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Recall: QAM receiver (Example 4.4)

242 Chapter 4. Receivers in Digital Communication Systems – Part I

can be simplified considerably. Example 4.4 below illustrates this for a received
64-ary QAM signal constellation {zℓ(t)}63

ℓ=0.

EXAMPLE 4.4
Assume that {zℓ(t)

M−1
ℓ=0 is a 64-ary QAM signal constellation. Draw a block-diagram

of a minimum Euclidean distance receiver that uses only two integrators.

Solution:
A QAM signal alternative can be written as zi(t) = Aig(t) cos(ωct) − Big(t) sin(ωct),
where g(t) is a baseband pulse. The output value from the i:th correlator in Figure 4.8
is,

Ts

0

r(t)zi(t)dt = Ai

Ts

0

r(t)g(t) cos(ωct)dt

x

−Bi

Ts

0

r(t)g(t) sin(ωct)dt

−y

=

= Aix + Biy

Observe that x and y do not depend on the index i.
Hence, a possible implementation of the receiver is to first generate x and y, and then
calculate the M correlations Aix + Biy, i = 0, i, . . . , M − 1. By subtracting the value
Ei/2 from the i:th correlation, the decision variables ξ0, . . . , ξM−1 are finally obtained.
The implementation of this receiver is shown below:

Select
MAX Decision

r(t)

A0

B0

A63

B63

-E0/2

-E63/2

ξ0

ξ63

. . .

. . .

Ts

0
(  ) dt

Ts

0
(  ) dt

-sin( ωct)

cos( ωct) g(t)

g(t)

y

x

The complexity of this receiver is significantly reduced compared to the receiver in Figure
4.8 on page 241! Only two integrators are here used, instead of 64 (= M) in Figure
4.8.

For the receiver implementation above, several important observations are
made:

1. The operations performed in the receiver to obtain x and y can be interpreted as
demodulation combined with baseband correlation (correlation with g(t)). The lo-
cal oscillator signals cos(ωct) and sin(ωct) in the receiver have the same phase as
the signal alternatives {zℓ(t)}M−1

ℓ=0 have. This is referred to as coherent reception.

2. Since M-ary bandpass PAM and M-ary PSK can be viewed as special cases of
M-ary QAM, the implementation above can be used also for these signal constel-
lations. Actually, by setting fc = 0 a receiver implementation for M-ary baseband
PAM is also obtained (which implies that y = 0).
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Example: QPSK (see Matlab demo)
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Distances Di,j are important
I Ps is determined by the distances Di,j between the signal pairs
I Let us sort these distances

Dmin < D1 < D2 < · · ·< Dmax

I Then the upper bound on Ps can be written as

Ps ≤ c Q



√

D2
min

2N0


+ c1 Q



√

D2
1

2N0


+ · · ·+ cx Q



√

D2
max

2N0




I The coefficients are

c` =
M−1

∑
j=1

Pj ·nj,` , `= 0,1,2, . . . ,x

I nj,`: number of signals at distance D` from signal zj(t)

How many distinct terms do exist for QPSK?
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Signal Space Representation

5.1. The MAP Receiver for the AWGN Channel 331

In Figure 5.2 examples of these signal constellations are shown in signal space,
for different values of M . Note that for M-ary PSK the signal points lie on a

circle with radius
√

Ēs =
√

Eg/2.

2-PAM 4-PAM 8-PAM

φ1 φ1
φ1

z0 z0z0 z1 z1 z2 z3 z4z1 z2 z3 z5 z6 z7

2-PSK
φ2

z1 z0
φ1

(ν =2π M )

4-PSK (QPSK)
φ2

φ1

z2

z1

z3

z0

φ2

8-PSK

φ1

z7z6

z5

z4

z3
z2

z1
z0

2-FSK

φ1

φ2

φ2

z1
z0

3-FSK
φ3

z0

z1
z2

4-QAM 16-QAM 64-QAM

φ2

φ2φ2

φ1 φ1 φ1

0 0 0

φ1

Figure 5.2: Examples of M-ary PAM, M-ary PSK, M-ary FSK and M-ary QAM
signal constellations in signal space. See also the corresponding subsections in
Chapter 2.

To be able to calculate the average received symbol energy for the signal con-
stellation {zℓ(t)}M−1

ℓ=0 , the energy of the individual signals zj(t) first has to be
calculated,

Ej =

∫ Ts

0

z2
j (t)dt (5.5)

However, there exists an alternative way to obtain the energy Ej directly from
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To be able to calculate the average received symbol energy for the signal con-
stellation {zℓ(t)}M−1

ℓ=0 , the energy of the individual signals zj(t) first has to be
calculated,

Ej =

∫ Ts

0

z2
j (t)dt (5.5)

However, there exists an alternative way to obtain the energy Ej directly from

�1(t) =
g(t)p

Eg

�1(t) =
g(t) cos(2⇡ fc t)p

Eg/2

�2(t) =
g(t) sin(2⇡ fc t)p

Eg/2

Michael Lentmaier, Fall 2019 Digital Communications: Lecture 7



A geometric description
I As we have seen in Chapter 2 we can represent our signal

alternatives zj(t) as vectors (points) in signal space

zj =
(
zj,1
)
=
(
Aj
√

Eg
)

PAM

zj =
(
zj,1 zj,2

)
=
(

Aj

√
Eg
2 Bj

√
Eg
2

)
QAM, PSK

I The signal energy can be written as

Ej =
∫ Ts

0
z2

j (t) dt = z2
j,1 + z2

j,2

I Likewise, the squared Euclidean distance becomes

D2
i,j =

∫ Ts

0

(
zi(t)− zj(t)

)2 dt = (zi,1− zj,1)
2 +(zi,2− zj,2)

2

Signal energies and distances have a geometric interpretation
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Approximate Ps for some constellations
I Considering the dominating term in the union bound we obtain

Ps ≈ c Q

(√
d2

min
Eb

N0

)

I This approximation is valid if Eb
N0

is sufficiently large

4.5. M-ary Signaling 281

Bit Rate, Signal Power, Bandwidth, and Symbol Error Probability:
Let us approximate the symbol error probability with the dominating term in
the union bound (4.116),

Ps ≈ c · Q
(√

d2
min

Eb

N0

)
(4.120)

Hence, in (4.120) it is assumed that the signal-to-noise ratio Eb/N0 is sufficiently
large to justify this approximation. The coefficient c, and d2

min, for some common
signal constellations are given in Table 4.1 below.

c d2
min

M-ary PAM 2(1− 1/M)
6 log2(M)
M2 − 1

M-ary PSK (M > 2) 2 2 log2(M) sin2(π/M)
M-ary FSK M − 1 log2(M)

M-ary QAM 4(1− 1/
√

M)
3 log2(M)

M − 1

Table 4.1: The coefficient c, and d2
min, for some common signal constellations.

Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the
M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal
energy orthogonal FSK signals are also assumed.

Now assume that the symbol error probability Ps in (4.120) is required not to
exceed a given value, here denoted Ps,req

Ps ≈ cQ

(√
d2
min

Eb

N0

)
≤ Ps,req (4.121)

This means that the signal-to-noise ratio Eb/N0 must satisfy,

Eb

N0
≥ X

d2
min

(4.122)

where the parameter X is here defined such that

Ps,req = cQ(
√

X ) (4.123)

Hence,
X = (Q− 1(Ps,req/c))2 (4.124)

where Q− 1( ) denotes the inverse Q( ) function. The average received signal-to-
noise ratio Eb/N0 can also be expressed in terms of the average received signal
power Pz in z(t) (compare with, e.g., (4.72)),

Eb

N0
=

1

Rb
· Pz

N0
(4.125)
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Example 4.19

4.5. M-ary Signaling 279

where

d2
min =

D2
min

2Eb
(4.117)

and

d2
ℓ =

D2
ℓ

2Eb
, ℓ = 1, 2, . . . (4.118)

For a sufficiently large signal-to-noise ratio Eb/N0 only the first term, which
contains the normalized squared minimum Euclidean distance d2

min, is
numerically significant. This parameter is sometimes also referred to as the
normalized squared free Euclidean distance.

The energy efficiency for a specific signal constellation {zℓ(t)}M−1
ℓ=0 is often

measured by the parameter d2
min, see Example 4.19, and Table 4.1 on page 281.

A common reference value is d2
min = 2 and this is obtained for binary antipodal

signaling, and for QPSK.

EXAMPLE 4.19
Assume two signal constellations, denoted A and B respectively, with corresponding
parameters d2

min,A and d2
min,B. From the equality (see e.g. the dominating term in the

union bound),
d2
min,AEb,A/N0 = d2

min,BEb,B/N0

we find that the difference (in dB) in received energy per information bit is (compare
with (2.13) on page 16),

10 log10(Eb,B) − 10 log10(Eb,A) = 10 log10

d2
min,A

d2
min,B

Calculate the value 10 log10

d2
min,A

d2
min,B

if “A” is binary antipodal PAM, and if “B” is

4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.
Which signal constellation is most energy efficient based on d2

min (i.e. at large signal-
to-noise ratios Eb/N0)? Use Table 4.1 on page 281.

Solution:
From Table 4.1 we find for M-ary PAM that d2

min = 6 log2(M)

M2−1

So, d2
min,A = 2, d2

min,B = 4
5

10 log10

d2
min,A

d2
min,B

= 10 log10

5

2
= 3.98[dB]

Hence, binary antipodal PAM is 3.98 dB more energy efficient than 4-ary
PAM.

✷

As an additional exercise for the reader we here give, without proof, the union
bound for the M-ary PAM case considered in Subsection 2.4.1.1,

Ps ≤
M−2∑

i=0

2(M − 1− i)

M
Q

(
(i + 1)

√
d2
minEb/N0

)
(4.119)

I For M-ary PAM we have (Table 4.1 or Table 5.1)

d2
min = 6log2(M)/(M2−1) ⇒ d2

min,A = 2, d2
min,B = 4/5

I 10log10 d2
min,A/d2

min,B = 10log10 5/2 = 3.98 dB

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!
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Comparisons

5.2. Comparisons 361

as M is increased, in contrast to the results in Figures 5.13–5.15. However, as we
know from Chapter 2, this improvement in energy efficiency (or “coding gain”)
for M-ary FSK is obtained at the cost of an increased bandwidth consumption.

Pb Q
(√

d2
min

Eb

N0

)
, (4.55)

M = 2 d2
min 0 ≤ d2

min ≤ 2, (4.57)
ρ ρbin , (2.21)

Ps 2
(
1− 1

M

)
Q
(√

d2
min

Eb

N0

)
, (5.35)

M-ary PAM d2
min

6 log2(M)
M2−1 , Table 4.1 on page 281, (2.50)

ρ ρ2−PAM · log2(M), (2.220)

Ps < 2Q
(√

d2
min

Eb

N0

)
, (5.43)

M-ary PSK d2
min 2 sin2(π/M) log2(M), Table 4.1, Fig. 5.11
ρ ρBPSK · log2(M), (2.229)

M-ary QAM Ps 4
(
1− 1√

M

)
Q
(√

d2
min

Eb

N0

)
−

(rect., k even) −4
(
1− 1√

M

)2

Q2
(√

d2
min

Eb

N0

)
, (5.50)

(QPSK with d2
min

3 log2(M)
M−1 , Table 4.1, Subsection 2.4.5.1

M = 4) ρ ρBPSK · log2(M), (2.229)

M-ary FSK Ps ≤ (M − 1)Q
(√

d2
min

Eb

N0

)
, Example 4.18c, Table 4.1

(orthogonal d2
min log2(M), Table 4.1 on page 281

FSK) ρ See (2.245)

M-ary bi- Ps ≤ (M − 2)Q
(√

d2
min

Eb

N0

)
+

orthogonal +Q
(√

2d2
min

Eb

N0

)
, (5.53)

signals d2
min log2(M) if M ≥ 4, (5.51)

ρ ρM-bi-ort = ρM/2 -ort · log2(M)
log2(M/2) , (5.52)

Table 5.1: Symbol error probability and bandwidth efficiency results.

Table 5.1, p. 361
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Symbol error probability comparison362 Chapter 5. Receivers in Digital Communication Systems - Part II
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Figure 5.13: The symbol error probability for M-ary PAM, M = 2, 4, 8, 16,
see Table 5.1. The specific assumptions are given in Subsection 2.4.1.1, and in
Subsection 5.1.3.
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Figure 5.14: The symbol error probability for M-ary PSK, M = 2, 4, 8, 16, 32,
see Table 5.1. In this figure upper bounds are denoted (ub). See also Subsection
5.1.5.
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M-ary PSK, M = 2,4,8,16,32

d2
min = 2sin2(π/M) log2 M
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Symbol error probability comparison5.2. Comparisons 363
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Figure 5.15: The symbol error probability for M-ary QAM, M = 4, 16, 64, 256,
see Table 5.1. The specific assumptions are given in Subsection 2.4.5.1 and in
Subsection 5.1.6. The bit error probability for BPSK is also given as a reference
(= Q(

√
2Eb/N0)).
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Figure 5.16: Upper bound (the union bound) on the symbol error probability for
orthogonal equal energy M-ary FSK signal alternatives, M = 2, 4, 8, 16, 32, 64,
see Table 5.1 and Example 4.18c. The result given for the binary case is exact
(= Q(

√
Eb/N0)).
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Figure 5.16: Upper bound (the union bound) on the symbol error probability for
orthogonal equal energy M-ary FSK signal alternatives, M = 2, 4, 8, 16, 32, 64,
see Table 5.1 and Example 4.18c. The result given for the binary case is exact
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Gain in d2
min compared with binary antipodal

364 Chapter 5. Receivers in Digital Communication Systems - Part II

Antipodal M = 2 0[dB]
Orthogonal M = 2 -3.01

M = 2 0
M = 4 -3.98

M-ary PAM M = 8 -8.45
M = 16 -13.27
M = 32 -18.34
M = 64 -23.57
M = 2 0
M = 4 0

M-ary PSK M = 8 -3.57
M = 16 -8.17
M = 32 -13.18
M = 64 -18.40
M = 4 0
M = 16 -3.98

M-ary QAM M = 64 -8.45
M = 256 -13.27
M = 1024 -18.34
M = 4096 -23.57
M = 2 -3.01
M = 4 0

M-ary FSK M = 8 1.76
M = 16 3.01
M = 32 3.98
M = 64 4.77
M = 2 0

M -ary M = 4 0
bi- M = 8 1.76
orthogonal M = 16 3.01

M = 32 3.98
M = 64 4.77

Table 5.2: Gain in d2
min compared with binary antipodal signaling.

To obtain a measure of the energy (power) efficiency, at least at large Eb/N0,
let us calculate the gain in d2

min compared with binary antipodal signaling (for
which d2

min = 2). In Table 5.2 this gain is listed (in [dB]),

10 log10(d
2
min/2) (5.54)

for different signal constellations. Note the severe losses in energy efficiency
for M-ary PAM, M-ary PSK and M-ary QAM if M is large. Furthermore, the
numerical values in Table 5.2 can be used to compare different schemes. For
example, it is seen that 8-ary PSK is asymptotically 4.88 dB better than 8-ary
PAM, but 3.57 dB worse than QPSK, and 5.33 dB worse than 8-ary FSK.

However, some caution is recommended here when comparing, on the basis of
d2
min only, the energy efficiency of constellations with large differences in the

so-called “error coefficient” c (c is the constant in the dominating term in the
union bound). In such cases, especially at “intermediate” signal-to-noise ratios
Eb/N0, both d2

min and c must enter into the evaluation of the energy efficiency.
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To obtain a measure of the energy (power) efficiency, at least at large Eb/N0,
let us calculate the gain in d2

min compared with binary antipodal signaling (for
which d2

min = 2). In Table 5.2 this gain is listed (in [dB]),

10 log10(d
2
min/2) (5.54)

for different signal constellations. Note the severe losses in energy efficiency
for M-ary PAM, M-ary PSK and M-ary QAM if M is large. Furthermore, the
numerical values in Table 5.2 can be used to compare different schemes. For
example, it is seen that 8-ary PSK is asymptotically 4.88 dB better than 8-ary
PAM, but 3.57 dB worse than QPSK, and 5.33 dB worse than 8-ary FSK.

However, some caution is recommended here when comparing, on the basis of
d2
min only, the energy efficiency of constellations with large differences in the

so-called “error coefficient” c (c is the constant in the dominating term in the
union bound). In such cases, especially at “intermediate” signal-to-noise ratios
Eb/N0, both d2

min and c must enter into the evaluation of the energy efficiency.

Large values M reduce energy efficiency
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Example scenario: M-ary QAM
I We want to ensure that Ps ≤ Ps,req, where for M-ary QAM

Ps ≤ 4 Q

(√
d2

min
Eb

N0

)
= 4 Q

(√
X
)
, d2

min = 3
log2 M
M−1

I The pulse shape g(t) is chosen such that

ρ = log2(M) ρBPSK , where ρ =
Rb

W
≤ d2

min
X · Pz

N0 W

I Combining these requirements we obtain

M ≤ 1+
3

X ρBPSK
· Pz

N0 W
= 1+

3
X ·
Pz Ts

N0

I Hence we want to choose M = 2k such that (QAM: k even)

2k ≤ 1+
3

X ρBPSK
· Pz

N0 W
< 2k+2
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Example 4.22: adapting M to channel quality

4.5. M-ary Signaling 285

is needed. This may be accomplished by sending a known signal (sometimes
referred to as a so-called pilot signal) from the transmitter, which is used by the
receiver to estimate Pz. If the transmitter is silent, then N0 may be estimated
by the receiver. Measurement information is then sent back from the receiver to
the transmitter.

EXAMPLE 4.22
Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary
QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or log2(M))
versus Pz/N0W . How large is the bit rate in each case? Assume that ρBPSK = 1/2
[bps/Hz].

Solution:
M-ary QAM:
From (4.134) we obtain that if M is chosen to be M = 2k then,

(2k − 1)
X
6

≤ SNRr =
Pz

N0W
< (2k+2 − 1)

X
6

where k = 2, 4, 6, 8. Hence,

M = 4 if 3X/6 ≤ SNRr < 15X/6
M = 16 if 15X/6 ≤ SNRr < 63X/6
M = 64 if 63X/6 ≤ SNRr < 255X/6
M = 256 if 255X/6 ≤ SNRr < 1023X/6

See sketch below.
log2(M)

8

6

4

2

5 10 21 42
z

N0W

M=16

M=64

M=256

4-ary QAM ⇒ Rb = 2W · ρBPSK = W [bps]

16-ary QAM ⇒ Rb = 4W · ρBPSK = 2W [bps]

64-ary QAM ⇒ Rb = 6W · ρBPSK = 3W [bps]

256-ary QAM ⇒ Rb = 8W · ρBPSK = 4W [bps]

Note that if we also require a reduced symbol error probability, then X is increased and
this may imply a reduced M (i.e. a reduced Rb) at a given value of SNRr = Pz/N0W .
The symbol error probability is here upper bounded by

Ps ≤ 4Q
d2
min

ρ
· SNRr = 4Q

3

(M − 1)ρBPSK
· SNRr ≤ Ps,req = 4Q(

√
X )

✷

4.5. M-ary Signaling 285

is needed. This may be accomplished by sending a known signal (sometimes
referred to as a so-called pilot signal) from the transmitter, which is used by the
receiver to estimate Pz. If the transmitter is silent, then N0 may be estimated
by the receiver. Measurement information is then sent back from the receiver to
the transmitter.

EXAMPLE 4.22
Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary
QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or log2(M))
versus Pz/N0W . How large is the bit rate in each case? Assume that ρBPSK = 1/2
[bps/Hz].

Solution:
M-ary QAM:
From (4.134) we obtain that if M is chosen to be M = 2k then,

(2k − 1)
X
6

≤ SNRr =
Pz

N0W
< (2k+2 − 1)

X
6

where k = 2, 4, 6, 8. Hence,

M = 4 if 3X/6 ≤ SNRr < 15X/6
M = 16 if 15X/6 ≤ SNRr < 63X/6
M = 64 if 63X/6 ≤ SNRr < 255X/6
M = 256 if 255X/6 ≤ SNRr < 1023X/6

See sketch below.
log2(M)

8

6

4

2

5 10 21 42
z

N0W

M=16

M=64

M=256

4-ary QAM ⇒ Rb = 2W · ρBPSK = W [bps]

16-ary QAM ⇒ Rb = 4W · ρBPSK = 2W [bps]

64-ary QAM ⇒ Rb = 6W · ρBPSK = 3W [bps]

256-ary QAM ⇒ Rb = 8W · ρBPSK = 4W [bps]

Note that if we also require a reduced symbol error probability, then X is increased and
this may imply a reduced M (i.e. a reduced Rb) at a given value of SNRr = Pz/N0W .
The symbol error probability is here upper bounded by

Ps ≤ 4Q
d2
min

ρ
· SNRr = 4Q

3

(M − 1)ρBPSK
· SNRr ≤ Ps,req = 4Q(

√
X )

✷

Depending on the channel quality we can achieve different
bit rates Rb = W, 2W, 3W, or 4W[bps]
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Bit errors vs symbol errors
I Assume that S symbols are transmitted and Serr are in error
I If a symbol m̂ 6= m is decided, this causes at least 1 bit error and

at most k = log2 M bit errors
Serr ≤ Berr ≤ k Serr

I This leads to the following relationship between Pb and Ps:

Ps

k
=

E{Serr}
S · k ≤ Pb ≤

E{Serr · k}
S · k = Ps

I Ps depends on the signal constellation only
I The exact Pb depends on the mapping from bits to messages m`

and hence signal alternatives sm`
(t)

Example: Which mapping is better for 4-PAM? (and why?)

(1) m0 = 00, m1 = 11, m2 = 01, m3 = 10

(2) m0 = 00, m1 = 01, m2 = 11, m3 = 10
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Gray code mappings
I We have seen that for small N0 we can approximate

Ps ≈ c Q



√

D2
min

2N0




I This motivates the use of Gray code mappings:

Example:
16-QAM

4.7. Problems 301

1) Calculate the parameter y in the receiver above, and explain how
it depends on the information sent from the three users.
Also suggest a reasonable decision unit.

2) If an ML receiver for user 2 is used how good will it perform in
terms of bit error probability?

3) Calculate the bandwidth, and the power spectral density for each
user.
If possible, modify the system such that the bandwidth for each
user is decreased.

4.22 Gray-coding means that signal alternatives which are “close” to each
other (in the D2

i,j sense) represent bit-patterns differing in only one posi-
tion. Consider 8-ary signaling with zℓ(t) = (−7 + 2ℓ)g(t), ℓ = 0, 1, . . . , 7.

a) Are the following mappings (I, II, III) Gray-coded?

z0(t) z1(t) z2(t) z3(t) z4(t) z5(t) z6(t) z7(t)
I: 000 001 010 011 100 101 110 111

II: 000 001 011 010 110 100 101 111
III: 000 010 110 111 011 001 101 100

b) Explain why Gray-coding is to be preferred.

c) Is Gray-coding used in the 16-ary QAM constellation below?

1000 1001 1011 1010

1100 1101 1111 1110

0100 0101 0111 0110

0000 0001 0011 0010

z8 z9 z11 z10

z12 z13 z15 z14

z4 z5 z7

z3

z6
-3a -a a 3a φ1

φ2

z0 z1 z2

3a

a

4.23 In a 4-ary PAM communication system the possible received signal alter-
natives in 0 ≤ t ≤ Ts are zℓ(t) = Aℓg(t), where the energy in the pulse
shape g(t) equals 2 ·10−6 [V2s] and where Aℓ = −3+2ℓ, ℓ = 0, 1, 2, 3. The
first part of a correlator based receiver is shown below.
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How can we achieve large data rates?

I The bit rate Rb can be increased in different ways
I We can select a signal constellation with large M
⇒ this typically increases the error probability Ps
exception: orthogonal signals (FSK): require more bandwidth W

I Achieving equal Ps with larger M is possible by increasing Eb/N0
⇒ this reduces the energy efficiency

I We can also increase Rb by increasing the bandwidth W
⇒ this does not improve the bandwidth efficiency ρ = Rb/W

Question:
what is the largest achievable rate Rb for a given error probability Ps,
channel quality Eb/N0 and bandwidth W?

This question was answered by Claude Shannon in 1948:
"A mathematical theory of communication"
Course EITN45: Information Theory (VT2)
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A fundamental limit: channel capacity
I Consider a single-path channel (|H(f )|2 = α2) with finite

bandwidth W and additive white Gaussian noise (AWGN) N(t)
I The capacity for this channel is given by

C = W log2

(
1+

Pz

N0 W

)
[bps]

I Shannon showed that reliable communication requires that

Rb ≤ C

I Observe: the capacity formula does not include Ps (why?)
I Shannon also showed that if Rb < C, then the probability of error

Ps can be made arbitrarily small

Ps→ 0

if messages are coded in blocks of length N→ ∞
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Bandwidth efficiency and gap to capacity
(p. 369)

5.2. Comparisons 369

N0

Eb C/W-12
C/W

=Impossible 
region

10log    (E   /N  )10 b 0

P  =10s
-5

1

2

4

8
10

20

0 5 10 15 20

ρ

1/2

1/4

1/8

QPSK

BPSK

BFSK

32-FSK

16-FSK

8-FSK

8-PAM
16-PSK
64-QAM

16-QAM

4-PAM
-1.6

8-PSK

[dB]

C/W

Figure 5.17: Sketch of the ρ versus Eb/N0 performance for some of the schemes
studied in this section. Reliable communication is not possible above the capac-
ity curve (see (5.64).

method (QPSK) at a prescribed value of the error probability, Ps,req = 10−5 is
usually used, see [43].

The capacity curve in Figure 5.17 is associated with an exponential increase in
the received signal-to-noise power ratio Pz/N0W as C/W increases (see (5.65)).

EXAMPLE 5.15
Assume binary PSK signaling and Ps,req = 10−5.

a) Calculate the minimum required Eb/N0.

b) Assume ρBPSK = 1 (ideal Nyquist pulse). In what sense is QPSK better than
BPSK?. Use Figure 5.17.

c) Assume Pz
N0W

= 9.09. Find Eb
N0 min

and ρmax according to the capacity curve.

d) Calculate the requirement on ρ (for BPSK), if Pz
N0W

= 9.09.

e) Calculate ρ (for BPSK), if it is known that Pz
N0W

= 9.09 and Eb
N0

= 9.09.

Solution:

a) Ps = Q 2
Eb

N0
≤ 10−5 ⇒ 2

Eb

N0
≥ (4.2649)2 ⇒ Eb

N0
≥ 9.09 (9.6dB)

b) BPSK has coordinates (9.6,1). So the power efficiency, in terms of required
Eb/N0, is essentially the same, but QPSK is better since it is twice as bandwidth
efficient.

I ρ ≤ C/W: reliable communication is impossible above
I this limit can be approached with channel coding
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How does channel coding work?
I We have seen that a large minimum distance d2

min between
signals is required to improve the energy efficiency

I For binary signaling (M = 2) we have seen that d2
min ≤ 2

Idea of coding:
I generate M binary sequences of length N
I use binary antipodal signaling to create M signals s`(t)

Example: N = 5, M = 4, grec(t) pulse with T = Ts/N (what is D2
min?)

A

�A

A

�A

A

�A

A

�A

1 0 1 1 0 1 1 0 0 1

0 1 1 1 1 0 0 0 0 0

t

t t

t

s0(t) s1(t)

s2(t) s3(t)
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Increasing d2
min with coding

I In our example we have

D2
min = 4A2 T ·3 = 4Eg 3 = 12Eg

I Normalizing by the average energy Eb = N Eg/k this gives

d2
min =

D2
min

2Eb
=

12Eg

2N/k Eg
= 6 · k

N
=

12
5

= 2.4

I Let dmin,H denote the minimum Hamming distance between the
binary code sequences⇒ in our example: dmin,H = 3

I Then we can write
d2

min = 2
k
N

dmin,H

where R = k/N is called the code rate
I Larger dmin,H values can be achieved with larger N
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Example: symbol error probability

0 2 4 6 8 10 12 14 16
Eb/N0 [dB]

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
s uncoded

Hamming code
N=7, k=4, d

min,H
=3 

(union bound)

I Hamming code, N = 7, k = 4, dmin,H = 3⇒ d2
min = 3.43

I How can we construct good codes?
EITN70: Channel Coding for Reliable Communication (HT2)
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Multiuser Communication
(p. 395/396)

396 Chapter 5. Receivers in Digital Communication Systems - Part II

(  )dt

...
...

s(t) r(t)

N(t)

RECEIVER FOR
USER

φ  (t)

ξ     0
1
><
0

m̂

a)

TDMA

TS

User
in time slotb)

φ  (t)

t

c)

User     in
frequency slot

FDMA

-a

a

φ  (t) CDMA

d)

t

+-User 1:    A φ1(t)
+-User 2:    A φ2(t)

+-User N:    A φN(t)

φ  (t) = c  sin(2 πf  t)

TS

TS

Each user is
assigned a

unique pattern of     a's+-

+-User   :    A φ  ( t)

TS

0

ξ

.

Figure 5.27: a) An example of multiuser communication; b,c,d) Examples of
signals illustrating TDMA, FDMA and CDMA.

5.4.4 Noncoherent Detection of M-ary FSK Signals

Assume that the received signal r(t), in 0 ≤ t ≤ Ts, is

r(t) = zj(t) + N(t) = ej(t) cos(ωct + θj(t) + νj) + N(t) (5.103)

if message mj is sent. The disturbance N(t) is assumed to be AWGN. To be able
to make a coherent decision, the receiver must know all waveforms {zℓ(t)}M−1

ℓ=0 .
In many applications however, the phase value νj is introduced by the commu-
nication channel, and is unknown to the receiver. To be able to make a coherent
decision in this case, the receiver needs a good estimate ν̂j . With noncoherent
detection, the receiver ignores the actual value of νj . Hence, no estimate of νj

is then needed, see [57], [43], [4].

In this subsection noncoherent ML detection of equally likely, equal energy or-
thogonal M -ary FSK signals in AWGN is considered. Hence, it is here assumed
that,

r(t) = zj(t) + N(t) =
√

2E/Ts cos(ωjt + νj) + N(t), 0 ≤ t ≤ Ts (5.104)

A simple model:
I N users transmit at same time with orthonormal waveforms φ`(t)
I Binary antipodal signaling is used in this example, such that

s(t) =
N

∑
n=1

An φn(t) , An ∈ ±A

I The orthonormal waveforms satisfy
∫ Ts

0
φi(t)φj(t) dt =

{
0 if i 6= j ,
1 if i = j
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Multiuser Communication
I The separation of users can be achieved in different ways
I TDMA: (time-division multiple access)

396 Chapter 5. Receivers in Digital Communication Systems - Part II
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Figure 5.27: a) An example of multiuser communication; b,c,d) Examples of
signals illustrating TDMA, FDMA and CDMA.

5.4.4 Noncoherent Detection of M-ary FSK Signals

Assume that the received signal r(t), in 0 ≤ t ≤ Ts, is

r(t) = zj(t) + N(t) = ej(t) cos(ωct + θj(t) + νj) + N(t) (5.103)

if message mj is sent. The disturbance N(t) is assumed to be AWGN. To be able
to make a coherent decision, the receiver must know all waveforms {zℓ(t)}M−1

ℓ=0 .
In many applications however, the phase value νj is introduced by the commu-
nication channel, and is unknown to the receiver. To be able to make a coherent
decision in this case, the receiver needs a good estimate ν̂j . With noncoherent
detection, the receiver ignores the actual value of νj . Hence, no estimate of νj

is then needed, see [57], [43], [4].

In this subsection noncoherent ML detection of equally likely, equal energy or-
thogonal M -ary FSK signals in AWGN is considered. Hence, it is here assumed
that,

r(t) = zj(t) + N(t) =
√

2E/Ts cos(ωjt + νj) + N(t), 0 ≤ t ≤ Ts (5.104)

I FDMA / OFDMA: (frequency-division multiple access)
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Figure 5.27: a) An example of multiuser communication; b,c,d) Examples of
signals illustrating TDMA, FDMA and CDMA.

5.4.4 Noncoherent Detection of M-ary FSK Signals

Assume that the received signal r(t), in 0 ≤ t ≤ Ts, is

r(t) = zj(t) + N(t) = ej(t) cos(ωct + θj(t) + νj) + N(t) (5.103)

if message mj is sent. The disturbance N(t) is assumed to be AWGN. To be able
to make a coherent decision, the receiver must know all waveforms {zℓ(t)}M−1

ℓ=0 .
In many applications however, the phase value νj is introduced by the commu-
nication channel, and is unknown to the receiver. To be able to make a coherent
decision in this case, the receiver needs a good estimate ν̂j . With noncoherent
detection, the receiver ignores the actual value of νj . Hence, no estimate of νj

is then needed, see [57], [43], [4].

In this subsection noncoherent ML detection of equally likely, equal energy or-
thogonal M -ary FSK signals in AWGN is considered. Hence, it is here assumed
that,

r(t) = zj(t) + N(t) =
√

2E/Ts cos(ωjt + νj) + N(t), 0 ≤ t ≤ Ts (5.104)

I CDMA: (code-division multiple access)
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Figure 5.27: a) An example of multiuser communication; b,c,d) Examples of
signals illustrating TDMA, FDMA and CDMA.

5.4.4 Noncoherent Detection of M-ary FSK Signals

Assume that the received signal r(t), in 0 ≤ t ≤ Ts, is

r(t) = zj(t) + N(t) = ej(t) cos(ωct + θj(t) + νj) + N(t) (5.103)

if message mj is sent. The disturbance N(t) is assumed to be AWGN. To be able
to make a coherent decision, the receiver must know all waveforms {zℓ(t)}M−1

ℓ=0 .
In many applications however, the phase value νj is introduced by the commu-
nication channel, and is unknown to the receiver. To be able to make a coherent
decision in this case, the receiver needs a good estimate ν̂j . With noncoherent
detection, the receiver ignores the actual value of νj . Hence, no estimate of νj

is then needed, see [57], [43], [4].

In this subsection noncoherent ML detection of equally likely, equal energy or-
thogonal M -ary FSK signals in AWGN is considered. Hence, it is here assumed
that,

r(t) = zj(t) + N(t) =
√

2E/Ts cos(ωjt + νj) + N(t), 0 ≤ t ≤ Ts (5.104)

I MC-CDMA: (multi-carrier CDMA) combined OFDM/CDMA
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Receiver for Multiuser Communication396 Chapter 5. Receivers in Digital Communication Systems - Part II
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Figure 5.27: a) An example of multiuser communication; b,c,d) Examples of
signals illustrating TDMA, FDMA and CDMA.

5.4.4 Noncoherent Detection of M-ary FSK Signals

Assume that the received signal r(t), in 0 ≤ t ≤ Ts, is

r(t) = zj(t) + N(t) = ej(t) cos(ωct + θj(t) + νj) + N(t) (5.103)

if message mj is sent. The disturbance N(t) is assumed to be AWGN. To be able
to make a coherent decision, the receiver must know all waveforms {zℓ(t)}M−1

ℓ=0 .
In many applications however, the phase value νj is introduced by the commu-
nication channel, and is unknown to the receiver. To be able to make a coherent
decision in this case, the receiver needs a good estimate ν̂j . With noncoherent
detection, the receiver ignores the actual value of νj . Hence, no estimate of νj

is then needed, see [57], [43], [4].

In this subsection noncoherent ML detection of equally likely, equal energy or-
thogonal M -ary FSK signals in AWGN is considered. Hence, it is here assumed
that,

r(t) = zj(t) + N(t) =
√

2E/Ts cos(ωjt + νj) + N(t), 0 ≤ t ≤ Ts (5.104)

I This permits a simple receiver structure for each user `
I The decision variable becomes

ξ =
∫ Ts

0
φ`(t)r(t) dt =

∫ Ts

0
φ`(t)

(
N

∑
n=1

An φn(t)+N(t)

)
dt

= A`+
∫ Ts

0
φ`(t)N(t) dt = A`+N

⇒ receiver is only disturbed by noise and not by other users!
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Non-coherent receivers
I With phase-shift keying (PSK) the message m[n] at time nTs is

put into the phase θn of the transmit signal

s(t) = g(t)
√

2E cos(2π fc t+θn) , nTs ≤ t ≤ (n+1)Ts

I The channel introduces some attenuation α, some additive noise
N(t) and also some phase offset ν into the received signal

r(t) = α g(t)
√

2E cos(2π fc t+θn +ν)+N(t)

I Challenge: the optimal receiver needs to know α and ν

I In some applications an accurate estimation of ν is infeasible
(cost, complexity, size)

I Non-coherent receivers:
receiver structures that can work well without knowledge
of the exact phase offset

How can we modify our PSK transmission accordingly?
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Differential Phase Shift Keying
I With differential PSK, the message m[n] = m` is mapped to the

phase according to

θn = θn−1 +
2π `

M
`= 0, . . . ,M−1

I The transmitted phase θn depends on both θn−1 and m[n]
I This differential encoding introduces memory and the transmitted

signal alternatives become dependent
I Example 5.25: binary DPSK

402 Chapter 5. Receivers in Digital Communication Systems - Part II

b[i]

g(T b-t)

g(T b-t)

rc[n]

rs[n]

t=nT b

2cos( ωct)

r(t)

Receiver

Delay
Tb

Delay
Tb

ξ[n]
ξ[n]      0>

<

"0"

"1"
b[n-1]
^

Delay
Tb

Addition
modulo 2

m[i] s0(t)
s1(t)

s(t)
Channel

z(t) r(t)

N(t)

-   2sin( ωct)

s0(t) =
√

2Eg(t) cos(ωct), and s1(t) =
√

2Eg(t) cos(ωct + π) in 0 ≤ t ≤ Tb.

Eg =
Ts

0
g2(t)dt = 1, fc is a multiple of Rb. z0(t) = α

√
2Eg(t) cos(ωct + ν), and

z1(t) = α
√

2Eg(t) cos(ωct + π + ν).

The samples rc[n] and rs[n] are,

rc[n] = A cos(θn−1 + ν) + wc[n]
rs[n] = A sin(θn−1 + ν) + ws[n]

where A is a constant. wc[n] and ws[n] are independent Gaussian random variables
with zero mean, and variance N0/2.

a) Assume the sequence of information bits b[i] below,

i: 0 1 2 3 4 5 6 7

b[i]: 1 1 0 1 0 0 1 1

Calculate and sketch s(t) in the interval 4Tb ≤ t ≤ 8Tb if fc = Rb, g(t) is
rectangular and s1(t + Tb) was sent in −Tb ≤ t ≤ 0.

b) Assume ν = ν0, N(t) = 0 and θn as given in the table below,

n: 0 1 2 3 4 5 6 7

θn: 0 0 π 0 π π 0 0

Calculate ξ[3], ξ[4], ξ[5], ξ[6], ξ[7], and the corresponding decisions.
Which decisions are correct?
In what way does the phase value ν0 influence these decisions?

c) Calculate the noise component in ξ[n], and A.
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Differential Phase Shift Keying (M = 2)

402 Chapter 5. Receivers in Digital Communication Systems - Part II

b[i]

g(T b-t)

g(T b-t)

rc[n]

rs[n]

t=nT b

2cos( ωct)

r(t)

Receiver

Delay
Tb

Delay
Tb

ξ[n]
ξ[n]      0>

<

"0"

"1"
b[n-1]
^

Delay
Tb

Addition
modulo 2

m[i] s0(t)
s1(t)

s(t)
Channel

z(t) r(t)

N(t)

-   2sin( ωct)

s0(t) =
√

2Eg(t) cos(ωct), and s1(t) =
√

2Eg(t) cos(ωct + π) in 0 ≤ t ≤ Tb.

Eg =
Ts

0
g2(t)dt = 1, fc is a multiple of Rb. z0(t) = α

√
2Eg(t) cos(ωct + ν), and

z1(t) = α
√

2Eg(t) cos(ωct + π + ν).

The samples rc[n] and rs[n] are,

rc[n] = A cos(θn−1 + ν) + wc[n]
rs[n] = A sin(θn−1 + ν) + ws[n]

where A is a constant. wc[n] and ws[n] are independent Gaussian random variables
with zero mean, and variance N0/2.

a) Assume the sequence of information bits b[i] below,

i: 0 1 2 3 4 5 6 7

b[i]: 1 1 0 1 0 0 1 1

Calculate and sketch s(t) in the interval 4Tb ≤ t ≤ 8Tb if fc = Rb, g(t) is
rectangular and s1(t + Tb) was sent in −Tb ≤ t ≤ 0.

b) Assume ν = ν0, N(t) = 0 and θn as given in the table below,

n: 0 1 2 3 4 5 6 7

θn: 0 0 π 0 π π 0 0

Calculate ξ[3], ξ[4], ξ[5], ξ[6], ξ[7], and the corresponding decisions.
Which decisions are correct?
In what way does the phase value ν0 influence these decisions?

c) Calculate the noise component in ξ[n], and A.

I The receiver uses no phase offset ν in the carrier waveforms
I Without noise, the decision variable is

ξ [n] = rc[n]rc[n−1]+ rs[n]rs[n−1]
= A cos(θn−1 +ν) A cos(θn−2 +ν)+A sin(θn−1 +ν) A sin(θn−2 +ν)

= A2 cos(θn−1−θn−2) ⇒ independent of ν

I Note: non-coherent reception increases variance of noise
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