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From Section 5.4.5: Non-coherent receivers

» With phase-shift keying (PSK) the message m|[n] at time nTj is
put into the phase 6, of the transmit signal

s(t) = g(t) V2E cos(2nf.t+6,), nT,<t<(n+1)Ty

» The channel introduces some attenuation ¢, some additive noise
N(r) and also some phase offset v into the received signal

r(t) = ot g(1) V2E cos(2nf.t+ 6,4 V) +N(t)

» Challenge: the optimal receiver needs to know o and v

» In some applications an accurate estimation of v is infeasible
(cost, complexity, size)

» Non-coherent receivers:
receiver structures that can work well without knowledge
of the exact phase offset

How can we modify our PSK transmission accordingly?
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Differential Phase Shift Keying

» With differential PSK, the message m[n] = m, is mapped to the
phase according to

2nd
9;126"7]"'? gZO,,M_l

» The transmitted phase 6, depends on both 6,_; and m[n]
» This differential encoding introduces memory and the transmitted
signal alternatives become dependent

» Example 5.25: binary DPSK

Addition
modulo 2

v

N(t)

1) s(t) 2(t) r(t)
g ®

mii]

bIi]
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Differential Phase Shift Keying (M = 2)

Receiver i
|
|
Delay i
T a | T
&N 20 (> bn-1]
Delay nqn
T,

]

» The receiver uses no phase offset v in the carrier waveforms
» Without noise, the decision variable is

Slnl = reln]refn— 1]+ rsln] rsfn —1]
=Acos(6,-1+Vv)Acos(6,-2+V)+Asin(6,-; + V) Asin(6,_, + V)
=A%cos(6,_; —6,_,) = independent of v

» Note: non-coherent reception increases variance of noise
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Chapter 3: Carrier modulation techniques

A

bli] - s(t) r(t) - bli]
% Transmitter H Channel H Receiver }%
{0.1} = {0.1}

Figure 4.1: A digital communication system.

What we have done so far:

Chapter 2: Chapter 4:
From b[i] and m[i] to signals s,(z) From signals z;(r) + N(7) to [i] and b]i]
N(t)

b,fi .
. ey o 1) Receiver based R

b Serial . E(!;ecir"y‘; mii M1 m=m;j = Zj([) —_— onr(t) in —=m

— b,[il conversion, || e gy [T SO 0<t<Ts
parallel ol see (2.22)

Now more on:
» properties of bandpass signals
» the channel: from s(¢) over z(¢) to r(¢)
» efficient receivers for bandpass signals
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Bandpass Signals
» A general bandpass signal can always be written as
x(t) =x;(t) cos(2mfet) — xg(t) sin2xf,t), —oo<t<oo

» x;(¢): inphase component xo(t): quadrature component
» Corresponding transmitter structure:

cos(2nf.t)
xl(t)
Original Digital
information —= signal ——= x(t)
(digital or analog) processor | Xy () ()
-sin(2mfct)

» The information is contained in the signals x;(¢) and x¢(z)
(for both analog or digital modulation)
» Not only wireless systems use carrier modulation
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Spectrum of bandpass signals

» Computing the Fourier transform of x(z) we get

_ Xl(f+fc) —Jj XQ(f+fc) + Xl(f_fc) +j XQ(f_fc)

X(f) > >

» Normally, X;(r) and X, (r) have baseband characteristic,
and f. is much larger than their bandwidth

» The spectrum can be symmetric or non-symmetric around f,

X1 W
‘ ‘ £ [Hz)
2 fe 0 fe
XHI2 v
AN T A T
b) -fe 0 fc

» Remember: real signals x(7) always have even |X(f)|
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DSB-SC Carrier Modulation

» Double sideband-suppressed (DSB-SC) carrier modulation is a
special case of our general model
> In this case only x;(r) contains information and xo(¢) =0, i.e.,
Xdsb—sc(t) = x1(t) cos(2mf, 1)
» The Fourier transform then simplifies to
_Xif+fe) | Xif—fe)

X +
() 3 5
> X;(f) is symmetric around f =0 = X(f) is symmetric around f,
I Xy I Xdsb-sc (D1 =1 F{xp(t)cos2nfct)} |
a -
a/2
f [Hz] T T f [Hz]
-Wrp  Wrp —f, 0 fe
a) b)

Lower sideband Upper sideband

Where does the name come from?

Michael Lentmaier, Fall 2019 Digital Communications: Lecture 8



Example 3.1: 4-ary PAM

T
il Al

~

xi(t) =s(t) = Z Am[n] Grec(t—nTy)

~0.41

~—

P -

-10 0 10
f




How can we revert the frequency shift to /.?
Hint: check Example 2.19 (p. 68)

Find the frequency content of

x(t) = g(t) cos2mfot) , fo=3f/4

Solution:
If we apply (2.157) using G(f) above, we obtain the frequency content in x(t) as

X()

“

T T T T T T T T T T T T T T > f

£, 0 14 f, 7i /4

How should we choose f; to get the baseband signal back?
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Problem 3.9

In the three-user (digital) communication system below, the frequency con-
tent in the user information signals uq(t), u2(t) and us(t) are,

U, | U,

U (h)
> f[kHz] I > f[kHz] oo 1kHa)

0 100 200 0

cos(2 xf 1)

User:u, (t)

cos(2 nf,t) Receiver

Lowpass | c(t)

User2:u,(t) filter

cos(2 mft)

User3:ug(t)

It is known that the individual carrier frequencies are: f; = 3.5 MHz,
f2 = 4.0 MHz, f3 = 3 MHz. The disturbance d(t) is d(t) = cos(2n2fqt)
where f3 = 1.7 MHz.

Only frequencies up to 100 kHz pass the lowpass filter.
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Envelope and Phase
» A frequency shift corresponds to a multiplication with /2%/c?
» For connecting this to the cosine and sine function we use
el = cos(2mf.1) + jsin(2mf. 1)
» The general bandpass signal can then be written in terms of a
frequency shifted version of a complex signal x;(z) +jxo(¢)
x(1) = x;(r) cos(2mfet) — xo(t) sin(2xf. 1)
= Re { (x1(t) +jxo(t)) ™"}
» Expressing x;(f) +jxo(t) in terms of magnitude and phase we get
x(f) =e(t) cos(2mfet 4+ (1)), —oo<t<oo
with
e(t) = /x3(1) —|—xé(t) >0
x1(2) = e(t) cos(6(1))
(2) sin(6(2))
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I-Q Diagram
» In the representation
x(t) =x;(t) cos(2mf, 1) — xp(t) sin(2xf, 1)

the information is contained in the inphase component x;(¢) and
quadrature component x¢(z)

» In the representation
x(t) =e(t) cos2mfet + 0(f)), —c0<t<oo

the information is contained in the envelope ¢(¢) and
instantaneous phase 6(r)

Qv (t)

XQ(K) J

1 10
A

(tp)

connection: I-Q diagram
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Analog Information Transmission

>

Suppose that the information signal is an analog waveform a(z)
Examples: music, speech, video

If we use digital modulation, the waveform a(r) is first converted
to a binary sequence b|i], which then is mapped to signals s,(z)

In case of analog modulation, the waveform a(t) is used directly
to modulate the carrier signal

Let v(¢) denote the bandpass signal of an analog transmitter
v(t) =vi(t) cos(2mfet) — vo(t) sin2xf,t), —oo<t<oo
e(1) cos (2mf.1 + 6(1))

Amplitude modulation (AM):
the waveform a(tr) modulates the envelope e(¢) only

Frequency modulation (FM):
here a(r) modulates the instantaneous phase 6(¢) only
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Amplitude Modulation (AM)

B C
a(t) & 4—&

&) 9 v(®

cos(2mf t+®)

» The AM signal is the sum of a DSB-SC signal and carrier wave

v(1) = (a(t) B+ C) cos(2mf,t+ @)
=a(t)Bcos(2nf.t+ @) + Ccos(2nf.t+ @)

» Let us introduce the modulation index

B
m= aé"ax <1, where auq =max|a(t)]

» Using the normalized signal a, (1) = a(t) /amax We can write

v(1) = (1+may(t)) C cos(2nf. 1+ @)
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Example: AMsgnaI
e(t)/C=1+ma(t) , an(1) =

\l!ln"!hnmul“m\l!lmmllllw ""l l. A(""“'h. AV”W”"




Frequency Modulation (FM)

at) ——= VCO ——= V(v
FM signal

(f devfe)

» With FM modulation, the transmitted signal
v(t) = V2P cos(2nf,t+ 0(r))

is generated by a voltage controlled oscillator (VCO)
» The information carrying signal a(r) is related to the phase 0(¢) by

1 do(r)
m dr = fiev - a(r)
» The signal a(r) hence modulates the instantaneous frequency
B 1 do(r)
fms(t) _fc+ E 7 —fc +fdeva(t)

» FM modulation is a non-linear operation, hard to analyze
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Example 3.13: FM stereo

A possible block-diagram of conventional analog FM stereo is shown below.

Frequency - Frequency
modulator w demodulator —‘

Frequency
doubling Extract

xg(t) and K
X [ %0

2t > %0

Acos(2 nf1 t)

2¢(t) and z(t) denotes the left and the right audio-channel, respectively, and they are
both bandlimited to 15 [kHz]. The frequency fi = 19 [kHz| (often referred to as a
so-called pilot-tone).

1Z(f)l
Pilot DSB modulated
P difference signal
Wl A > fkHz]

1519 23 38
Left+right signal
(mono-signal)
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Digital Information Transmission

> In Chapter 2 the signal alternatives s,(r) could have arbitrary
shape within the signaling interval 0 < < T

» The bandpass signal for digital modulation then has the form

x(t) = x1(t) cos(2mfet) — xp(t) sin(2mf, 1)

( Z [(t—nTy) )cos 2nf 1)
( Z sm[n]Q > sin(2xf, 1)

» In case of M-ary QAM we have

X Z Am[n]g(t*l’lT XQ Z B tfnTA,)

n=—o0 n=—oo

» Also M-ary FSK signals have bandpass characteristics
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A simple Matlab example
How does a QPSK signal look like? Here is an example:

z1(t) cos(2m f. t)

1
At |

0 05 1 15 2 25 3 35 4 45 5
z¢(t) sin(2w f.t)

Michael Lentmaier, Fall 2019 Digital Communications: Lecture 8




And how it was done:

1 % Example: QPSK signal I
2
2= 1=0:0.01:5;
4 - fc=4;
5= pRec=ones(1, (length(t)-1)/5);
6 - sI=zeros(1,length(t)); sQ=zeros(1,length(t));
7
= dataI=[1 -1 1 -1 1];
9 - indPulse=1:(length(t)-1)/5;
10 - for i=1:length(datal),
ilil )= sI(indPulse)=datal(i)*pRec;
b= indPulse=indPulse+length(indPulse);
13 - end;
14
1Gjf= dataQ=[-1 -1 1 1 -1];
16 - indPuls :(length(t)-1)/5;
17 - for i=1:length(dataQ).
18 - sQ(indPulse)=dataQ(i)=*pRec;
19 - indPulse=indPulse+length(indPulse);
20 - end;
21
2215 sCarI=cos(2#pixtxfc); sCarQ=sin(2xpixtxfc);
23
24 - figure(1);
25 - subplot(3,1,1); plot(t,sI.%sCarI);
26 - set(gca, 'YLim', [-1.5 1.51); xlabel('fT_s');
27
28 - subplot(3,1,2); plot(t,sQ.*sCarQ);
29 - set(gca, 'YLim', [-1.5 1.5]); xlabel('fT_s');
30
31 - subplot(3,1,3); plot(t,sI.*sCarl - sQ.%sCarQ);
32 - set(gca, 'vLim', [-1.5 1.5]); xlabel('fT_s');
33
34
[script Ln 32 Col 30
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Example 3.5: offset QPSK

Below, two information carrying baseband signals x1(t) and s(t) are first generated.
Binary antipodal signaling with a rectangular pulse shape is used for both z;(t) and
s(t). The signal xq(t) is a delayed version of s(t), zo(t) = s(t — Tp).

cos(® ct)

e, _,

), _,

b,
b Serial
—> to
parallel N
b, {1
Sy t)y=- so(t)
A
1.,

Ts=2T b

The information bit rate (in b) is Ry = 1/Ty,. Hence, the signaling rate in the quadra-
ture components is Rs = Ry /2.

QPSK signal with delayed transmission of x¢ ()
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Example 3.5: offset QPSK

Xy (1)

1 1 0 0 1
A
A T T T T T t
2Ty 6T 10Ty,
XQ() ¥
1 0 1 1 1 <0 &< |->o 0<i<T}
Al [ I ATp<t<5Tp| 3Tp<t<4T}
A T T T T T T t
2Th 6T, 8T, 10Ty

» Special feature:
x1(r) and xo(r) can never change at the same time

» it follows that the envelope does not pass the origin, i.e., e(r) >0

» the variation of instantaneous power P(t) = ¢*(¢)/2 is small,
which allows more efficient power amplifiers
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Example 3.6: constant envelope signaling

Change pulse shape: The squared envelope becomes
half cycle sinusoidal g,
instead of g..(7) (1) = x7 (1) + (1)

wi(t)/A

' = A% sin’(mt/(2T})) +A? cos®(mt/(2Ty))
0s /\/\ =A% = constant envelope e(r) =A
o 2 o 10 12
-0.5 XQ(t)
” t=2Tb ,6Tb ,STb,IOTb
/

¥ // A
] /\ A/V\/ — 5@ \ S

2 T /STr. 5 10 12 t:STb ,7Tb t=Tb 3T}, 9T},
051
™ (=0 4T,

14

wo(t)/A

=

Continuous phase modulation (CPM) is used in GSM
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Example 3.7: GSM

N*W [MHz] N*W [MHz]
’ 890-915 [MHz] ‘ ’ 935-960 [MHz]
Uplink Downlink

Each sub-band of W [Hz] carries information from X users, which are time-multiplezed
using X time-slots. The total number of speech-channels (or data-channels) in the
uplink (and in the downlink) is N - X.

A specific user is allocated one of the N sub-bands, and one of the X time-slots. A
time-slot has duration 576.92 [us], and 148 binary symbols are transmitted within this
time, see the figure below.

Start Coded bits Flag Training sequence Flag Coded bits Stop ISI
3 57 1 26 1 57 3 margin
148 N
1 3046ps |
>
576.92 us
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From 2G to 4G

» GSM: (Global System for Mobile Communications)
based on combined time-division multiple access (TDMA) and
frequency division multiple access (FDMA)

» UMTS: (Universal Mobile Telecommunications Service)
based on wideband code division multiple access (W-CDMA)
each user has an individual code, no TDMA or FDMA

» LTE (advanced): (Long Term Evolution)
orthogonal frequency-division multiple access (OFDMA)

Multiple access:
refers to how different active users are separated
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