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Last week: Analysis Binary Signaling

I Only one correlator or one matched filter is now required:4.4. Binary Signaling 247
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Figure 4.10: Binary signaling: two equivalent minimum Euclidean distance re-
ceivers, see (4.40).

EXAMPLE 4.5
Let us here study the decision m̂[0], that is based on the received signal r(t) in 0 ≤ t ≤
Ts. Assume in Figure 4.10 equally likely binary antipodal signaling, i.e. z1(t) = −z0(t),
and that the noise N(t) is AWGN.

a) Calculate the decision variable ξ[0] if r(t) = z0(t).

b) Calculate the decision variable ξ[0] if r(t) = z1(t).

c) Let w denote the noise component in ξ[0], and assume that r(t) = z0(t) + N(t).
Determine the values of the noise w that give a decision error.

Solution:

a) From Figure 4.10:

ξ[0] =
Ts

0

r(t) · (z1(t) − z0(t))dt

r(t) = z0(t)
↓
= − 2

Ts

0

z2
0(t)dt = −2E0

b)

ξ[0] =
Ts

0

r(t) · (z1(t) − z0(t))dt

r(t) = z1(t)
↓
= 2

Ts

0

z2
1(t)dt = 2E1

c) r(t) = z0(t) + N(t)
The decision variable is in this case ξ[0] = −2E0 + w.
Furthermore, since z1(t) = −z0(t) the energies E1 and E0 are equal. This leads
to that the decision threshold equals (E1 − E0)/2 = 0. The threshold detection
operation is illustrated below:

I Matched filter output needs be sampled at correct time
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Example: (see Matlab demo)
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An energy efficiency perspective
I Consider the case P0 = P1 = 1/2
I The average received energy per bit is then

Eb =
1
2

∫ Tb

0
z2

0(t) dt +
1
2

∫ Tb

0
z2

1(t) dt =
E0 +E1

2

I We can then introduce the normalized squared Euclidean
distance

d2
0,1 =

D2
0,1

2Eb
=

1
2Eb

∫ Tb

0

(
z1(t)− z0(t)

)2 dt

I With this the bit error probability becomes

Pb = Q



√

D2
0,1

2N0


= Q

(√
d2

0,1
Eb

N0

)

I The parameter d2
0,1 is a measure of energy efficiency
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Special case 1: antipodal signals
I In case of antipodal signals we have z1(t) =−z0(t) and

D2
0,1 =

∫ Tb

0

(
z1(t)− z0(t)

)2 dt = 4
∫ Tb

0
z2

1(t) dt = 4E

I From E0 = E1 = E follows

Eb =
E+E

2
= E

and

d2
0,1 =

D2
0,1

2Eb
=

4E
2E

= 2

I The bit error probability for any pair of antipodal signals becomes

Pb = Q

(√
2
Eb

N0

)
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Special case 2: orthogonal signals
I In case of orthogonal signals we have

∫ Tb

0
z0(t)z1(t) dt = 0

and hence (compare page 28)

D2
0,1 =

∫ Tb

0

(
z1(t)− z0(t)

)2 dt = E0 +E1

I This gives

Eb =
E0 +E1

2
and

d2
0,1 =

D2
0,1

2Eb
=

E0 +E1

E0 +E1
= 1

I The bit error probability for any pair of orthogonal signals is

Pb = Q

(√
Eb

N0

)
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Comparison
Antipodal vs orthogonal signaling:

4.4. Binary Signaling 257
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Figure 4.14:
The bit error probability of the ML receiver if equally likely antipodal, or orthog-
onal, signal alternatives are used. Antipodal: Pb = Q(

√
2Eb/N0). Orthogonal:

Pb = Q(
√

Eb/N0).

EXAMPLE 4.10
Assume binary signaling with equally likely signal alternatives, AWGN channel (with
RN (f) = N0/2), and ML receiver. The communication distance between transmitter
and receiver is assumed to be chosen such that the received signal-to-noise ratio Eb/N0

equals 16 dB.

The application requires that the bit error probability is ≤ 10−5.

Due to technical limitations, only the two waveforms below can be used (PWM), see
Subsection 2.4.6 on page 48,

Larger values of d2
0,1 give better energy efficiency
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Antipodal vs orthogonal signaling

I There is a constant gap between the two curves
I We can measure the difference in energy efficiency by the ratio

Eb,atp

Eb,ort
=

d2
0,1,ort

d2
0,1,atp

=
1
2

I In terms of dB this corresponds to

10log10

(Eb,atp

Eb,ort

)
= 10log10

(
d2

0,1,ort

d2
0,1,atp

)
=−3 [dB]

⇒ antipodal signaling requires 3 dB less energy for equal Pb
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Example 4.11: rank pairs with respect to d2
0,1

4.4. Binary Signaling 259

EXAMPLE 4.11
Rank the different pairs of equally likely signal alternatives below, with respect to the
parameter d2

0,1.

z  (t)10z  (t)
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2
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2

Tb
2

Tb
Tb

z  (t)=sin(2  t/T  )0 bπ z  (t)=sin(2  3t/2T  )1 bπ

Tb
4

Tb
2

Tb
3Tb

4
Tb
2

0z  (t) z  (t)1

Tb

Tb

0z  (t) z  (t)1 0z  (t)

Tb
TbTb

2

z  (t)1

Tb
2

Tb

z  (t)10z  (t)

A B

-B
tt t

A

t

-A

Pair 1 Pair 2

A

t

-A

t

Pair 3

t

Α

−Α

t

Pair 4

t t
B

A

Pair 5 Pair 6

A A

t t

t

A

-B

A

t tt

-A

A

Pair 7 Pair 8

−Α

Α

Solution:
By inspection it is found that:
pair 1, pair 5, and pair 7 (on-off) use orthogonal signal alternatives ⇒ d2

0,1 = 1
pair 2 and pair 6 use antipodal signal alternatives ⇒ d2

0,1 = 2.
pair 3:

D2
0,1 =

4A2Tb

2
+

A2Tb

2
=

5A2Tb

2

Eb =
A2Tb

2
+

A2Tb/2

2
=

3A2Tb

4
⇒ d2

0,1 =
D2

0,1

2Eb
=

5

3
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Can we do better?

I It is possible to show that for two equally likely signal alternatives
we always have

d2
0,1 ≤ 2

I Antipodal signaling is hence optimal for binary signaling (M = 2)

Remark:
I Channel coding can be used to further increase d2

0,1
I Sequences of binary pulses with large separation are designed
I This does not contradict the result from above:

coded binary signals correspond to uncoded signals with M > 2

Channel coding can be used for improving energy efficiency
Cost: complexity, latency, (bandwidth)
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Relationship between parameters
I The bit error probability can be expressed in different ways

Pb = Q



√

D2
0,1

2N0


= Q

(√
d2

0,1
Eb

N0

)
= Q

(√
d2

0,1
Pz

Rb N0

)

I Assuming z0(t) = α s0(t) and z1(t) = α s1(t) we also get

Pb = Q



√

d2
0,1

α2P̄sent

Rb N0


= Q



√

d2
0,1

ρ
· α

2P̄sent

N0 W




I Recall that ρ = Rb/W is the bandwidth efficiency and N0 W is the
noise power within the bandwidth W

The expression that is most appropriate to use depends on the
specific problem to be solved
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A "typical" type of problem
I The bit error probability must not exceed a certain level,

Pb ≤ Pb,req = Q
(√
X
)

I Example: if Pb,req = 10−9 then X ≈ 36

I Consequences:

d2
0,1
Eb

N0
≥ X

Rb ≤
d2

0,1

X ·
Pz

N0

Rb ≤
d2

0,1

X ·
α2P̄sent

N0

I Note: the received signal power Pz decreases with
communication distance
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Example 4.12: transmission hidden in noise

260 Chapter 4. Receivers in Digital Communication Systems – Part I

pair 4:

Tb

0

z0(t)z1(t)dt =
Tb

0

sin(2πt/Tb) sin(2π3t/2Tb)dt =

=
1

2

Tb

0

[cos(πt/Tb) − cos(5πt/Tb)]dt = 0 ⇒ d2
0,1 = 1

pair 8:

D2
0,1 =

4A2Tb

4
, Eb =

A2Tb

2
+

A2Tb

2
= A2Tb ⇒ d2

0,1 =
D2

0,1

2Eb
=

1

2
So, we have found:

pairs 2,6 d2
0,1 = 2 best

pair 3 5/3
pairs 1,4,5,7 1
pair 8 1/2 worst

✷

EXAMPLE 4.12
In a specific application equally likely binary antipodal signals are used, and the pulse
shape is grc(t) with amplitude A and duration T ≤ Tb. AWGN with power spectral
density N0/2, and the ML receiver is assumed. It is required that the bit error probability
must not exceed 10−9. It is also required that the power spectral density satisfies R(f) ≤
N0/2 for all frequencies f (the information signal is intentionally “hidden” in the
noise). Determine system and signal parameters above such that these two requirements
are satisfied.

Solution:

Pb = Q( 2Eb/N0) ≤ 10−9

Eb/N0 ≥ 18

With s1(t) = grc(t) = −s0(t) we have that

R(f) = Rb|Grc(f)|2

and R(f) has maximum at f = 0.

R(0) = Rb · A2T 2

4
≤ N0/2

Eb

N0
=

3A2T

8N0
≥ 18

RbT

2
· A2T

N0
≤ 1 (“hidden” in noise)

A2T

N0
≥ 48 (bit error probability requirement)

48 ≤ A2T

N0
≤ 2

RbT

Choose T such that T ≤ Tb/24, then A can be chosen such that A2 = 48N0/T . ✷

I Pb = Q
(√

2Eb/N0

)
≤ 10−9 ⇒ Eb/N0 ≥ 18

I R(f ) = Rb|Grc(f )|2 has maximum at f = 0
I R(0) = Rb A2T2/4≤ N0/2 (check pulse shape)
I Eb/N0 = 3/8A2T/N0 ≥ 18
I Hidden in noise: A2T/N0 ≤ 2/(RbT)
I Pb requirement: A2T/N0 ≥ 48
I Solution:

choose T ≤ Tb/24 and A2 = 48N0/T
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Non-ideal receiver conditions
Example 4.15: unexpected additional noise wx, i.e., w = wN +wx

270 Chapter 4. Receivers in Digital Communication Systems – Part I
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✷

EXAMPLE 4.16
In the binary communication system below, the two signal alternatives are equally likely.
The receiver is designed to be ML for the AWGN case.

v(t)

W(t)

z0(t)
or
z1(t)

r(t) ξ 0<>
m1

m0

Decision

Receiver

ξ

t=T s

If message m0 is sent, then ξ = −a + w. If message m1 is sent, then ξ = a + w.

The voltage a (a > 0) is known by the receiver and fixed (deterministic).

The communication system considered here is assumed to be disturbed by a
hostile intentional interferer W (t).

The interferer is “on” with probability pon. When the interferer is “on”, the noise w
is here assumed to be a zero-mean Gaussian random variable with variance σ2

on. Bit
error decisions are in this case made with probability Pb,on.

Can be analyzed with our methods
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Non-ideal receiver conditions
Example 4.16: hostile bursty interference, active with pon = 0.05272 Chapter 4. Receivers in Digital Communication Systems – Part I
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✷

4.5 M-ary Signaling

With M signal alternatives {zℓ(t)}M−1
ℓ=0 (see Figures 4.8–4.9), it is in general more

difficult to analyze and/or calculate the symbol error probability exactly. Nor-
mally, numerical integration (in several dimensions) has to be made. Therefore,
the union bound is here used as an upper bound on the symbol error probability
Ps in the performance analysis of M -ary signaling schemes. The union bound
and some general results were presented in Subsection 4.2.3. Here, these are
specialized to the current situation shown in Figure 4.8 on page 241.

A lower bound, and an upper bound, on the symbol error probability are given in
(4.27–4.28) on page 237, and the upper bound in (4.28) is referred to as the union
bound. Equations (4.22–4.28) were derived for the receiver structure shown in
Figure 4.3 on page 234, but the only assumption needed in the derivation is that
the decision rule is a select largest operation on a set of M decision variables.
Consequently, by replacing the decision variables Uℓ in (4.22–4.28) with the
decision variables ξℓ (in Figure 4.8), the bounds below for the ML receiver in
Figure 4.8 are obtained.

Pr{m̂ = mi|mj sent} ≤ Pr{ξi > ξj |mj sent} (4.97)

Observe: at low power an interference in bursts is
more severe than continuous interference
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M-ary Signaling4.3. The Minimum Euclidean Distance Receiver 241

m̂

Ts

0
(   )dt +
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M-1

+
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(   )dt +
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-E        /2M-1
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1

Figure 4.8: The minimum Euclidean distance receiver, see (4.33).

EXAMPLE 4.3
Assume in Figure 4.8 that M = 2, and that the received signal alternatives z0(t) and
z1(t) are,

z  (t)0 z  (t)1

Ts Ts

A A

-A

tt

Furthermore, assume a noisefree situation, and also that r(t) = z0(t) (i.e. message m0

is sent).
Calculate the decision variables ξ0 and ξ1 in Figure 4.8.

Solution:

ξ0 =
Ts

0

r(t)z0(t)dt − E0

2
=

Ts

0

z2
0(t)dt − E0

2
=

E0

2
=

A2Ts

2

ξ1 =
Ts

0

r(t)z1(t)dt − E1

2
=

Ts

0

z0(t)z1(t)dt − E1

2
= −E1

2
= −A2Ts

2

Note the relatively large difference between the decision variables ξ0 and ξ1. It is clear
that a correct decision is made in this noisefree situation since ξ0 > ξ1. Also observe
that if r(t) = zℓ(t), then the output from the ℓ:th correlator equals Eℓ. ✷

Figure 4.8 shows the receiver implementation for an arbitrary received signal
constellation {zℓ(t)}M−1

ℓ=0 . However, for several signal constellations, Figure 4.8

I The receiver computes M decision variables ξ0,ξ1, . . . ,ξM−1
I The selected message m̂ is based on the largest value

m̂ = m` , `= argmax
i

ξi

I Question: when do we make a wrong decision?
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Probability of a wrong decision
I For M = 2 we have considered two error probabilities PF and PM
I For a given message m = mj, in general there are M−1 ways

(events) to make a wrong decision,
{

ξi > ξj
∣∣ m = mj

}
, i 6= j

I The probability of a wrong decision can be upper bounded by

Pr{m̂ 6= mj|m = mj}= Pr
{M−1⋃

i=0
i 6=j

ξi > ξj

∣∣∣ m = mj

}

≤
M−1

∑
i=0
i6=j

Pr
{

ξi > ξj
∣∣ m = mj

}
(union bound)

I Note: given some events A and B, the union bound states that

Pr{A∪B} ≤ Pr{A}+Pr{B} ,
where equality holds if A and B are independent
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Symbol error probability
I The symbol error probability can be upper bounded by

Ps ≤
M−1

∑
j=0

Pj

M−1

∑
i=0
i 6=j

Pr
{

ξi > ξj
∣∣ m = mj

}

I From the binary case M = 2 we know that (pick i = 0 and j = 1)

Pr
{

ξi > ξj
∣∣ m = mj

}
= Q



√

D2
i,j

2N0




where Di,j is the Euclidean distance between zi(t) and zj(t)
I We obtain the following main result for M-ary signaling:

max
i

i 6=j

Q



√

D2
i,j

2N0


 ≤ Ps ≤

M−1

∑
j=0

Pj

M−1

∑
i=0
i 6=j

Q



√

D2
i,j

2N0



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Example: orthogonal signaling
I Consider M orthogonal signals with equal energy E
I Examples: FSK, PPM

I For each pair zi(t) and zj(t) we get

D2
i,j = E+E = 2E

I From the union bound we obtain

Ps ≤
M−1

∑
j=0

Pj

M−1

∑
i=0
i 6=j

Q



√

D2
i,j

2N0




= (M−1) Q

(√
2E
2N0

)
= (M−1) Q

(√
E
N0

)

I This generalizes the binary case considered previously
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Distances Di,j are important
I Ps is determined by the distances Di,j between the signal pairs
I Let us sort these distances

Dmin < D1 < D2 < · · ·< Dmax

I Then the upper bound on Ps can be written as

Ps ≤ c Q



√

D2
min

2N0


+ c1 Q



√

D2
1

2N0


+ · · ·+ cx Q



√

D2
max

2N0




I The coefficients are

c` =
M−1

∑
j=1

Pj ·nj,` , `= 0,1,2, . . . ,x

I nj,`: number of signals at distance D` from signal zj(t)

How many distinct terms do exist for 4-PAM?
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A useful approximation of Ps

I The union bound is easy to compute if we know all distances D`

I At large signal-to-noise ratio (small N0), i.e., when Ps is small, the
first term provides a good approximation

Ps ≈ c Q



√

D2
min

2N0




I We see that the minimum distance D2
min and the average number

of closest signals c dominate the performance in this case

I Explanation:
the function Q(x) decreases very fast as x increases (faster than
exponentially). The other terms become negligible at some point.

⇒ at small Ps (small N0) we can compare different signal
constellations by means of D2

min, similarly to the binary case
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Energy efficiency and normalized distances
I Consider the case P` = 1/M, `= 0,1, . . . ,M−1
I The average received energy per bit is given by

Eb =
1
k

M−1

∑
i=0

1
M

∫ Ts

0
z2

i (t) dt =
1
k

E0 +E1 + · · ·EM−1

M

I Using the normalized squared Euclidean distances

d2
` =

D2
`

2Eb
,

the union bound can be written as

Ps ≤ c Q

(√
d2

min
Eb

N0

)
+c1 Q

(√
d2

1
Eb

N0

)
+ · · ·+cx Q

(√
d2

max
Eb

N0

)

I The parameters d2
` determine the energy efficiency
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Approximate Ps for some constellations
I Considering the dominating term in the union bound we obtain

Ps ≈ c Q

(√
d2

min
Eb

N0

)

I This approximation is valid if Eb
N0

is sufficiently large

4.5. M-ary Signaling 281

Bit Rate, Signal Power, Bandwidth, and Symbol Error Probability:
Let us approximate the symbol error probability with the dominating term in
the union bound (4.116),

Ps ≈ c · Q
(√

d2
min

Eb

N0

)
(4.120)

Hence, in (4.120) it is assumed that the signal-to-noise ratio Eb/N0 is sufficiently
large to justify this approximation. The coefficient c, and d2

min, for some common
signal constellations are given in Table 4.1 below.

c d2
min

M-ary PAM 2(1− 1/M)
6 log2(M)
M2 − 1

M-ary PSK (M > 2) 2 2 log2(M) sin2(π/M)
M-ary FSK M − 1 log2(M)

M-ary QAM 4(1− 1/
√

M)
3 log2(M)

M − 1

Table 4.1: The coefficient c, and d2
min, for some common signal constellations.

Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the
M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal
energy orthogonal FSK signals are also assumed.

Now assume that the symbol error probability Ps in (4.120) is required not to
exceed a given value, here denoted Ps,req

Ps ≈ cQ

(√
d2
min

Eb

N0

)
≤ Ps,req (4.121)

This means that the signal-to-noise ratio Eb/N0 must satisfy,

Eb

N0
≥ X

d2
min

(4.122)

where the parameter X is here defined such that

Ps,req = cQ(
√

X ) (4.123)

Hence,
X = (Q− 1(Ps,req/c))2 (4.124)

where Q− 1( ) denotes the inverse Q( ) function. The average received signal-to-
noise ratio Eb/N0 can also be expressed in terms of the average received signal
power Pz in z(t) (compare with, e.g., (4.72)),

Eb

N0
=

1

Rb
· Pz

N0
(4.125)
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Example 4.19

4.5. M-ary Signaling 279

where

d2
min =

D2
min

2Eb
(4.117)

and

d2
ℓ =

D2
ℓ

2Eb
, ℓ = 1, 2, . . . (4.118)

For a sufficiently large signal-to-noise ratio Eb/N0 only the first term, which
contains the normalized squared minimum Euclidean distance d2

min, is
numerically significant. This parameter is sometimes also referred to as the
normalized squared free Euclidean distance.

The energy efficiency for a specific signal constellation {zℓ(t)}M−1
ℓ=0 is often

measured by the parameter d2
min, see Example 4.19, and Table 4.1 on page 281.

A common reference value is d2
min = 2 and this is obtained for binary antipodal

signaling, and for QPSK.

EXAMPLE 4.19
Assume two signal constellations, denoted A and B respectively, with corresponding
parameters d2

min,A and d2
min,B. From the equality (see e.g. the dominating term in the

union bound),
d2
min,AEb,A/N0 = d2

min,BEb,B/N0

we find that the difference (in dB) in received energy per information bit is (compare
with (2.13) on page 16),

10 log10(Eb,B) − 10 log10(Eb,A) = 10 log10

d2
min,A

d2
min,B

Calculate the value 10 log10

d2
min,A

d2
min,B

if “A” is binary antipodal PAM, and if “B” is

4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.
Which signal constellation is most energy efficient based on d2

min (i.e. at large signal-
to-noise ratios Eb/N0)? Use Table 4.1 on page 281.

Solution:
From Table 4.1 we find for M-ary PAM that d2

min = 6 log2(M)

M2−1

So, d2
min,A = 2, d2

min,B = 4
5

10 log10

d2
min,A

d2
min,B

= 10 log10

5

2
= 3.98[dB]

Hence, binary antipodal PAM is 3.98 dB more energy efficient than 4-ary
PAM.

✷

As an additional exercise for the reader we here give, without proof, the union
bound for the M-ary PAM case considered in Subsection 2.4.1.1,

Ps ≤
M−2∑

i=0

2(M − 1− i)

M
Q

(
(i + 1)

√
d2
minEb/N0

)
(4.119)

I For M-ary PAM we have (Table 4.1 or Table 5.1)

d2
min = 6log2(M)/(M2−1) ⇒ d2

min,A = 2, d2
min,B = 4/5

I 10log10 d2
min,A/d2

min,B = 10log10 5/2 = 3.98 dB

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!
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Short summary

I The binary receiver in Fig. 4.10 (one correlator / matched filter)
is equivalent to the general receiver in Fig. 4.9 with M = 2

I For binary signaling (M = 2), the bit error probability Pb of the ML
receiver can be computed using equation (4.53) on page 252

I For the M-ary case: union bound on Ps is given on p. 274

I Energy efficiency: measureable by normalized distances d2
i,j

M = 2: antipodal signaling with d2
0,1 = 2 is optimal

I Study the relationships between Pb / Ps and rate, bandwidth,
energy, power, given on p. 261–262 and p. 281–282
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