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Where are we now?

What we have done so far: (Chapter 2)
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» Concepts of digital signaling: bits to analog signals
» Average symbol energy E;, Euclidean distance D;;
» Bandwidth of the transmit signal
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Chapter 4: Receivers
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Figure 4.1: A digital communication system.
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» How can we estimate the transmitted sequence?
> Is there an optimal way to do this?




The Detection Problem

INO)

A
Sj ® Zj(t) i r(t) Receiver m[0]
h(t) (+) based on r(t) |—=
in 0<t<Tg

[0]=m;
T s o]

Assumptions:

A random (i.i.d.) sequence of messages m|i] is transmitted
There are M = 2% possible messages, i.e., k bits per message

All signal alternatives z,(r), ¢=1,...,M are known by the receiver
» Ty is chosen such that the signal alternatives z,(r) do not overlap
N(t) is additive white Gaussian noise (AWGN) with Ry (f) = Ny /2

v

v

v

v

Questions:
» How should decisions be made at the receiver?
» What is the resulting bit error probability P,?
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An optimal decision strategy

» Suppose we want to minimize the symbol error probability P
That means we maximize the probability of a correct decision

Pr{m=m(r(t)) | r(1)}

where m denotes the transmitted message

\4

v

This leads to the following decision rule:

(r(t)) =me ,
where (= argmax Pr{m = m;|r(t)}

v

We decide for the message that maximizes the probability above

» A receiver that is based on this decision rule is called
maximum-a-posteriori probability (MAP) receiver
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Structure of the general MAP receiver

» We know that one of the M messages must be the best
» Hence we can simply test each my, £=0,1,... M —1

MAP-receiver
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This receiver minimizes the symbol error probability P
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A slightly different decision strategy

» The maximum likelihood (ML) receiver is based on a slightly
different decision rule:

m(r(t)) =my: ¢ =argmaxPr{r(t)|m; sent}
]
» Using the Bayes rule we can write

~ Pr{r(t)|m; sent}-P;
B Pr{r(n)}

» The decision rule of the MAP receiver can be formulated as

Prim=m; | r(t)}

m(r(t)) =my: €=argmaxPr{r(t)|m; sent}-P;

» It follows that the ML receiver is equivalent to the MAP receiver
for equally likely messages, P;=1/M,i=0,1,....M — 1.

Michael Lentmaier, Fall 2019 Digital Communications: Lecture 5



The Minimum Euclidean Distance Receiver

N(t)
r(t) Receiver based
m=mj <N zi() ——= on r(t) in —=
0<t<Ts

» For our considered scenario with Gaussian noise:
maximizing Pr{r(t) |m; sent} is equivalent to minimizing the
squared Euclidean distance D} .

» The received signal is compared with all noise-free signals z;(r)
in terms of the squared Euclidean distance

2 fs 2
D2, = /0 (r(t) —2(0))” dr
» The message is selected according to the decision rule:

a(r(t)) =my: £ =argmin D?
; :
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The Minimum Euclidean Distance Receiver

» The squared Euclidean distance is a measure of similarity
» An implementation is often based on correlators with output

T
/ F()z() di, i=0,1,... M—1
0

D= [ (-2 ar=E2 [ 02 v

we can write
T
¢ = argmin D?; = argmax / r(t)zi(t) dt—E;/2
i ’ i 0
» The received signal is compared with all possible noise-free

signal alternatives z;(r)
The receiver needs to know the channel!

Michael Lentmaier, Fall 2019 Digital Communications: Lecture 5




Correlation based implementation

¢ =argmin D
l

2
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= argmax
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Example: M =4
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Example 4.4: 64-QAM receiver

Assume that {zz(t)évial is a 64-ary QAM signal constellation. Draw a block-diagram
of a minimum Euclidean distance receiver that uses only two integrators.

Solution:

A QAM signal alternative can be written as z;i(t) = Aig(t) cos(wet) — Big(t) sin(wet),
where g(t) is a baseband pulse. The output value from the i:th correlator in Figure 4.8
8,

Ts Ts Ts
/0 r(t)zi(t)dt = Al/o r(t)g(t)cos(wct)dt—Bl/O r(t)g(t) sin(wet)dt =

~~

z -y

= Aiz+ By

Observe that x and y do not depend on the index i.

Hence, a possible implementation of the receiver is to first generate x and y, and then
calculate the M correlations A;x + By, i =0, 4,...,M — 1. By subtracting the value
E;/2 from the i:th correlation, the decision variables &, . ..,En—1 are finally obtained.

For M-ary constellations with fixed pulse shape g(r) the
implementation can be further simplified
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Example 4.4: 64-QAM receiver
The implementation of this receiver is shown below:

cos( o) g(t)

-sin( o) g(t)

r(t)

Select

MAX — Decision

The complezity of this receiver is significantly reduced compared to the receiver in Figure
4.8 on page 241! Only two integrators are here used, instead of 64 (= M) in Figure
4.8.

= these parts are very similar to the transmitter
» integration and comparison can be performed separately
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A geometric interpretation
» Our receiver computes: (maximum correlation)

max{xA;+yB; —E,/2}
l

» Equivalently we can compute: (minimum Euclidean distance)

_ AE\? BiE,\’
e ( 2 ) A

Ex. QPSK: received point (x,y) is closest to the point of message m3

T = message points, e = noisy received values (z,y)

y
A
A=t Eg2] . A=
B,=1 B,=1
T T > X
'Eg/2 Eg/2 ® (x,y) = noisy received values
A =1 —Eg/2
o=1 % B X Ag=1
By=-1 By=-1

Michael Lentmaier, Fall 2019 Digital Communications: Lecture 5



Matched filter implementation

» A filter with impulse response ¢(¢) is matched to a signal z;(¢) if
q(t) = Zi(Ts - t) = Zi(_t+ Ts)

» Let the received signal r(¢) enter this matched filter ¢(¢)
» The matched filter output, evaluated at time ¢t = (n+ 1) T}, can be
written as

(n+1) Ty

r(t) *‘1(’)|t:(n+1)n. = /nTS r(t)zi(t—nTy) dt

> Observe:
this is exactly the same output value as the correlator produces

= We can replace each correlator with a matched filter which is
sampled at times r = (n+ 1) T
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Matched filter vs correlator implementation

‘CORRELATION RECEIVER

70(tnT 9 Egl2

1
|
|
|

(+D)Ts i
[n]

— [ »(%)—M’ !
i
|
|
i
1
|
i

2@ty [T 2

@+Ts &ilnl | seLECT
= O

LARGEST
Ty

N

Zm[n](tnTs) ()

Ty EM-172
(n+1)Tg
= O
Ty

eyt

MATCHED FILTER RECEIVER

i
! i
| B2 ,
! I
|
! golnl |
! |
! I
| -2 !
! I
i
! Cilnl | sELECT |
| LARGEST | | A
=
|
EM-172 |
|
Em-1 0] |
|
|
=T !
|

Michael Lentmaier, Fall 2019




Summary: receiver types

» Minimum Euclidean distance (MED) receiver:
decision is based on the signal alternative z;(¢) closest to r(z)

» Correlation receiver:
an implementation of the MED receiver based on correlators

» Matched filter receiver:
an implementation of the MED receiver based on matched filters

» Maximum likelihood (ML) receiver:
equivalent to MED receiver under our assumptions: ML = ED

» Maximum a-posteriori (MAP) receiver:
minimizes symbol error probability P
equivalentto MLif P, =1/M,i=0,...,M—1: ML = ED = MAP
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Bit error probability

» Because of the noise the receiver will sometimes make errors
» During a time interval T we transmit the sequence b of length

B=Ry7T

v

The detected (estimated) sequence b will contain B,,, bit errors
Berr - dH(b,B) S B

The Hamming distance dy(b,b) is defined as the number of
positions in which the sequences are different

v

v

The bit error probability P, is defined as

Py = é ;Pr{fa[i} #bli]} = w

v

It measures the average number of bit errors per detected
(estimated) information bit
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Analysis Binary Signaling
» Binary signaling (M = 2, Ty = T}) simplifies the general receiver
» Consider the two decision variables
(}’H-I)TS
Eln] :/ () zi(i—nTy) di—EJ2, i=0,1
nTy
» The decision 7i[n] is made according to the larger value, i.e.,
mn]=m
&iln] = &oln]
m[n)=my

» This can be reduced to a single decision variable only

Eln] = /n(TnH)TS r(1) (21(t—nTs) —zo(t—nTS)) dt

which is compared to a threshold value
mln]=m

oz PR

ln]=mg
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Receiver for Binary Signaling
» Only one correlator or one matched filter is now required:

zy (t-nT s)-zo(t-nT S)

m (n+1)T ¢ my EE .
OI'OK’_‘AI'(Ui f()dt &inl » & [n] Z 12°4> m[n]
my nT m,
~
Correlator Threshold unit
M min]
E,-E, —>
V(=2 , (T -2 (T ) VEN ey g 2
N—— ()} N
0

Matched filter I
Sampling N

Threshold unit

» Matched filter output needs be sampled at correct time
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When do we make a wrong decision?

» Assuming m = my is sent, the decision variable becomes

Ts

Ty
ﬁ[n]:/0 r(t) (z1 () — 20(1)) dt:/O (20() +N (1)) - (21 (1) —20(1)) dt

» We can divide this into a signal component f, and
a noise component A/

E[n]=Bo+N

T T
BOZ/O 20(7) (21(1) —20(7)) dt , N=/0 N(#) (21(1) = 20(1)) at
» Wrong decision: if £[n] > (Ey —Ey)/2then m=m; #£my=m
» Analogously, when m = m, is sent we get

Enl =B +N
T
B :/o 21(2) (21 (1) — 20(1)) dt
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Decision regions

I, (decision m)

<

|
: T, (decision m,)
T
|

T & n]
B

Y.
A
Yy

T
|
Bo Threshold

- With ) .
Bo+131=—/0 "2(0) dz+/0'z%(t) dt = Ey — Ey

the decision threshold lies in the center between fy and f;:
Ei—Ey _Bo+p
2 2

» Furthermore we see that

Bi—Bo= /OTAr (Zl (1) —ZO(I))2 dr= D%,o = D%,l
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Probability of a wrong decision

» There exist two ways to make an error:

Thréshold
Pr: false alarm probability Py missed detection probability
» The two probabilities of error can be determined as

Pp = Pr{im[n] =mi|m=my} = Pr{fo+N > (Bo+pBi)/2}
Py = Pr{m[n] =mo|m=m} = Pr{Bi+N < (Bo+p1)/2}
» We can express these in terms of the Q(x)-function:

ﬁl—ﬁo>

20

PF:PM:Q<
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Gaussian Noise
» The noise component NV is a Gaussian random variable with

1 2 /92
_ —(N—m)=/20
pN) = oz ¢

with mean m = 0 and variance ¢ = Ny/2 E,

» Our bit error probability is related to the probability that the noise
value N is larger than some threshold A

PV{NZA}zPr{N;m . A—m} :Q(A—m)

o o

» The O(x)-function is defined as

Ox) = /Xw \/%7% 2 dy = %erfc (\%)
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The Q(x)-function

4.5
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The Q(x)-function (page 182)

z Qx) z Qx) i Qx) z Qx)
0.0 | 5.0000e-01 | 3.0 | 1.3499e-03 | 6.0 | 9.8659e-10 | 9.0 | 1.1286e-19
0.1 | 4.6017e-01 | 3.1 | 9.6760e-04 | 6.1 | 5.3034e-10 | 9.1 | 4.5166e-20
0.2 | 4.2074e-01 | 3.2 | 6.8714e-04 | 6.2 | 2.8232¢-10 | 9.2 | 1.7897e-20
0.3 | 3.8209e-01 | 3.3 | 4.8342e-04 | 6.3 | 1.4882e-10 | 9.3 | 7.0223e-21
0.4 | 3.4458e-01 | 3.4 | 3.3693e-04 | 6.4 | 7.7688¢e-11 | 9.4 | 2.7282¢-21
0.5 | 3.0854e-01 | 3.5 | 2.3263¢-04 | 6.5 | 4.0160e-11 | 9.5 | 1.0495e-21
0.6 | 2.7425e-01 | 3.6 | 1.5911e-04 | 6.6 | 2.0558e-11 | 9.6 | 3.9972¢-22
0.7 | 2.4196e-01 | 3.7 | 1.0780e-04 | 6.7 | 1.0421e-11 | 9.7 | 1.5075e-22
0.8 | 2.1186e-01 | 3.8 [ 7.2348e-05 | 6.8 [ 5.2310e-12 | 9.8 | 5.6293e-23
0.9 | 1.8406e-01 | 3.9 | 4.8096e-05 | 6.9 | 2.6001e-12 | 9.9 | 2.0814e-23
1.0 | 1.5866e-01 | 4.0 | 3.1671e-05 | 7.0 | 1.2798e-12 | 10.0 | 7.6199e-24
1.1 | 1.3567e-01 | 4.1 | 2.0658¢-05 | 7.1 | 6.2378e-13
1.2 | 1.1507e-01 | 4.2 | 1.3346e-05 | 7.2 | 3.0106e-13
1.3 | 9.6800e-02 | 4.3 | 8.5399¢-06 | 7.3 | 1.4388e-13
1.4 | 8.0757e-02 | 4.4 | 5.4125e-06 | 7.4 | 6.8092e-14
1.5 | 6.6807e-02 | 4.5 | 3.3977e-06 | 7.5 | 3.1909e-14
1.6 | 5.4799e-02 | 4.6 | 2.1125e-06 | 7.6 | 1.4807e-14
1.7 | 4.4565e-02 | 4.7 | 1.3008e-06 | 7.7 | 6.8033e-15
1.8 | 3.5930e-02 | 4.8 | 7.9333e-07 | 7.8 | 3.0954e-15
1.9 | 2.8717e-02 | 4.9 | 4.7918e-07 | 7.9 | 1.3945e-15
2.0 | 2.2750e-02 | 5.0 | 2.8665e-07 [ 8.0 | 6.2210e-16
2.1 | 1.7864e-02 | 5.1 | 1.6983e-07 [ 8.1 | 2.7480e-16
2.2 | 1.3903e-02 | 5.2 | 9.9644e-08 | 8.2 | 1.2019e-16
2.3 | 1.0724e-02 | 5.3 | 5.7901e-08 | 8.3 | 5.2056e-17
2.4 | 8.1975e-03 | 5.4 | 3.3320e-08 | 8.4 | 2.2324e-17
2.5 | 6.2097e-03 | 5.5 | 1.8990e-08 | 8.5 | 9.4795e-18
2.6 | 4.6612¢-03 | 5.6 | 1.0718e-08 | 8.6 | 3.9858¢-18
2.7 | 3.4670e-03 | 5.7 | 5.9904e-09 [ 8.7 | 1.6594e-18
2.8 | 2.5551e-03 | 5.8 | 3.3157e-09 | 8.8 | 6.8408e-19
2.9 | 1.8658e-03 | 5.9 | 1.8175e-09 | 8.9 | 2.7923e-19

Q(1.2816) ~ 10 T [ Q(5.1993) ~ 10~

Q(2.3263) ~ 1072 | Q(5.6120) ~ 10~°
Q(3.0902) ~ 1072 | Q(5.9978) ~ 10~
Q(3.7190) ~ 107* | Q(6.3613) =~ 1071°
Q(4.2649) ~ 107" | Q(6.7060) ~ 10"
Q(4.7534) ~ 107° | Q(7.0345) ~ 10~'2
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Bit error probability
» The bit error probability can be written as
Py =PoPr+PyPy = (Po+P1)Pr=Pr=Py

» With B, — By = D, and 6> = Np/2- Dj, we obtain

 (Bi-B\ (D5 Dj,
Pb_Q(zc >_Q<2c>_Q \ 2n

» This fundamental result provides the bit error probability P, of an
ML receiver for binary transmission over an AWGN channel

» The additive noise NV is sampled from a filtered noise process

N(t) 4% v(t) =z (Tot)z (Tt }7 L’ N

t=(n+1)T s

o2 =Ny/2-E, =Ny/2 /)TS (Zl(l‘) —Z()(t))2 dt
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Example

» Let zo(r) = 0 and z; () rectangular with amplitude A and T =T,
» The information bit rate is R, = 400 kbps
» Regarding the noise we know that A2 /Ny = 70 dB

Task: determine the bit error probability P,

Solution:
> First we find that Df , = A*/R,,
» Then 5
D A% 1
LA D
2Ng Ny 2R,

> Py=0 (\/12.5) — 0(3.536) =2.3-10~*
» Last step: check Table 3.1 on page 182
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An energy efficiency perspective

» Consider the case Py =P, =1/2
» The average received energy per bit is then

1 /% 1 [T Ey+E
&=y | B+ 5 [TAmar==2T"
2 Jo 2 Jo 2

» We can then introduce the normalized squared Euclidean

distance 5

D, 1 Tp
> _Poa 1 B 2
Bi=5g =55 | @0 -200) a

» With this the bit error probability becomes

D? g
PbQ( 2](3}(1))Q< d(%,lNl;>

» The parameter d&l is a measure of energy efficiency
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Short summary

The minimum Euclidean distance (ED) receiver is equivalent to
the ML receiver, and is optimal for equal likely signal alternatives

A correlator-based implementation of the general M-ary ML
receiver is shown in Fig. 4.8 on page 241

The matched filter implementation of the receiver in Fig. 4.9 is
equivalent to the correlator-based implementation in Fig. 4.8

For QAM signaling, only two correlators (or matched filters) are
needed instead of M, as demonstrated in Example 4.4

For binary signaling (M = 2), the bit error probability P, of the ML
receiver can be computed using equation (4.53) on page 252
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