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Recall: QAM receiver (Example 4.4)

The implementation of this receiver is shown below:

cos( ) g(t)

r(t)

-sin( o) g(t)

Select
MAX

— Decision

The complezity of this receiver is significantly reduced compared to the receiver in Figure
4.8 on page 241! Only two integrators are here used, instead of 64 (= M) in Figure

1.8
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Example: QPSK (see Matlab demo)
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Distances D;; are important

» P, is determined by the distances D;; between the signal pairs
» Let us sort these distances

Dyin <Dy <Dp < -+ < Dpyx

» Then the upper bound on P, can be written as

D2, D? D2
P.< min 1 max
s <cQ 2 No +c1 Q 2o +-+ex O N

» The coefficients are

M-1
cr = Z Pi-njy, £=0,1,2,....x
j=1

» nj,: number of signals at distance D, from signal z;(r)
How many distinct terms do exist for QPSK?
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Signal Space Representation

4-PAM o
2o % % Zg _ )
v 0, #1(t) = VE,
~ g(t)cos(2m f.t)
o1(t) = VB
7
* _g(t)sin(27 f.t)
° elecee ¢(t) = E,/2
Teesleeee O
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A geometric description

» As we have seen in Chapter 2 we can represent our signal
alternatives z;(¢) as vectors (points) in signal space

2= (31) = (AiVEs) PAM

zi=(z1 %2) ( \/> Bj\/E;g) QAM, PSK

» The signal energy can be written as

Ts
n2 2 2
Ej = /0 Zj (l) dt= Zj1 +Zj’2

» Likewise, the squared Euclidean distance becomes
D= [ () —50) = (a0 + (2 —530)°
ij — o Zi Zj = \&i,1 — %1 Zi2 =32

Signal energies and distances have a geometric interpretation
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Approximate P, for some constellations

» Considering the dominating term in the union bound we obtain

&
Py=cQ d%zinﬁo

» This approximation is valid if f,—’; is sufficiently large

2
c min
M-ary PAM 2(1 - 1/M) 6]1&%72(_]‘1”
M-ary PSK (M > 2) 2 21og, (M) sin? (m/M)
M-ary FSK M—1 logy (M)
, , 3log, (M)
M-ary QAM 4(1 —1/VM) ST

Table 4.1: The coefficient ¢, and d2,;,, for some common signal constellations.
Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the
M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal

energy orthogonal FSK signals are also assumed.
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Example 4.19

Assume two signal constellations, denoted A and B respectively, with corresponding
parameters dﬁjin)A and dx2nin,B' From the equality (see e.g. the dominating term in the
union bound),

d2in,aEb,4/No = dinin 5Es,8/No
we find that the difference (in dB) in received energy per information bit is (compare
with (2.18) on page 16),

i,
10logy4 (€, ) — 10log(Ep,4) = 101ogy, (dz A)

‘min, B

2
Calculate the value 10log,, (iﬁ) if “A” is binary antipodal PAM, and if “B” i
4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.

» For M-ary PAM we have (Table 4.1 or Table 5.1)

d in — 610g2(M)/(M2 - 1) = diin,A =2, drzm'n,B = 4/5

> 1010g0ds,;, 4 /drin g = 10l0g195/2 = 3.98 dB
Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!
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Comparisons

by <\/dmm m) 4 55)
M=2 . [0<d2, <2, @457
P Phin 5 (2 21
Po|20-4 <\/dmm NO) (5.35)
M-ary PAM | &2, % . Table 4.1 on page 281, (2.50)
P | p2—pam -logy (M), (2.220)
P | <2Q(\/d, &), (5.43)
M-ary PSK d2;. | 2sin®(n/M)logy(M), Table 4.1, Fig. 5.11
P pepsk -log, (M), (2.229)
. | 1
M-ary QAM | Py | 4(1- )@ (\/(12 2~
(rect., k even) —4 (1 - \/t) Q? (1/ 2 in Nn) (5.50)
(QPSK with | @2, | 298200 "Table 4.1, Subsection 2.4.5.1
M =14) p | pePsk -log,(M), (2.229)
Moary FSK | P | < (M =1)Q ({/&,, &), Example 4.15c, Table 4.1
(orthogonal . logz(]\[) Table 4.1 on page 281
FSK) p | See (2.245)

Table 5.1, p. 361
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Symbol error probability comparison

M-ary PAM | M-ary PSK ]

BPSK

QPSK 8 (ub) \AF = 16 {ub) \M =32 (ub)

) 15 10 s
&/Ny in dB &/Ny in dB

M-ary PAM, M =2,4,8,16 M-ary PSK, M =2.4,8,16,32

&2 —6-105721‘4 d2. = 2sin*(n/M) log, M
M=—1

min —
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Symbol error probability comparison

T T ™ T

Meary QAM M-ary FSK ]

BPSK, (rof) \\M = 4 A=9 (exact)

o % N
&/Ny in dB £/Ny in dB

M-ary QAM, M = 4,16,64,256 M-ary FSK, M = 2,4,8,16,32,64

log, M 2
d2, =3 Mi : din = 10ga M
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Gain in ¢>, compared with binary antipodal

Antipodal M =2 0[dB]
Orthogonal M = -3.01
M=2 0
M = -3.98
M-ary PAM M = -8.45 M=2 -3.01
M =16 -13.27 M = 0
M =32 _18.34 M-ary FSK M = 1.76
M =64 -23.57 M =16 3.01
M=2 0 M =32 3.98
M= 0 M =064 477
M-ary PSK [ M= -3.57 M= 0
M =16 -8.17 M -ary M=4 0
M =32 -13.18 bi- M= 1.76
M = 64 ~18.40 orthogonal M =16 3.01
M =4 0 M =32 3.98
M =16 -3.98 M =64 4.77
M-ary QAM | M =64 -8.45
M = 256 -13.27
M =1024 | -18.34
M = 4096 | -23.57

Large values M reduce energy efficiency

Digital Communications




Example scenario: M-ary QAM

» We want to ensure that P; < P; .4, Where for M-ary QAM

& log, M
PS§4Q< dfninjv’;):w(w), din =3 22

» The pulse shape g() is chosen such that

R, d2,
p =1logs(M) peesk . Where p =7 < L.

» Combining these requirements we obtain

3 P, 3 P, T
) — 14+
X pgpsk NoW X N

M<1+

» Hence we want to choose M = 2F such that (QAM: k even)

2k 3 PZ

< 1+ L < k2
X pppsk NoW
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Example 4.22: adapting M to channel quality

Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary
QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or log,(M))

versus P./NoW. How large is the bit rate in each case? Assume that pppsx = 1/2
[bps/Hz|.

log ,(M)

8 M=256

o
ES
1l
[
B

M=16

IS

N

X 5% 10X 21X 42X NoW

Depending on the channel quality we can achieve different
bit rates R, = W, 2W, 3W, or 4W[bps]
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Bit errors vs symbol errors

» Assume that § symbols are transmitted and S, are in error
» If a symbol &1 # m is decided, this causes at least 1 bit error and
at most k = log, M bit errors

Serr < Berr < kSerr

» This leads to the following relationship between P, and Py:

i _ E{Serr} S Pb S E{Serr'k}
k S-k S-k

» P, depends on the signal constellation only

» The exact P, depends on the mapping from bits to messages my

and hence signal alternatives s, ()

:PS

Example: Which mapping is better for 4-PAM? (and why?)
(1) m0:00, m1:11, I’I’QZOl, m3:10
(2) m():OO, m1:OI7 m2:117 m3:10
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Gray code mappings

» We have seen that for small Ny we can approximate

D>,
P ~cC min
s~ cQ 2No
» This motivates the use of Gray code mappings:
o,
2 Zg 2y 2y
X X BafF X X
1000 1001 1011 1010
Z2 Zi3 25 Zy4
- X X - X X
1E6xarnAP|\:|e- 1100 1101 @ 1111 1110
« N P
Zay LR B %oy
0100 0101 0111 0110
2 Z | Z3 2
X X A X X
0000 0001 0011 0010
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How can we achieve large data rates?

» The bit rate R, can be increased in different ways
» We can select a signal constellation with large M
= this typically increases the error probability P
exception: orthogonal signals (FSK): require more bandwidth W
» Achieving equal P with larger M is possible by increasing &, /Ny
= this reduces the energy efficiency
» We can also increase R, by increasing the bandwidth W
= this does not improve the bandwidth efficiency p = R,/W

Question:

what is the largest achievable rate R;, for a given error probability P,
channel quality &,/Ny and bandwidth W?

This question was answered by Claude Shannon in 1948:
"A mathematical theory of communication”
Course EITN45: Information Theory (VT2)
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A fundamental limit: channel capacity

» Consider a single-path channel (|[H(f)|* = a?) with finite
bandwidth W and additive white Gaussian noise (AWGN) N(r)

The capacity for this channel is given by

v

P,
=Wl 14+ —
C ogz( +N0W) [bps]

v

Shannon showed that reliable communication requires that

R, <C

v

Observe: the capacity formula does not include P, (why?)

Shannon also showed that if R, < C, then the probability of error
P, can be made arbitrarily small

v

P;—0

if messages are coded in blocks of length N —
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Bandwidth efficiency and gap to capacity

(p- 369) p
20
Ep oW,
: C/W -b _
10 - Impossible =
8 regfi)on N\ No CIw
64-QAM
4+ 16-QAM 16-PSK
8-PS 8-PAM
2= PSK -5
WIS
-1 BPSK

6‘ ! T T T T 10log; o (Ey, /N0)
! 0 5 10 15 20 [dB]

‘ BFSK

LV E12

I 8-FSK

|

: ~1/4 16-FSK

1 32FSK

=18

» p < C/W: reliable communication is impossible above
» this limit can be approached with channel coding
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How does channel coding work?

» We have seen that a large minimum distance ¢, between
signals is required to improve the energy efficiency
» For binary signaling (M = 2) we have seen that d2,,, <2
Idea of coding:
» generate M binary sequences of length N
» use binary antipodal signaling to create M signals s;(t)
Example: N =5, M =4, g,..(t) pulse with T =T,/N (what is D7)

so(t) s1(t)

1 0 1 1 0 1 1 0 0 1
A " T A T —I
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Increasing 42, with coding

> In our example we have

in

Dk, =4A*T-3=4E,3 = 12E,

min

v

Normalizing by the average energy &, = N E, /k this gives

D2,  12E, 6. k_12

— 8 _6._— = =24
26, 2NJ/kE, N 5

2
dmin -

v

Let dynin,n denote the minimum Hamming distance between the
binary code sequences = in our example: d,i,n =3

Then we can write

v

k
drzm'n =2 ﬁ dmin,H

where R =k/N is called the code rate
Larger d,ninz vValues can be achieved with larger N

v

Michael Lentmaier, Fall 2019 Digital Communications: Lecture 7



Example: symbol error probability

uncoded

0”10 3
10°F E
10-6 L Hamming code N

N=7,k=4,d minH T
10_7 [ (union bound) \ i
108 I | I | ) I
0 2 4 6 8 10 12 14 16
E,/N, [dB]

» Hamming code, N =7, k=4, dpiny =3 = d%,,
» How can we construct good codes?
EITN70: Channel Coding for Reliable Communication (HT2)

=343
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Multiuser Communication

(p. 395/396) NGO

User 1: +A ¢,(t)
User 2: TA 0,(1) s(t) r(t)

Userz: tA n.b,z(t)
User N: TA ¢,(t)
A simple model:

» N users transmit at same time with orthonormal waveforms ¢,(¢)
» Binary antipodal signaling is used in this example, such that

N
s(t) =Y Auou(r), A e=£A
n=1
» The orthonormal waveforms satisfy

I Cfo ifi#f,
/ @(t)@(r)dt{l i
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Multiuser Communication
» The separation of users can be achieved in different ways
» TDMA: (time-division multiple access)

o2 TDMA

?

User <
intime slot «

» FDMA / OFDMA: (frequency-division multiple access)
0,(t)=c sin(2 nfyt) User 2in
frequency slot £

t

TS
FDMA
» CDMA: (code-division multiple access)
0p(t) CDMA Each user is
a assigned a

unique pattern of +a's

TS

-a

» MC-CDMA: (multi-carrier CDMA) combined OFDM/CDMA |
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Receiver for Multiuser Communication

RECEIVER FOR
USER £

User 1: A ¢,(t)
User 2: +A 6,(t)

User£: tA (.b,z(t)

UserN: tA o6 —  bteceo oo - 3

» This permits a simple receiver structure for each user ¢
» The decision variable becomes

o N
¢ = / (1) dt—/oT Pe(1) (;An%(f)ﬂLN(t)) dt

—A[+/ 0(D)N(D) di = Ay + N

= receiver is only disturbed by noise and not by other users!
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Non-coherent receivers

>

How can we modify our PSK transmission accordingly?

With phase-shift keying (PSK) the message m|[n] at time nTj is
put into the phase 6, of the transmit signal

s(t) = g(t) V2E cos(2nf.t+6,), nT,<t<(n+1)Ty

The channel introduces some attenuation ¢, some additive noise
N(r) and also some phase offset v into the received signal

r(t) = ot g(1) V2E cos(2nf.t+ 6,4 V) +N(t)

Challenge: the optimal receiver needs to know ¢« and v

In some applications an accurate estimation of v is infeasible
(cost, complexity, size)

Non-coherent receivers:

receiver structures that can work well without knowledge
of the exact phase offset
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Differential Phase Shift Keying

» With differential PSK, the message m[n] = m, is mapped to the
phase according to

2nd
9;126"7]"'? gZO,,M_l

» The transmitted phase 6, depends on both 6,_; and m[n]
» This differential encoding introduces memory and the transmitted
signal alternatives become dependent

» Example 5.25: binary DPSK

Addition
modulo 2

v

N(t)

1) s(t) 2(t) r(t)
g ®

mii]

bIi]
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Differential Phase Shift Keying (M = 2)

Receiver i
|
|
Delay i
T a | T
&N 20 (> bn-1]
Delay nqn
T,

]

» The receiver uses no phase offset v in the carrier waveforms
» Without noise, the decision variable is

Slnl = reln]refn— 1]+ rsln] rsfn —1]
=Acos(6,-1+Vv)Acos(6,-2+V)+Asin(6,-; + V) Asin(6,_, + V)
=A%cos(6,_; —6,_,) = independent of v

» Note: non-coherent reception increases variance of noise
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