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Last week: Analysis Binary Signaling
» Only one correlator or one matched filter is now required:
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» Matched filter output needs be sampled at correct time
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Example: (see Matlab demo)

z(t) (random data, rectangular pulse)
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Ey/No = 2.0 dB

Errors: 2 Total errors: 21 Total symbols: 360 Error rate: 0.05833
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An energy efficiency perspective

» Consider the case Py =P, =1/2
» The average received energy per bit is then

Ty E0—|-E1
2/ ZO df + 2/ Zl 2

» We can then introduce the normalized squared Euclidean
distance

D3 1 Ty
2 701 . 2
dO,l = 251) = 72517 A (Z] (t) ZO(I)) dt

» With this the bit error probability becomes

D? g
PbQ( 2;};)Q< d(%,lNl;>

» The parameter d&l is a measure of energy efficiency
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Special case 1: antipodal signals
» In case of antipodal signals we have z;(¢) = —z(¢) and
T, T
D§, :/0 ’ (z1(1) —z()(t))2 dt=4/0 bz%(t) dt =4E

» From Ey = E; = E follows

E+E
gb == T =F
and )
> Dg 4F
d01: = — =
’ 251, 2FE

» The bit error probability for any pair of antipodal signals becomes

(i)
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Special case 2: orthogonal signals

» In case of orthogonal signals we have

/ " (B2 (1) di =0
0

and hence (compare page 28)

Ty
D3, = /0 (21(6) — 20(1))? di = o+ Ey

» This gives
Ey+E|
&="5"
and o .
BN o+ Ej _
0.1 28, Ey+ E;

» The bit error probability for any pair of orthogonal signals is

ol )
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Comparison
Antipodal vs orthogonal signaling:
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Larger values of df“ give better energy efficiency
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Antipodal vs orthogonal signaling

» There is a constant gap between the two curves
» We can measure the difference in energy efficiency by the ratio

2
Sb,alp . dOA,l,ort o 1

2
6b,0rt dO«,lﬂfP 2

» In terms of dB this corresponds to

101 gb,atp o d(%,l,ort o
021 3 = 10log;, 7 = —3[dB]

b,ort 0,1,atp

= antipodal signaling requires 3 dB less energy for equal P,
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Example 4.11: rank pairs with respect to dj |
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Can we do better?

» It is possible to show that for two equally likely signal alternatives
we always have
dg, <2

» Antipodal signaling is hence optimal for binary signaling (M = 2)

Remark:
> Channel coding can be used to further increase dj |
» Sequences of binary pulses with large separation are designed

» This does not contradict the result from above:
coded binary signals correspond to uncoded signals with M > 2

Channel coding can be used for improving energy efficiency
Cost: complexity, latency, (bandwidth)
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Relationship between parameters

» The bit error probability can be expressed in different ways

/ D(% 1 Ep P
P = R = 2 —_— = d2 <
b Q( 2o ) Q< 1N Q( 1 Ry No )
» Assuming zo(t) = aso(7) and z; (r) = a 51 (¢) we also get
a?P 3, a2P
P, = d2 sent _ ~01 sent
=0 ( 0.1 R, No Q P NoW

» Recall that p = R, /W is the bandwidth efficiency and Ny W is the
noise power within the bandwidth W

The expression that is most appropriate to use depends on the
specific problem to be solved
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A "typical" type of problem
» The bit error probability must not exceed a certain level,
Py < Ppreg=0(VX)
» Example: if Py = 1077 then X' ~ 36

» Consequences:

— > X
0N, =
ds, P
R, < —— .- %
b_XN()

2 2
dO,l o Psent

R, < —
b_X No

» Note: the received signal power P, decreases with
communication distance
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Example 4.12: transmission hidden in noise

In a specific application equally likely binary antipodal signals are used, and the pulse
shape is gre(t) with amplitude A and duration T < T,. AWGN with power spectral
density No/2, and the ML receiver is assumed. It is required that the bit error probability
must not exceed 107°. It is also required that the power spectral density satisfies R(f) <
No/2 for all frequencies f (the information signal is intentionally “hidden” in the
noise). Determine system and signal parameters above such that these two requirements
are satisfied.

> Py =0( 28Ny ) S107° = &/No> 18

> R(f) = Ry|Gr.(f)|*> has maximum at f = 0

» R(0) =Ry, A’T?/4 < Ny/2 (check pulse shape)
> &/No=3/8A>T/Ny > 18

» Hidden in noise: AT /Ny <2/(R,T)

» P, requirement: A>T /Ny > 48

» Solution:
choose T < T,/24 and A% = 48N, /T
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Non-ideal receiver conditions

Example 4.15: unexpected additional noise wy, i.e., w = wy + wy

Bit error probability

Tdeal case
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T

Error floor
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/0% in dB

Can be analyzed with our methods

25

40
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Non-ideal receiver conditions
Example 4.16: hostile bursty interference, active with p,, = 0.05

10 T T T T T T

urst noise

Bit error probability
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15
a’/o? in dB

Observe: at low power an interference in bursts is
more severe than continuous interference
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M-ary Signaling
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» The receiver computes M decision variables &y, &, ..., 1
» The selected message i is based on the largest value

A

fr=mg, (= argmax§;
1

» Question: when do we make a wrong decision?
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Probability of a wrong decision

» For M =2 we have considered two error probabilities Pr and Py,
» For a given message m = mj, in general there are M — 1 ways
(events) to make a wrong decision,

(&> |m=m}, i#]j
» The probability of a wrong decision can be upper bounded by
M—1
Pr{i # mj|m = m;} :Pr{ U &i>¢ ‘ m= mj}
i=0

i

M—1

<Y Pr{&>& | m=m} (union bound)
@

» Note: given some events A and B, the union bound states that

Pr{AUB} < Pr{A} + Pr{B} ,

where equality holds if A and B are independent
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Symbol error probability
» The symbol error probability can be upper bounded by

M-1 M-1
Py < Z P; Z Pr{§i>€j } m:mj}
j=0 =0
i#j
» From the binary case M =2 we know that (pick i=0and j = 1)

D?.
Pr{§i>§j’m=mj}=Q( 21([2)

where D;; is the Euclidean distance between z;(r) and zj(r)
» We obtain the following main result for M-ary signaling:
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Example: orthogonal signaling

» Consider M orthogonal signals with equal energy E
» Examples: FSK, PPM

» For each pair z;(r) and z;(r) we get

D} =E+E=2E

» From the union bound we obtain

M-1 M-1 DIZJ_
Py <Y P Y Q NG
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Distances D;; are important

v

P, is determined by the distances D;; between the signal pairs
Let us sort these distances

v

Dyin <Dy < Dj <+ < Dy

v

Then the upper bound on P, can be written as

D2, D? D2
P. < min il . “max
ssc@ 2Ny tag 2Ny + te 0 2Ny
» The coefficients are
M—1
Cyp = Pj-l’tjj, 520,1,2,...,)(
j=1

» n;,: number of signals at distance D, from signal z;(z)
How many distinct terms do exist for 4-PAM?
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A useful approximation of P;

» The union bound is easy to compute if we know all distances D,

> At large signal-to-noise ratio (small Ny), i.e., when Py is small, the
first term provides a good approximation

D%,
Pi~cQ ZLNZL

» We see that the minimum distance D2, and the average number

min

of closest signals ¢ dominate the performance in this case
» Explanation:

the function Q(x) decreases very fast as x increases (faster than
exponentially). The other terms become negligible at some point.

= at small P, (small Ny) we can compare different signal
constellations by means of D2 | similarly to the binary case

min?
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Energy efficiency and normalized distances

» Consider the case P, =1/M,¢=0,1,... M —1
» The average received energy per bit is given by

1Mzt 1 (T

&=-Y (1) dt

L _ 1 E+Ei+-Ey
kS Mo -

k M

» Using the normalized squared Euclidean distances
D}

di = ~ -
¢ 28,

the union bound can be written as

Ep &y Ep
< \Jdi = WJd2 2 2
Ps_CQ< dmmNO>+ClQ< d1N0>+ +C)cQ( drnaxN())

» The parameters d,_% determine the energy efficiency
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Approximate P, for some constellations

» Considering the dominating term in the union bound we obtain

&
Py=cQ d%zinﬁo

» This approximation is valid if f,—’; is sufficiently large

2
c min
M-ary PAM 2(1 - 1/M) 6]1&%72(_]‘1”
M-ary PSK (M > 2) 2 21og, (M) sin? (m/M)
M-ary FSK M—1 logy (M)
, , 3log, (M)
M-ary QAM 4(1 —1/VM) ST

Table 4.1: The coefficient ¢, and d2,;,, for some common signal constellations.
Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the
M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal

energy orthogonal FSK signals are also assumed.
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Example 4.19

Assume two signal constellations, denoted A and B respectively, with corresponding
parameters dfmx,,A and d?nin,B' From the equality (see e.g. the dominating term in the
union bound),

d?nin,Agb,A/NO = d2in.5Es.8/No
we find that the difference (in dB) in received energy per information bit is (compare
with (2.138) on page 16),

‘min, B

d?nin
101log,o(Eb,5) — 1010g,((Ep,4) = 101og;, (dz—A>

2
Calculate the value 10log;, (dm‘“’A) if “A” is binary antipodal PAM, and if “B” is

2
Amin, B

4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.
» For M-ary PAM we have (Table 4.1 or Table 5.1)
drznin = 610%2(M)/(M2 -1) = drznin,A =2, d%u’n,B =4/5

> 1010g10d,2nm7A/d,%MB = 10log;(,5/2=3.98 dB
Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!
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Short summary

» The binary receiver in Fig. 4.10 (one correlator / matched filter)
is equivalent to the general receiver in Fig. 4.9 with M =2

» For binary signaling (M = 2), the bit error probability P, of the ML
receiver can be computed using equation (4.53) on page 252

» For the M-ary case: union bound on P is given on p. 274

» Energy efficiency: measureable by normalized distances d,%j
M = 2: antipodal signaling with d&l =2 is optimal

» Study the relationships between P, / P, and rate, bandwidth,
energy, power, given on p. 261-262 and p. 281-282
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