ(t) is the information
carrying phase function. Note that the envelope e(t) is constant, e(t) =

√
2P .

The relationship between the information carrying input signal a(t), and the
instantaneous phase θ(t) is,

1

2π

dθ(t)

dt
= fdev · a(t) (3.59)

and the gain fdev is an important system parameter. It is referred to as the
frequency deviation fdev ([Hz/V]). Both fdev and the carrier frequency fc

are parameters associated with the VCO unit. From (3.59) we obtain the in-
stantaneous frequency of the FM signal v(t) in (3.58),

fins(t) = fc + 1
2π

dθ(t)
dt

= fc + fdeva(t) (3.60)

(f dev,fc)

VCOa(t) v(t)
FM signal

Figure 3.8: Conventional analog frequency modulation (FM).

So, the information signal a(t) modulates the instantaneous frequency
of the FM signal v(t).

From (3.13) the quadrature components of the FM signal v(t) in (3.58) are found,

vI(t) =
√

2P cos(θ(t)) (3.61)

vQ(t) =
√

2P sin(θ(t)) (3.62)

An alternative implementation of the FM signal v(t) is to first generate the
quadrature components according to (3.61) and (3.62), and then modulate them
to the carrier frequency fc according to Figure 3.2 on page 119.

EXAMPLE 3.10
Assume that the input signal to the VCO in Figure 3.8 is

a(t) = adc + U cos(2πfpt)

where adc is constant (DC-level).

I With FM modulation, the transmitted signal

v(t) =
√

2P cos(2π fc t+θ(t))

is generated by a voltage controlled oscillator (VCO)
I The information carrying signal a(t) is related to the phase θ(t) by

1
2π

dθ(t)
dt

= fdev ·a(t)

I The signal a(t) hence modulates the instantaneous frequency

fins(t) = fc +
1

2π

dθ(t)
dt

= fc + fdev a(t)

I FM modulation is a non-linear operation, hard to analyze
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Example 3.13: FM stereo
3.3. Analog Information Transmission with Carrier Modulation ... 151

EXAMPLE 3.13
A possible block-diagram of conventional analog FM stereo is shown below.

xr(t)

cos(2 π2f1t)

Frequency
doubling

Acos(2 πf1t)

z(t) Frequency
modulator Channel Frequency

demodulator

x̂r(t)

x (t)^Extract
x (t) and

 xr(t)

z(t)^

+

-

x (t)

xℓ(t) and xr(t) denotes the left and the right audio-channel, respectively, and they are
both bandlimited to 15 [kHz]. The frequency f1 = 19 [kHz] (often referred to as a
so-called pilot-tone).

i) Calculate and sketch Z(f).

ii) Assume ideal transmission and reception, hence, ẑ(t) = z(t). Draw a blockdia-
gram that shows how to extract xℓ(t) and xr(t) from ẑ(t).

iii) In what way is this method adapted to mono-reception?

Solution:

i) Z(f) = Xℓ(f) + Xr(f) +
1

2
(S(f + 2f1) + S(f − 2f1))+

+
A

2
(δ(f + f1) + δ(f − f1))

where S(f) = Xℓ(f) − Xr(f). See sketch of Z(f) below.

|Z(f)|
Pilot DSB modulated

difference signal

Left+right signal
(mono-signal)

f [kHz]
15 19 38 5323
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Digital Information Transmission
I In Chapter 2 the signal alternatives s`(t) could have arbitrary

shape within the signaling interval 0≤ t ≤ Ts

I The bandpass signal for digital modulation then has the form

x(t) = xI(t) cos(2π fc t) − xQ(t) sin(2π fc t)

=

(
∞

∑
n=−∞

sm[n],I(t−nTs)

)
cos(2π fc t)

−
(

∞

∑
n=−∞

sm[n],Q(t−nTs)

)
sin(2π fc t)

I In case of M-ary QAM we have

xI(t) =
∞

∑
n=−∞

Am[n] g(t−nTs) , xQ(t) =
∞

∑
n=−∞

Bm[n] g(t−nTs)

I Also M-ary FSK signals have bandpass characteristics
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A simple Matlab example
How does a QPSK signal look like? Here is an example:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
fTs

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
fTs

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
fTs

-1

0

1

xI(t) cos(2⇡ fc t)

xQ(t) sin(2⇡ fc t)

x(t) = xI(t) cos(2⇡ fc t) � xQ(t) sin(2⇡ fc t)

t/Ts
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And how it was done:
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Example 3.5: offset QPSK

130 Chapter 3. Information Transmission with Carrier Modulation ...

Then each frequency alternative fl may be expressed as,

fℓ = fc + (fℓ − (f0 + fM−1)/2)︸ ︷︷ ︸
deviation from fc

(3.27)

In the example below, the I-Q diagram for so-called offset QPSK (or staggered
QPSK, see [43], [4]) is investigated.

EXAMPLE 3.5
Below, two information carrying baseband signals xI(t) and s(t) are first generated.
Binary antipodal signaling with a rectangular pulse shape is used for both xI(t) and
s(t). The signal xQ(t) is a delayed version of s(t), xQ(t) = s(t − Tb).

b Serial
to

parallel

{s  (t)} 1
=0

{s  (t)} 1
=0

b2[i]

b1[i]
s(t) xQ(t)

xI(t)

x(t)

cos( ωct)

-sin( ωct)s1(t) = -s0(t)

A

t
Ts=2T b

Delay
Tb

The information bit rate (in b) is Rb = 1/Tb. Hence, the signaling rate in the quadra-
ture components is Rs = Rb/2.

Assume that the information bit sequences b1[i] = b2[i] = 0 for i < 0, and that

b2[0] = 1, b2[1] = 1, b2[2] = 0, b2[3] = 0

b1[0] = 1, b1[1] = 0, b1[2] = 1, b1[3] = 1

Furthermore, b1[i] = b2[i] = 1 for i ≥ 4. Sketch the quadrature components xI(t)
and xQ(t) of the transmitted bandpass signal x(t), and also the I-Q diagram in the
time-interval 0 ≤ t ≤ 10Tb.

Solution:
Inspection of the block diagram above yields the quadrature components xI(t) and xQ(t)
as below:

QPSK signal with delayed transmission of xQ(t)
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Example 3.5: offset QPSK
3.2. Digital Information Transmission with Carrier Modulation ... 131

b6Tb2T 10Tb

b2T 10Tbb6T 8Tb

xI (t)

xQ(t)
xI (t)

b0<t<T
4Tb<t<5Tb 3Tb<t<4Tb

Tb<t<3Tb
t>8Tb

5Tb<t<8Tb

xQ(t)

-A

A
1 1 0 0 1

t

A

-A

1 0 1 1 1

t

A

t<0

A

Note in the I-Q diagram that xI(t) can change only at even multiples of Tb, and xQ(t)
only at odd multiples of Tb, and this implies that the envelope e(t) always is e(t) > 0.

✷

Observe in the example above that if the delay is set to zero, instead of Tb,
then x(t) is an ordinary QPSK signal (i.e. a 4-ary PSK (or QAM) signal). By
using offset QPSK, the quadrature components of x(t) never change values at
the same time. Consequently, the envelope of x(t) is always quite large
and to a certain extent controlled , see the I-Q diagram in Example 3.5.
Hence, the variation in instantaneous power (P(t) = e2(t)/2) is small, which is
an advantage since it is easier to implement efficient power amplifiers for such
signals.

As another application of information transmission using bandpass signals we
here briefly mention fiber optic applications. In fiber optic applications binary
on-off signaling is common (“light” or “no light”). The input signal to the fiber
can then be described as a binary “on-off” modulated signal, where the two
signal alternatives are

s0(t) =
√

2P0(t) cos(2πfct + θ(t)) (3.28)

and,
s1(t) =

√
2P1(t) cos(2πfct + θ(t)) (3.29)

In an ideal situation the instantaneous power P0(t) = 0 (pure on-off signaling),
but when a laser is used as a light source P0(t) is normally a small non-zero
constant threshold value. The carrier frequency fc is very high in fiber optic
applications, approximately 2 ·1014 [Hz] (200 [THz]), corresponding to the three
so-called transmission windows which are located around the wavelengths (λ)
850 [nm], 1300 [nm] and 1550 [nm] (c = λf , c = 2.9979 ·108 [m/s]), see also [12],
[28], [59].

I Special feature:
xI(t) and xQ(t) can never change at the same time

I it follows that the envelope does not pass the origin, i.e., e(t)> 0
I the variation of instantaneous power P(t) = e2(t)/2 is small,

which allows more efficient power amplifiers
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Example 3.6: constant envelope signaling
Change pulse shape:
half cycle sinusoidal ghcs(t)
instead of grec(t)

132 Chapter 3. Information Transmission with Carrier Modulation ...

EXAMPLE 3.6
From a practical point of view, envelope control is an important issue. In this example
we impose additional envelope control, compared with the scheme in Example 3.5. In
Example 3.5, let us only change the rectangular pulse shape to the half cycle sinusoidal
pulse shape ghcs(t) with duration T = 2Tb.

For this pulse shape used in Example 3.5:

• Sketch the quadrature components xI(t) and xQ(t) in 0 ≤ t ≤ 10Tb

• Calculate the envelope e(t) of x(t)

• Sketch the I-Q diagram

• Calculate and sketch the instantaneous frequency fins(t) of x(t)

• Sketch x(t)

Solution:
• xI(t) and xQ(t) :

Replacing the rectangular pulse shape in Example 3.5 with the half cycle sinusoidal
pulse shape yields,

–1

–0.5

0

0.5

1

2 4 6 8 10 12

x
I
(t

)/
A

t/Tb

–1

–0.5

0

0.5

1

2 4 6 8 10 12

x
Q
(t

)/
A

t/Tb

• The envelope e(t):

In the time-interval n2Tb ≤ t ≤ (n2Tb + 2Tb), xI(t) is,

xI(t) = ±A sin π · 1

2Tb
(t − n2Tb) = ±A sin π

t

2Tb
− nπ =

= ±A cos(nπ) sin π
t

2Tb

and in the time-interval (n2Tb + Tb) ≤ t ≤ (n2Tb + Tb + 2Tb), xQ(t) is,

xQ(t) = ±A sin π · 1

2Tb
(t − Tb − n2Tb) = ±A sin π

t

2Tb
− π

2
− nπ =

= ±A (− cos(nπ)) cos π
t

2Tb

Note that x2
I(t) and x2

Q(t) above are independent of the specific symbol intervals (i.e.
independent of n) since,

x2
I(t) = A2 sin2(πt/2Tb)

x2
Q(t) = A2 cos2(πt/2Tb)
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Note that x2
I(t) and x2

Q(t) above are independent of the specific symbol intervals (i.e.
independent of n) since,

x2
I(t) = A2 sin2(πt/2Tb)

x2
Q(t) = A2 cos2(πt/2Tb)

The squared envelope becomes

e2(t) = x2
I (t)+ x2

Q(t)

= A2 sin2(πt/(2Tb))+A2 cos2(πt/(2Tb))

= A2 ⇒ constant envelope e(t) = A
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Hence,

e2(t) = x2
I(t) + x2

Q(t) = A2

and consequently,

e(t) = A , −∞ < t < ∞
• The I − Q diagram:

From the sketched signals xI(t) and xQ(t) above, the I-Q diagram is obtained:

(t)θ

xQ(t)

xI(t)

t=5Tb,7Tb

t=0,4Tb

t=Tb,3T ,9Tbb

t=2Tb ,6Tb ,8Tb,10Tb

A

It is seen that over a bit interval, the instantaneous phase θ(t) changes ±π/2. Observe
that the envelope e(t) is constant.

• The instantaneous frequency fins(t):

In 0 ≤ t ≤ Tb, xI(t) is given with n = 0 (see the envelope calculations), xQ(t) is given
with n = −1, (AI , AQ ∈ ±A), and x(t) is,

x(t) = AI sin(πt/2Tb) cos(2πfct) − AQ cos(πt/2Tb) sin(2πfct) =

= Re (AI sin(πt/2Tb) + jAQ cos(πt/2Tb)) ejωct =

= Re jAQ cos(πt/2Tb) +
AI

jAQ
sin(πt/2Tb) ejωct =

AI/AQ ∈ ±1
↓
= AQRe je

−j
AI
AQ

πt/2Tb · ejωct =

= −AQ sin 2π fc − AI/AQ

4Tb
t , 0 ≤ t ≤ Tb

Hence, the instantaneous frequency is,

fins(t) =
fc − Rb/4 [Hz] , if AI/AQ = 1

fc + Rb/4 [Hz] , if AI/AQ = −1
, 0 ≤ t ≤ Tb

The analysis above is made for the interval 0 ≤ t ≤ Tb, but this result can be used also
for the intervals 2Tb ≤ t ≤ 3Tb, 4Tb ≤ t ≤ 5Tb, 6Tb ≤ t ≤ 7Tb, etc., since the situation
in these intervals is the same as in the studied one.

Continuous phase modulation (CPM) is used in GSM
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Example 3.7: GSM
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✷

Note in Example 3.6 above that a binary FSK type of signal is obtained by
adding two independent binary PAM signals. However, there is not a one-to-
one relationship between a specific instantaneous frequency and a corresponding
information bit. In Chapter 8 we will elaborate in more detail with this type of
schemes.

EXAMPLE 3.7
In GSM (Global System for Mobile Communications) information is sent from the
mobiles to the basestation (so-called reverse link or uplink) in the frequency band 890–
915 [MHz], while information from the basestation to the mobiles (so-called forward
link or downlink) is sent in the frequency band 935–960 [MHz]. These 25 [MHz] bands
are each divided in N sub-bands with bandwidth W [Hz] (hence, N · W = 25 [MHz]).
The figure below illustrates the situation.

Mobile

890-915 [MHz] 935-960 [MHz]

Uplink Downlink

N  W [MHz]. N  W [MHz].

Each sub-band of W [Hz] carries information from X users, which are time-multiplexed
using X time-slots. The total number of speech-channels (or data-channels) in the
uplink (and in the downlink) is N · X.

A specific user is allocated one of the N sub-bands, and one of the X time-slots. A
time-slot has duration 576.92 [µs], and 148 binary symbols are transmitted within this
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time, see the figure below.

Start
3

Coded bits
57

Flag
1

Training sequence
26

Stop
3

ISI
margin

Flag
1

Coded bits
57

148

30.46 µs

576.92 µs

The so-called training sequence (known symbols) gives the receiver a possibility to esti-
mate the impulse response h(τ ) of the communication channel in the current time-slot.
The estimate ĥ(τ ) is used by the receiver to calculate the channel-distorted signal alter-
natives zℓ(t) (zℓ(t) = sℓ(t) ∗ h(t)) which are needed in the detection process. Observe
that this method assumes that the communication channel (h(τ )) between mobile and
basestation does not change significantly during the time-slot (i.e., it is time-invariant
over a time-slot, h(τ, t) ≈ h(τ )).

Due to channel filtering, there is a possibility that signals representing different time-
slots partly can overlap each other after the channel. To reduce this effect, each time-
slot ends with an unused time interval (so-called guard interval) of duration 30.46 µs
(corresponding to 8.25 binary symbols).

a) The signaling method used in GSM is binary, and referred to as Gaussian Min-
imum Shift Keying (GMSK). The ratio Rs/W is approximately 1.35.

Estimate the required bandwidth W , and the number of sub-bands (subchannels)
in the downlink, if data is sent with the same symbol rate Rs as the 148 binary
symbols above.

b) A 20 ms time interval of a speech signal is in GSM represented by 260 bits.
After, e.g., error-protection measures (parity bits and convolutional encoding),
and other operations, the 260 bits are represented by 456 coded bits. Hence, two
successive 20 ms time intervals is represented by 912 coded bits. These 912 bits
are re-arranged relative to each other (so-called interleaving), encrypted and dis-
tributed in time over 8 successive transmissions (912=8·114). Each transmission
occurs in the allocated time-slot.
Calculate X, and the total number of speech-channels in the uplink.

Solution:

a) W =
Rs

1.35
=

148

1.35(576.92 − 30.46)10−6
≈ 200 [kHz]

N =
25 · 106

200 · 103
= 125

b) 8 successive transmissions of the allocated time slot, imply that 8 so-called frames
containing X users should be sent within 40 [ms].
X · 8 · 576.92 · 10−6 ≤ 40 · 10−3 ⇒ X ≤ 8.67, i.e. X = 8.
So, N · X = 125 · 8 = 1000 channels.

✷
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From 2G to 4G

I GSM: (Global System for Mobile Communications)
based on combined time-division multiple access (TDMA) and
frequency division multiple access (FDMA)

I UMTS: (Universal Mobile Telecommunications Service)
based on wideband code division multiple access (W-CDMA)
each user has an individual code, no TDMA or FDMA

I LTE (advanced): (Long Term Evolution)
orthogonal frequency-division multiple access (OFDMA)

Multiple access:
refers to how different active users are separated
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