

EITG05 – Digital Communications

Lecture 7

Receivers continued: Geometric representation, Capacity, Multiuser receiver, Non-coherent receiver

> Michael Lentmaier Thursday, September 26, 2019

Recall: QAM receiver (Example 4.4)

The implementation of this receiver is shown below:

The complexity of this receiver is significantly reduced compared to the receiver in Figure 4.8 on page 241! Only two integrators are here used, instead of 64 (= M) in Figure 4.8.

Example: QPSK (see Matlab demo)

Distances $D_{i,j}$ are important

- $ightharpoonup P_s$ is determined by the distances $D_{i,j}$ between the signal pairs
- Let us sort these distances

$$D_{min} < D_1 < D_2 < \cdots < D_{max}$$

► Then the upper bound on P_s can be written as

$$P_s \leq c \ Q\left(\sqrt{\frac{D_{min}^2}{2N_0}}\right) + c_1 \ Q\left(\sqrt{\frac{D_1^2}{2N_0}}\right) + \cdots + c_x \ Q\left(\sqrt{\frac{D_{max}^2}{2N_0}}\right)$$

The coefficients are

$$c_{\ell} = \sum_{j=1}^{M-1} P_j \cdot n_{j,\ell} , \quad \ell = 0, 1, 2, \dots, x$$

▶ $n_{i,\ell}$: number of signals at distance D_{ℓ} from signal $z_i(t)$

How many distinct terms do exist for QPSK?

Signal Space Representation

A geometric description

► As we have seen in Chapter 2 we can represent our signal alternatives z_j(t) as vectors (points) in signal space

$$\mathbf{z}_j = ig(z_{j,1}ig) = ig(A_j\sqrt{E_g}ig)$$
 PAM $\mathbf{z}_j = ig(z_{j,1} \quad z_{j,2}ig) = ig(A_j\sqrt{\frac{E_g}{2}} \quad B_j\sqrt{\frac{E_g}{2}}ig)$ QAM, PSK

The signal energy can be written as

$$E_j = \int_0^{T_s} z_j^2(t) dt = z_{j,1}^2 + z_{j,2}^2$$

Likewise, the squared Euclidean distance becomes

$$D_{i,j}^2 = \int_0^{T_s} (z_i(t) - z_j(t))^2 dt = (z_{i,1} - z_{j,1})^2 + (z_{i,2} - z_{j,2})^2$$

Signal energies and distances have a geometric interpretation

Approximate P_s for some constellations

Considering the dominating term in the union bound we obtain

$$P_s pprox c Q \left(\sqrt{d_{min}^2 \frac{\mathcal{E}_b}{N_0}} \right)$$

▶ This approximation is valid if $\frac{\mathcal{E}_b}{N_0}$ is sufficiently large

	c	d_{\min}^2
M-ary PAM	2(1-1/M)	$\frac{6\log_2(M)}{M^2 - 1}$
M-ary PSK $(M > 2)$	2	$2\log_2(M)\sin^2(\pi/M)$
M-ary FSK	M-1	$\log_2(M)$
M-ary QAM	$4(1-1/\sqrt{M})$	$\frac{3\log_2(M)}{M-1}$

Table 4.1: The coefficient c, and d_{\min}^2 , for some common signal constellations. Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal energy orthogonal FSK signals are also assumed.

Example 4.19

Assume two signal constellations, denoted A and B respectively, with corresponding parameters $d_{\min,A}^2$ and $d_{\min,B}^2$. From the equality (see e.g. the dominating term in the union bound),

$$d_{\min,A}^2 \mathcal{E}_{b,A}/N_0 = d_{\min,B}^2 \mathcal{E}_{b,B}/N_0$$

we find that the difference (in dB) in received energy per information bit is (compare with (2.13) on page 16),

$$10\log_{10}(\mathcal{E}_{b,B}) - 10\log_{10}(\mathcal{E}_{b,A}) = 10\log_{10}\left(\frac{d_{\min,A}^2}{d_{\min,B}^2}\right)$$

Calculate the value $10 \log_{10} \left(\frac{d_{\min,A}^2}{d_{\min,B}^2} \right)$ if "A" is binary antipodal PAM, and if "B" is 4-ary PAM. Assume, that the conditions leading to (2.50) are satisfied.

► For M-ary PAM we have (Table 4.1 or Table 5.1)

$$d_{min}^2 = 6\log_2(M)/(M^2 - 1)$$
 $\Rightarrow d_{min,A}^2 = 2, d_{min,B}^2 = 4/5$

► $10\log_{10}d_{min\,A}^2/d_{min\,B}^2 = 10\log_{10}5/2 = 3.98 \text{ dB}$

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!

Comparisons

	P_b	$Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right), (4.55)$
M = 2	d_{\min}^2	$0 \le d_{\min}^2 \le 2, (4.57)$
	ρ	$\rho_{bin} , (2.21)$
	P_s	$2\left(1 - \frac{1}{M}\right)Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right), (5.35)$
M-ary PAM	d_{\min}^2	$\frac{6 \log_2(M)}{M^2-1}$, Table 4.1 on page 281, (2.50)
	ρ	$\rho_{2-PAM} \cdot \log_2(M), (2.220)$
	P_s	$< 2Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right), (5.43)$
M-ary PSK	d_{\min}^2	$2\sin^2(\pi/M)\log_2(M)$, Table 4.1, Fig. 5.11
	ρ	$\rho_{BPSK} \cdot \log_2(M), (2.229)$
M-ary QAM	P_s	$4\left(1-\frac{1}{\sqrt{M}}\right)Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right) -$
(rect., k even)		$-4\left(1-\frac{1}{\sqrt{M}}\right)^2 Q^2\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right), (5.50)$
(QPSK with	d_{\min}^2	$\frac{3\log_2(M)}{M-1}$, Table 4.1, Subsection 2.4.5.1
M=4)	ρ	$\rho_{BPSK} \cdot \log_2(M), (2.229)$
M-ary FSK	P_s	$\leq (M-1)Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right)$, Example 4.18c, Table 4.1
(orthogonal	d_{\min}^2	$\log_2(M)$, Table 4.1 on page 281
FSK)	ρ	See (2.245)

Table 5.1, p. 361

Symbol error probability comparison

$$M$$
-ary PAM, $M = 2, 4, 8, 16$

$$d_{min}^2 = 6 \cdot \frac{\log_2 M}{M^2 - 1}$$

$$M$$
-ary PSK, $M = 2, 4, 8, 16, 32$

$$d_{min}^2 = 2\sin^2(\pi/M) \log_2 M$$

Symbol error probability comparison

M-ary QAM, M = 4, 16, 64, 256

$$d_{min}^2 = 3 \cdot \frac{\log_2 M}{M - 1}$$

M-ary FSK, M = 2, 4, 8, 16, 32, 64

$$d_{min}^2 = \log_2 M$$

Gain in d_{min}^2 compared with binary antipodal

M=2	0[dB]
M = 2	-3.01
M = 2	0
M = 4	-3.98
M = 8	-8.45
M = 16	-13.27
M = 32	-18.34
M = 64	-23.57
M = 2	0
M = 4	0
M = 8	-3.57
M = 16	-8.17
M = 32	-13.18
M = 64	-18.40
M = 4	0
M = 16	-3.98
M = 64	-8.45
M = 256	-13.27
M = 1024	-18.34
M = 4096	-23.57
	$\begin{array}{l} M=2 \\ M=4 \\ M=8 \\ M=16 \\ M=32 \\ M=64 \\ M=2 \\ M=4 \\ M=8 \\ M=16 \\ M=32 \\ M=64 \\ M=4 \\ M=16 \\ M=256 \\ M=1024 \\ \end{array}$

	M = 2	-3.01
	M = 4	0
M-ary FSK	M = 8	1.76
	M = 16	3.01
	M = 32	3.98
	M = 64	4.77
	M = 2	0
M -ary	M = 4	0
bi-	M = 8	1.76
orthogonal	M = 16	3.01
	M = 32	3.98
	M = 64	4.77

Large values M reduce energy efficiency

Example scenario: *M*-ary **QAM**

▶ We want to ensure that $P_s \le P_{s,req}$, where for M-ary QAM

$$P_s \le 4 \ Q\left(\sqrt{d_{min}^2 \frac{\mathcal{E}_b}{N_0}}\right) = 4 \ Q\left(\sqrt{\mathcal{X}}\right) \ , \quad d_{min}^2 = 3 \ \frac{\log_2 M}{M - 1}$$

▶ The pulse shape g(t) is chosen such that

$$ho = \log_2(M) \;
ho_{\textit{BPSK}} \; , \quad ext{where} \;
ho = rac{R_b}{W} \leq rac{d_{\textit{min}}^2}{\mathcal{X}} \cdot rac{\mathcal{P}_z}{N_0 \, W}$$

Combining these requirements we obtain

$$M \le 1 + \frac{3}{\mathcal{X} \rho_{BPSK}} \cdot \frac{\mathcal{P}_z}{N_0 W} = 1 + \frac{3}{\mathcal{X}} \cdot \frac{\mathcal{P}_z T_s}{N_0}$$

▶ Hence we want to choose $M = 2^k$ such that (QAM: k even)

$$2^{k} \leq 1 + \frac{3}{\mathcal{X} \rho_{BPSK}} \cdot \frac{\mathcal{P}_{z}}{N_{0} W} < 2^{k+2}$$

Example 4.22: adapting M to channel quality

Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or $\log_2(M)$) versus \mathcal{P}_z/N_0W . How large is the bit rate in each case? Assume that $\rho_{BPSK}=1/2$ [bps/Hz].

Depending on the channel quality we can achieve different bit rates $R_b = W$, 2W, 3W, or 4W[bps]

Bit errors vs symbol errors

- ▶ Assume that *S* symbols are transmitted and *S*_{err} are in error
- ▶ If a symbol $\hat{m} \neq m$ is decided, this causes at least 1 bit error and at most $k = \log_2 M$ bit errors

$$S_{err} \leq B_{err} \leq k S_{err}$$

▶ This leads to the following relationship between P_b and P_s :

$$\frac{P_s}{k} = \frac{E\{S_{err}\}}{S \cdot k} \le P_b \le \frac{E\{S_{err} \cdot k\}}{S \cdot k} = P_s$$

- P_s depends on the signal constellation only
- ▶ The exact P_b depends on the mapping from bits to messages m_ℓ and hence signal alternatives $s_{m_\ell}(t)$

Example: Which mapping is better for 4-PAM? (and why?)

(1)
$$m_0 = 00$$
, $m_1 = 11$, $m_2 = 01$, $m_3 = 10$

(2)
$$m_0 = 00$$
, $m_1 = 01$, $m_2 = 11$, $m_3 = 10$

Gray code mappings

 \blacktriangleright We have seen that for small N_0 we can approximate

$$P_s \approx c \ Q \left(\sqrt{\frac{D_{min}^2}{2N_0}} \right)$$

This motivates the use of Gray code mappings:

Michael Lentmaier, Fall 2019

How can we achieve large data rates?

- ▶ The bit rate R_b can be increased in different ways
- We can select a signal constellation with large M
 ⇒ this typically increases the error probability P_s
 exception: orthogonal signals (FSK): require more bandwidth W
- Achieving equal P_s with larger M is possible by increasing \mathcal{E}_b/N_0 \Rightarrow this reduces the energy efficiency
- ▶ We can also increase R_b by increasing the bandwidth W ⇒ this does not improve the bandwidth efficiency $\rho = R_b/W$

Question:

what is the largest achievable rate R_b for a given error probability P_s , channel quality \mathcal{E}_b/N_0 and bandwidth W?

This question was answered by Claude Shannon in 1948: "A mathematical theory of communication"

Course EITN45: Information Theory (VT2)

A fundamental limit: channel capacity

- ► Consider a single-path channel $(|H(f)|^2 = \alpha^2)$ with finite bandwidth W and additive white Gaussian noise (AWGN) N(t)
- ► The capacity for this channel is given by

$$C = W \log_2 \left(1 + \frac{P_z}{N_0 W}\right) \text{ [bps]}$$

Shannon showed that reliable communication requires that

$$R_b \leq C$$

- Observe: the capacity formula does not include P_s (why?)
- ▶ Shannon also showed that if $R_b < C$, then the probability of error P_s can be made arbitrarily small

$$P_s \rightarrow 0$$

if messages are coded in blocks of length $N \to \infty$

Bandwidth efficiency and gap to capacity

(p. 369) 20 C/W 10 Impossible region × 64-QAM 16-QAM 16-PSK 4 8-PAM QPSK ⊀ $P_{s} = 10^{-5}$ 4-PAM **BPSK** -1.6 $> 10\log_{10}(E_b/N_0)$ 15 [dB] **BFSK** 8-FSK 16-FSK - 1/4 **★** 32-FSK - 1/8

- $\rho \le C/W$: reliable communication is impossible above
- this limit can be approached with channel coding

How does channel coding work?

- We have seen that a large minimum distance d_{min}^2 between signals is required to improve the energy efficiency
- ► For binary signaling (M = 2) we have seen that $d_{min}^2 \le 2$

Idea of coding:

- generate M binary sequences of length N
- use binary antipodal signaling to create M signals $s_{\ell}(t)$

Example: N = 5, M = 4, $g_{rec}(t)$ pulse with $T = T_s/N$ (what is D_{min}^2 ?)

Increasing d_{min}^2 with coding

In our example we have

$$D_{min}^2 = 4A^2 T \cdot 3 = 4E_g 3 = 12E_g$$

▶ Normalizing by the average energy $\mathcal{E}_b = NE_g/k$ this gives

$$d_{min}^2 = \frac{D_{min}^2}{2\mathcal{E}_b} = \frac{12E_g}{2N/kE_g} = 6 \cdot \frac{k}{N} = \frac{12}{5} = 2.4$$

- ▶ Let $d_{min,H}$ denote the minimum Hamming distance between the binary code sequences \Rightarrow in our example: $d_{min,H} = 3$
- Then we can write

$$d_{min}^2 = 2\frac{k}{N}d_{min,H}$$

where R = k/N is called the code rate

▶ Larger $d_{min,H}$ values can be achieved with larger N

Example: symbol error probability

- ► Hamming code, N = 7, k = 4, $d_{min,H} = 3 \Rightarrow d_{min}^2 = 3.43$
- ► How can we construct good codes?

EITN70: Channel Coding for Reliable Communication (HT2)

Multiuser Communication

A simple model:

- ▶ *N* users transmit at same time with orthonormal waveforms $\phi_{\ell}(t)$
- ▶ Binary antipodal signaling is used in this example, such that

$$s(t) = \sum_{n=1}^{N} A_n \, \phi_n(t) \; , \quad A_n \in \pm A$$

► The orthonormal waveforms satisfy

$$\int_0^{T_s} \phi_i(t) \, \phi_j(t) \, dt = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

Multiuser Communication

- ▶ The separation of users can be achieved in different ways
- ► TDMA: (time-division multiple access)

FDMA / OFDMA: (frequency-division multiple access)

► CDMA: (code-division multiple access)

MC-CDMA: (multi-carrier CDMA) combined OFDM/CDMA

Receiver for Multiuser Communication

- ightharpoonup This permits a simple receiver structure for each user ℓ
- The decision variable becomes

$$\xi = \int_0^{T_s} \phi_{\ell}(t) \, r(t) \, dt = \int_0^{T_s} \phi_{\ell}(t) \left(\sum_{n=1}^N A_n \, \phi_n(t) + N(t) \right) \, dt$$
$$= A_{\ell} + \int_0^{T_s} \phi_{\ell}(t) \, N(t) \, dt = A_{\ell} + \mathcal{N}$$

⇒ receiver is only disturbed by noise and not by other users!

Non-coherent receivers

▶ With phase-shift keying (PSK) the message m[n] at time nT_s is put into the phase θ_n of the transmit signal

$$s(t) = g(t) \sqrt{2E} \cos(2\pi f_c t + \theta_n)$$
, $nT_s \le t \le (n+1)T_s$

► The channel introduces some attenuation α , some additive noise N(t) and also some phase offset v into the received signal

$$r(t) = \alpha g(t) \sqrt{2E} \cos(2\pi f_c t + \theta_n + v) + N(t)$$

- **Challenge:** the optimal receiver needs to know α and v
- In some applications an accurate estimation of v is infeasible (cost, complexity, size)
- Non-coherent receivers: receiver structures that can work well without knowledge of the exact phase offset

How can we modify our PSK transmission accordingly?

Differential Phase Shift Keying

▶ With differential PSK, the message $m[n] = m_{\ell}$ is mapped to the phase according to

$$\theta_n = \theta_{n-1} + \frac{2\pi\ell}{M}$$
 $\ell = 0, \dots, M-1$

- ▶ The transmitted phase θ_n depends on both θ_{n-1} and m[n]
- This differential encoding introduces memory and the transmitted signal alternatives become dependent
- Example 5.25: binary DPSK

Differential Phase Shift Keying (M = 2)

- The receiver uses no phase offset v in the carrier waveforms
- Without noise, the decision variable is

$$\xi[n] = r_c[n] r_c[n-1] + r_s[n] r_s[n-1]$$

$$= A \cos(\theta_{n-1} + \nu) A \cos(\theta_{n-2} + \nu) + A \sin(\theta_{n-1} + \nu) A \sin(\theta_{n-2} + \nu)$$

$$= A^2 \cos(\theta_{n-1} - \theta_{n-2}) \implies \text{independent of } \nu$$

▶ Note: non-coherent reception increases variance of noise