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Overall transmission model
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Figure 3.26: Illustrating how the output signals from the homodyne receiver in
Figure 3.25a, depend on the desired signals and on the phase function error. See
also (3.171)–(3.172).

Channel Filtering, Additive Noise and Homodyne Reception:

By combining some of the results in this section, the complete transmission
model in Figure 3.27 can be analyzed.
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Figure 3.27: Channel filtering, aditive noise and homodyne reception.

To simplify the description below, it is assumed that the bandpass filter HBP (f)
is ideal (ignoring the effects of group- and phase-delay). In (3.171)–(3.172) the
relationship between the signals uI(t), uQ(t), and the desired signals yI(t) and
yQ(t) are given, where

y(t) = z(t) + w(t) (3.175)

and where w(t) represents inband interference and noise. Furthermore, (3.133)-
(3.134) show the relationship between the signals yI(t), yQ(t) and the signals
zI(t) and zQ(t). Finally, in (3.101)-(3.102) the relationship between the signals

I The signal y(t) is given by

y(t) = z(t)+w(t) = x(t) ∗ h(t)+w(t)

I It can be written as

y(t) = yI(t)cos(2π fc t)− yQ(t)sin(2π fc t)

Can we express uI(t) and uQ(t) in terms of xI(t) and xQ(t)?

Michael Lentmaier, Fall 2019 Digital Communications: Lecture 10



Inphase and quadrature relationship

I With the complete signal r(t) entering the receiver the output
signals become

uI(t) =
[
y(t)A cos(2π fc t+φerr(t))

]
LP

=
yI(t)

2
A cos(φerr(t))

+
yQ(t)

2
A sin(φerr(t))

uQ(t) =
[
− y(t)A sin(2π fc t+φerr(t))

]
LP

=
yQ(t)

2
A cos(φerr(t))

− yI(t)
2

A sin(φerr(t))
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Including the channel filter
I Before we can relate y(t) = z(t)+w(t) to x(t) we need to consider

the effect of the channel

z(t) = x(t) ∗ h(t)

3.4. Bandpass Filtering 159

x(t) z(t)h(t)

Figure 3.11: Bandpass filtering.

h(t), or by its frequency function H(f) = F{h(t)}. It is here assumed that x(t)
and h(t) are bandpass signals,

x(t) = xI(t) cos(2πfct)− xQ(t) sin(2πfct) (3.92)

h(t) = hI(t) cos(2πfct)− hQ(t) sin(2πfct) (3.93)

To calculate the output signal z(t), we may first calculate the Fourier transform
Z(f),

Z(f) = X(f)H(f) (3.94)

Hence, the energy spectrum is changed from |X(f)|2 to |X(f)|2|H(f)|2 by the
filter.

If the Fourier transforms X(f) and H(f) are expressed in terms of the Fourier
transforms of the quadrature components, see (3.2), then Z(f) can be written
as,

Z(f) =
1

2
[XI(f + fc)− jXQ(f + fc) + XI(f − fc) + jXQ(f − fc)] ·

· 1

2
[HI(f + fc)− jHQ(f + fc) + HI(f − fc) + jHQ(f − fc)] =

=
1

4
([XI(f + fc)− jXQ(f + fc)] [HI(f + fc)− jHQ(f + fc)] +

+ [XI(f − fc) + jXQ(f − fc)] [HI(f − fc) + jHQ(f − fc)]) +

+Zct(f) (3.95)

Where Zct(f) equals the sum of the “cross terms”,

Zct(f) =
1

4
([XI(f + fc)− jXQ(f + fc)] [HI(f − fc) + jHQ(f − fc)]+

+ [XI(f − fc) + jXQ(f − fc)][HI(f + fc)− jHQ(f + fc)]) (3.96)

Now let us assume that the bandwidth of the (baseband) quadrature compo-
nents xI(t), xQ(t), hI(t) and hQ(t) are assumed to be much smaller than the
carrier frequency fc. This means that Zct(f) is essentially equal to zero for all
frequencies, and Z(f) in (3.95) can then be very well approximated by,

Z(f) =
1

2
(ZI(f + fc)− jZQ(f + fc) + ZI(f − fc) + jZQ(f − fc)) (3.97)

where,

ZI(f) =
1

2
(XI(f)HI(f)−XQ(f)HQ(f)) (3.98)

ZQ(f) =
1

2
(XI(f)HQ(f) + XQ(f)HI(f)) (3.99)

I We assume that the impulse response h(t) can be represented
as a bandpass signal

h(t) = hI(t) cos(2π fc t)−hQ(t) sin(2π fc t)

I With some calculations the signals can be written as (p. 159-160)
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Figure 3.12: Bandpass filtering. a) Bandpass filter; b) Illustrating the calculation
of the quadrature components zI(t) and zQ(t), see (3.101)–(3.102).

By comparing (3.97) with (3.2), it is concluded that the output signal z(t) from
the bandpass filter can be written as,

z(t) = zI(t) cos(2πfct)− zQ(t) sin(2πfct) (3.100)

From (3.98)–(3.99) it is found that the quadrature components zI(t) and zQ(t)
are,

zI(t) =
1

2
(xI(t) ∗ hI(t)− xQ(t) ∗ hQ(t)) (3.101)

zQ(t) =
1

2
(xI(t) ∗ hQ(t) + xQ(t) ∗ hI(t)) (3.102)

Observe that the calculation of zI(t) and zQ(t) are made at baseband. The re-
lationships between the quadrature components, (3.101)–(3.102), are illustrated
in Figure 3.12b.

EXAMPLE 3.16
Assume that the input signal x(t) in figure 3.12a is x(t) = Ag(t) cos(ωct), where

g(t) =
g0 , 0 ≤ t ≤ T
0 , elsewhere

Furthermore, assume that h(t) = Bg(t) cos(ωct), and fcT ≫ 1. Calculate the output
signal z(t), and sketch zI(t).

Solution:
z(t) = zI(t) cos(ωct) − zQ(t) sin(ωct)

zI(t) =
1
2
(
xI(t) ∗ hI(t)− xQ(t) ∗ hQ(t)

)

zQ(t) =
1
2
(
xI(t) ∗ hQ(t)+ xQ(t) ∗ hI(t)

)
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Equivalent baseband model
I Combining the channel with the receiver frontend we obtain

3.6. Receivers for Bandpass Signals 189

zI(t), zQ(t) and the modulated quadrature components xI(t) and xQ(t) are
found. These equations are illustrated in Figure 3.28. Note that all calculations
in this figure are made at baseband. Therefore, the input-output analysis (from
xI(t), xQ(t) to uI(t), uQ(t)) of the transmission system in Figure 3.27 can be
made at baseband. This is very convenient, and it is also the reason why Figure
3.28 often is referred to as the equivalent baseband model of Figure 3.27.
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Figure 3.28: Illustrating the relationship between uI(t), uQ(t) and xI(t), xQ(t)
in Figure 3.27.

EXAMPLE 3.25
Assume in Figure 3.27 that hQ(t) = 0 and φerr(t) = 0. Is it then true that xI(t)
influences only uI(t), and that xQ(t) influences only uQ(t)?

Solution:
From Figure 3.28 we have,

uI(t) =
xI(t) ∗ hI(t)

2
+ wI(t) A/2

uQ(t) =
xQ(t) ∗ hI(t)

2
+ wQ(t) A/2

So, the answer is yes.
Observe that this means that two independent information signals (xI(t) and
xQ(t), respectively) can in this case be transmitted simultaneous within the
same bandwidth (the same channel), without disturbing each other in the
receiver! ✷

3.6.2 Heterodyne Reception

In heterodyne reception, the desired signal y(t) is first frequency shifted to a
new carrier frequency, the so-called intermediate frequency fim . This is

I Observe that all the involved signals are in the baseband
I The same is true for channel filter, noise and phase error

Digital signal processing can be applied easily in baseband
What happened with the carrier waveforms?
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A compact description
I A more compact description is possible by combining xI(t) and

xQ(t) to an equivalent baseband signal

x̃(t) = xI(t)+ j xQ(t)

I The transmitted signal can then be described as

x(t) = Re
{
(xI(t)+ j xQ(t))e+j2π fc t}= Re

{
x̃(t)e+j2π fc t}

Chapter 3

Information Transmission
with Carrier Modulation
Techniques

This chapter deals with bandpass signals carrying digital or analog information.
The characteristic feature of a bandpass signal x(t) is that its frequency content
is “concentrated” around a carrier frequency fc [Hz], see Figure 3.1. Band-
pass signals occur frequently in practice: mobile telephony, television, radio,
satellite communication, wireless local area networks, navigation, optical fiber
communication, etc.

|X(f)|2 W

f c- f c

|X(f)|2

f c- f c

W

a)

f [Hz]
0

b)
f [Hz]

0

Figure 3.1: Examples of the frequency content in a bandpass signal x(t). a)
Symmetric spectrum around fc. b) Non-symmetric spectrum around fc.

M-ary PSK, M-ary FSK, M-ary bandpass PAM, M-ary QAM, OFDM, and

117

I With Re{a}= (a+a∗)/2 we can write

x(t) =
x̃(t)

2
· e+j2π fc t +

x̃∗(t)
2
· e−j2π fc t
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A compact description
I Let us first ignore the effect of the channel: w(t) = 0, h(t) = δ (t)
I The receiver can invert the frequency shift operation by

ũ(t) =
[
x(t) ·Ae−j(2π fc t+φerr(t))

]
LP

I Using the expression for x(t) from the previous slide we get

ũ(t) =
[

A
2
(
x̃(t)e+j2π fc t + x̃∗(t)e−j2π fc t) · e−j(2π fc t+φerr(t))

]

LP

=
x̃(t)

2
A · e−jφerr(t) = uI(t)+ juQ(t)

I Observe that this expression is equivalent to our earlier result

ũ(t) =
(

xI(t)
2

A cos(φerr(t)) +
xQ(t)

2
A sin(φerr(t))

)

+ j
(

xQ(t)
2

A cos(φerr(t))−
xI(t)

2
A sin(φerr(t))

)
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Compact equivalent baseband model
I The effect of the channel filter becomes

z̃(t) = zI(t)+ j zQ(t) = x̃(t) ∗ h̃(t)
2

I Combining these parts and the noise we obtain the simple model

3.7. A Compact Description 205

This property is sometimes used in energy detectors. With complex notation
it is found that if h(t) = x(−t), then,

h̃(t) = x̃∗(−t)

H̃(f) = F{h̃(t)} = X̃∗(f)
(3.224)

So, the output signal z(t) is,

z(t) = xq(t) = x(t) ∗ x(−t) = Re
{ x̃(t) ∗ x̃∗(−t)

2︸ ︷︷ ︸
x̃q(t)

ejωct
}

(3.225)

Hence, the complex envelope of z(t) then is,

z̃(t) = x̃q(t) =
x̃(t) ∗ x̃∗(−t)

2
(3.226)

and,

x̃q(t) =

∫ ∞

−∞

|X̃(f)|2
2

ej2πftdf = x̃∗
q(−t) (3.227)

and x̃q(0) = xq(0) = Ex.

Channel filtering, Additive Noise and Homodyne Reception:

By studying Figure 3.27 on page 188, and its baseband equivalent in Figure 3.28,
it is seen that the complex description above can be applied. The input-output
relationship in Figure 3.28 can be written as,

ũ(t) =
[(

x̃(t) ∗ h̃(t)
2

)
+ w̃(t)

]
e−jφerr(t) · A/2 (3.228)

and this is illustrated in Figure 3.34.

+x(t)~ ~u(t)

w(t)~ φerr(t)-jA
2
e

h(t)
2

~

Figure 3.34: Complex equivalent baseband model of the communication system
in Figure 3.27 (compare with Figure 3.28).

In this subsection it has been illustrated that many expressions are significantly
simplified by using complex notation. Especially, spectrum calculations and
filtering problems are handled more easily. For more information on this subject
the reader is referred to [18], [43], [22].

ũ(t) =
[(

x̃(t) ∗ h̃(t)
2

)
+ w̃(t)

]
· e−jφerr(t) · A

2
, w̃(t) = wI(t)+ jwQ(t)

I Complex signal notation simplifies expressions significantly
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The two equivalent baseband models

3.6. Receivers for Bandpass Signals 189

zI(t), zQ(t) and the modulated quadrature components xI(t) and xQ(t) are
found. These equations are illustrated in Figure 3.28. Note that all calculations
in this figure are made at baseband. Therefore, the input-output analysis (from
xI(t), xQ(t) to uI(t), uQ(t)) of the transmission system in Figure 3.27 can be
made at baseband. This is very convenient, and it is also the reason why Figure
3.28 often is referred to as the equivalent baseband model of Figure 3.27.
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Figure 3.28: Illustrating the relationship between uI(t), uQ(t) and xI(t), xQ(t)
in Figure 3.27.

EXAMPLE 3.25
Assume in Figure 3.27 that hQ(t) = 0 and φerr(t) = 0. Is it then true that xI(t)
influences only uI(t), and that xQ(t) influences only uQ(t)?

Solution:
From Figure 3.28 we have,

uI(t) =
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2
+ wI(t) A/2
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2
+ wQ(t) A/2
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This property is sometimes used in energy detectors. With complex notation
it is found that if h(t) = x(−t), then,

h̃(t) = x̃∗(−t)

H̃(f) = F{h̃(t)} = X̃∗(f)
(3.224)

So, the output signal z(t) is,

z(t) = xq(t) = x(t) ∗ x(−t) = Re
{ x̃(t) ∗ x̃∗(−t)

2︸ ︷︷ ︸
x̃q(t)

ejωct
}

(3.225)

Hence, the complex envelope of z(t) then is,

z̃(t) = x̃q(t) =
x̃(t) ∗ x̃∗(−t)

2
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and,
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2
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Channel filtering, Additive Noise and Homodyne Reception:

By studying Figure 3.27 on page 188, and its baseband equivalent in Figure 3.28,
it is seen that the complex description above can be applied. The input-output
relationship in Figure 3.28 can be written as,

ũ(t) =
[(

x̃(t) ∗ h̃(t)
2

)
+ w̃(t)

]
e−jφerr(t) · A/2 (3.228)

and this is illustrated in Figure 3.34.
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Figure 3.34: Complex equivalent baseband model of the communication system
in Figure 3.27 (compare with Figure 3.28).

In this subsection it has been illustrated that many expressions are significantly
simplified by using complex notation. Especially, spectrum calculations and
filtering problems are handled more easily. For more information on this subject
the reader is referred to [18], [43], [22].
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M-ary QAM signaling
I Considering M-ary QAM signals we get

xI(t) =
∞

∑
n=−∞

Am[n] g(t−nTs) , xQ(t) =
∞

∑
n=−∞

Bm[n] g(t−nTs)

I Let us now introduce

Ãm[n] = Am[n]+ jBm[n]

I Then our complex baseband signal x̃(t) can be written as

x̃(t) = xI(t)+ j xQ(t) =
∞

∑
n=−∞

Ãm[n] g(t−nTs)

I Example: (on the board)

Consider 4-QAM transmission of b = 1 0 1 1 1 0 0 1
Determine Am[n], Bm[n] and Ãm[n]

How can we design the receiver for QAM signals?
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Matched filter receiver
I At the receiver we see the complex baseband signal ũ(t)

3.7. A Compact Description 205
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h̃(t) = x̃∗(−t)
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(3.224)
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z(t) = xq(t) = x(t) ∗ x(−t) = Re
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2︸ ︷︷ ︸
x̃q(t)

ejωct
}

(3.225)

Hence, the complex envelope of z(t) then is,

z̃(t) = x̃q(t) =
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In this subsection it has been illustrated that many expressions are significantly
simplified by using complex notation. Especially, spectrum calculations and
filtering problems are handled more easily. For more information on this subject
the reader is referred to [18], [43], [22].

I If we know the channel we can design a matched filter for

z̃(t) = x̃(t) ∗ h̃(t)
2

⇒ ṽ(t) = z̃∗(Ts− t)

I It is often convenient to match ṽ(t) to the pulse g(t) instead

ṽ(t) = g∗(Ts− t) ⇒ ξ̃ [n] =
[
ũ(t) ∗ g∗(Ts− t)

]
t=(n+1)Ts

5.1. The MAP Receiver for the AWGN Channel 349

EXAMPLE 5.7
Assume 4-ary PAM, P0 = P3 and P1 = P2. N(t) is AWGN and RN (f) = N0/2.

r(t) r1 m̂

N(t)

zj(t)
t=T S

Receiver

0-3a -a a 3a

z0 z1 z2 z3
ϕ1

Decision
ruleϕ1(Ts-t)

Assume that a2/N0 = 1/8, P0 = 1/2

1+e−1 ≈ 0.3655, P1 = 1/2
1+e

≈ 0.1345.

a) i) Calculate the symbol error probability, if the receiver is the ML receiver.

ii) Calculate the received signal-to-noise ratio E/N0 in dB, where E is the
average received symbol energy.

b) Assume the decision rule:

r1 < 0 ⇐⇒ m̂ = m0

r1 > 0 ⇐⇒ m̂ = m3

Calculate the symbol error probability obtained with this decision rule. Compare
with the result in a).

c) Which decision regions are used by the MAP receiver?

Solution:

a) i) The situation is the same as in Example 5.6ii), with Dmin = 2a. Hence,

Ps = (P0 + 2P1 + 2P2 + P3)Q
2a2

N0
=

=
1

1 + e−1
+

2

1 + e

≈1.27

Q(0.5)

0.30854

≈ 0.3915

ii) Using (5.8) we obtain,

E = (P0 · 9a2 + P1a
2 + P2a

2 + P39a2) = a2 · 9e + 1

e + 1

So, E/N0 = 0.8561, which is -0.675 dB. Hence, a very noisy situation is
considered here.

b) Prob{error|m0} = Prob{w1 > 3a} = Q
18a2

N0
= Prob{error|m3}

Prob{error|m1} = 1 = Prob{error|m2}
Ps = (P0 + P3)Q(3/2) + (P1 + P2) · 1 =

ũ(t)
g̃⇤(Ts � t)

⇠̃[n]

t = (n + 1)Ts
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Decision rule
I Consider now h̃(t) = δ (t) and w̃(t) = 0
I The ideal values of the decision variable are then given by

ξ̃m[n] =
[
ũ(t) ∗ g∗(Ts− t)

]
t=(n+1)Ts

=

[(
Ãm[n]g(t−nTs) · e−jφerr(t) · A

2

)
∗ g∗(Ts− t)

]

t=(n+1)Ts

= Ãm[n]e
−jφerr(t) · A

2

[
g(t−nTs) ∗ g∗(Ts− t)

]
t=(n+1)Ts

= Ãm[n]e
−jφerr((n+1)Ts) · A

2
Eg

I Due to noise w(t) 6= 0 and non-ideal channel h̃(t) the decision
variables at the receiver will differ from these ideal values

I The Euclidean distance receiver will base its decision on the
ideal value ξ̃m[n] which is closest to the received value ξ̃ [i]
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Example: 4-PSK
I Assuming φerr(t) = 0 we obtain the ideal decision variables

ξ̃m[n] = Ãm[n] ·
A
2

Eg = (Am[n]+ jBm[n]) ·
A
2

Eg

ideal ⇠̃

received ⇠̃

decision boundary
Re{⇠̃}

Im{⇠̃}

I Based on the received value ξ̃ [n] we decide for

m̂[n] : Ãm̂[n] = (1+ j ·0)
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Example: 4-PSK with phase offset
I Consider now a constant phase offset of φerr(t) = φerr = 25◦

I As a result the values ξ̃m[n] and ξ̃ [n] are rotated accordingly

ideal ⇠̃

received ⇠̃

decision boundary
Re{⇠̃}

Im{⇠̃}

How can we compensate for φerr?
1. we can rotate the decision boundaries by the same amount
2. or we can rotate back ξ̃ [n] by multiplying with e+jφerr
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Summary: M-ary QAM transmission

I We can describe the transmitted messages Ãm̂[n] and the
decision variables ξ̃ [n] at the receiver as complex variables

I The effect of the noise w̃(t) and the channel filter h̃(t) on ξ̃ [n] can
be described by the equivalent baseband model

I The transmitter and receiver frontends can be separated from
the (digital) baseband processing

I Assumptions:
- the pulse shape g(t) satisfies the ISI-free condition
- the carrier frequency fc is much larger than the bandwidth of g(t)

I Under these conditions the design of the baseband receiver and
its error probability analysis can be applied as in Chapter 4
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Intersymbol Interference (ISI)
I Consider transmission of a single M-ary PAM signal alternative

436 Chapter 6. Intersymbol Interference

According to Chapter 4, the optimum choice of receiver filter is a filter that is
matched to the pulse u(t), i.e. v(t) = u(Ts − t) assuming Tu ≤ Ts. However, in
Figure 6.1a we do allow a suboptimum choice of receiver filter.

sj(t) = A jg(t)
h(t)

zj(t) = A ju(t)
v(t)

y(t) = A jx(t) ξ

t=T s

Threshold
detector
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Channel Receivera)
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0 Tg
t
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t

x(t)
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Tu + T v
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t
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Figure 6.1: a) Transmission and reception of a single M-ary PAM signal alter-
native. b-d) Examples of pulse shapes at different points in the communication
system.

In the noise-free case, assuming for the moment that w(t) = 0, the output signal
from the receiver filter equals y(t) = Ajx(t), where the pulse x(t) is found from
the convolution between the pulse u(t) and the impulse response v(t),

x(t) = u(t) ∗ v(t) = g(t) ∗ h(t) ∗ v(t) (6.3)

see Figure 6.1d. Hence, if the signal Ajg(t) is sent from the transmitter,
then the signal Ajx(t) occurs at the output of the receiver filter v(t).

The receiver’s decision variable ξ is obtained by sampling the output signal from
the receiver filter at t = Ts, and the receiver’s decision is finally obtained by
comparing ξ with a set of decision threshold values (see also Example 4.4 on
page 242, especially remarks 2 and 3 for the M-ary PAM case).

Now consider the situation when a sequence of M-ary PAM signal alternatives
is transmitted with a signaling rate of Rs = 1/Ts symbols per second, see Figure
6.2 on page 438. The transmitted signal s(t) then consist of a sequence of M-ary
PAM signal alternatives,

s(t) =

∞∑

n=−∞
A[n]g(t− nTs), −∞ ≤ t ≤ ∞ (6.4)

where the amplitude value A[n] carries the n:th transmitted message m[n]. From
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In the noise-free case, assuming for the moment that w(t) = 0, the output signal
from the receiver filter equals y(t) = Ajx(t), where the pulse x(t) is found from
the convolution between the pulse u(t) and the impulse response v(t),

x(t) = u(t) ∗ v(t) = g(t) ∗ h(t) ∗ v(t) (6.3)

see Figure 6.1d. Hence, if the signal Ajg(t) is sent from the transmitter,
then the signal Ajx(t) occurs at the output of the receiver filter v(t).

The receiver’s decision variable ξ is obtained by sampling the output signal from
the receiver filter at t = Ts, and the receiver’s decision is finally obtained by
comparing ξ with a set of decision threshold values (see also Example 4.4 on
page 242, especially remarks 2 and 3 for the M-ary PAM case).

Now consider the situation when a sequence of M-ary PAM signal alternatives
is transmitted with a signaling rate of Rs = 1/Ts symbols per second, see Figure
6.2 on page 438. The transmitted signal s(t) then consist of a sequence of M-ary
PAM signal alternatives,

s(t) =

∞∑

n=−∞
A[n]g(t− nTs), −∞ ≤ t ≤ ∞ (6.4)

where the amplitude value A[n] carries the n:th transmitted message m[n]. From

What happens if Tu = Tg +Th ≥ Ts? ⇒ ISI occurs
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Intersymbol Interference (ISI)
I For Rs = 1/Ts < 1/Tu we can use the ML receiver from Chapter 4
I Question: can we use such a receiver for larger rates Rs ≥ 1/Tu?
I Consider the following receiver structure (compare to last slide)

438 Chapter 6. Intersymbol Interference

h(t) m[i]^+

t=t  +LT  +iT0 s s

Threshold
detector

[i]ξsA[n]g(t-nT  )
n= 8 v(t)

ChannelTransmitter

w(t)

z(t)s(t) = ∑

8

r(t) y(t)

Receiver

Figure 6.2: Sequential transmission, compare with Figure 6.1.

Our aim in this chapter is to investigate how to obtain good symbol error prob-
ability performance, with the receiver in Figure 6.2, when the symbol rate Rs is
increased above 1/Tu symbols per second.

The output signal y(t), from the receiver filter v(t) in Figure 6.2, is given by
(6.6)

y(t) =

∞∑

n=−∞
A[n]x(t− nTs) + wc(t) (6.10)

where wc(t) denotes a filtered Gaussian noise process.

Note in Figure 6.2 that the filter output signal y(t) is sampled at the time
instants T + iTs, i = . . .− 2,−1, 0, 1, 2, . . . where the parameter T is

T = t0 + LTs (6.11)

The duration of the pulse u(t) is here assumed to be at most LTs, i.e., the
parameter L (integer) is related to the received pulse u(t). The parameter t0
is a fixed delay parameter in the receiver and in many cases it is equal to zero.
However, it is convenient to incorporate it in the parameter T according to
(6.11). Hence, the decision variable ξ[0] is obtained at t = T , and the sampling
rate in the receiver equals the signaling rate Rs.

Based on ξ[i] the receiver makes a decision on the i:th transmitted message m[i].
From Figure 6.2, and (6.10) it is found that,

ξ[i] = y(T + iTs) =
∞∑

n=−∞
A[n]x(T + iTs − nTs) + wc(T + iTs) (6.12)

Now define,

x[i] = x(T + iTs) (6.13)

wc[i] = wc(T + iTs) (6.14)

Then the decision variable ξ[i] in (6.12) can be written as,

ξ[i] = A[i] ∗ x[i] + wc[i] =
∞∑

n=−∞
A[n]x[i− n] + wc[i] (6.15)

I Note that z(t) now is a superposition of overlapping pulses u(t)
I The signal y(t) after the receiver filter v(t) is

y(t) =
∞

∑
n=−∞

A[n]x(t−nTs)+wc(t) ,

where wc(t) is a filtered Gaussian process
I The decision variable is obtained after sampling

ξ [i] = y(T + iTs) , T = t0 +LTs , where LTs ≥ Tu
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Illustration of ISI in the receiver6.1. Increasing the Signaling Rate - Inter Symbol Interference 441
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Figure 6.4: Illustrating intersymbol interference (ISI) in the receiver.
a) no ISI, Rs = 1/Tu; b) no ISI, Rs = 1/2Tu; c) ISI, Rs = 2/Tu.

implies that x[i] = x0δ[i]).

Figure 6.4a illustrates an ISI-free situation. In this figure it is assumed that the
pulse u(t) is a rectangular pulse with duration Tu = Ts, v(t) = u(Ts − t), and
that the noise w(t) = 0. The individual pulse x(t) is then triangular, and it
extends over two symbol intervals. So, the output signal y(t) from the receiver
filter v(t) is then the superposition of delayed overlapping triangular pulses (solid
line). However, the sample ξ[i] does only depend on the desired message, since
the surrounding pulses are equal to zero at the sampling instants!

Figure 6.4b shows the situation if the signaling rate Rs = 1/Ts is reduced to
half the value used in Figure 6.4a, (Rs → 1

2Tu
, Ts → 2Tu) while keeping all

pulse shapes the same. Now the output signal y(t) from the receiver filter is the
superposition of delayed non-overlapping triangular pulses and it is clear that
no ISI can occur in this case.

In Figure 6.4c the signaling rate is doubled compared with Figure 6.4a, (Rs →
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Figure 6.4b shows the situation if the signaling rate Rs = 1/Ts is reduced to
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, Ts → 2Tu) while keeping all
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no ISI can occur in this case.
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Discrete time model for ISI
I According to our model the decision variable can be written as

ξ [i] = y(T + iTs) =
∞

∑
n=−∞

A[n]x(T + iTs−nTs)+wc(T + iTs)

I Let us introduce the discrete sequences

x[i] = x(T + iTs) , wc[i] = wc(T + iTs)

I This leads to the following discrete-time model of our system

6.1. Increasing the Signaling Rate - Inter Symbol Interference 439

and this discrete-time relationship is illustrated in Figure 6.3. Observe the
importance of the overall discrete-time impulse response x[i], since it
represents the combined effect of the transmitted pulse shape g(t), the
channel filter h(t) and the receiver filter v(t)! Throughout this chapter
it is assumed that x[0] is positive,

x[0] = x0 > 0 (6.16)

[i]ξ
+

w  [i]c

x[i] Threshold
detection m[i]^A[i]

Figure 6.3: Discrete-time model of the M-ary PAM communication system in
Figure 6.2.

EXAMPLE 6.1
The transmitted sequence of amplitudes A[i] is given as,

A[i]

1

1 5 8 9
i

Calculate, and plot, the sequence of decision variables ξ[i] in Figure 6.2, for 0 ≤ i ≤ 8,
in the noiseless case (i.e. w(t) = 0) if t0 = 0 and if the output pulse x(t) is:

Ts 2Ts

x0

2Ts 4TsTs

x0

x(t)

0
t

x(t)

t

i) L=1 and x(t) as below. ii) L=2 and x(t) as below.

Conclusion?

Solution:
From (6.15) we have,

ξ[i] =
∞

n=−∞
A[n]x[i − n]

where x[i] is given by (6.13). The discrete-time impulse is denoted by δ[i]. Conse-
quently, δ[0] = 1 and δ[i] = 0 for all i ̸= 0.

i) T = Ts

x[i] = x(T + iTs) = x((i + 1)Ts) = x0δ[i]
Hence, ξ[i] = A[i] ∗ x[i] = A[i] ∗ x0δ[i] = x0A[i]

ξ [i] =
∞

∑
n=−∞

A[n]x[i−n]+wc[i] = A[i] ∗ x[i]+wc[i]

Remark: the discrete-time impulse response x[i] represents
pulse shape g(t), channel filter h(t), and receiver filter v(t)
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Example 6.1
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where x[i] is given by (6.13). The discrete-time impulse is denoted by δ[i]. Conse-
quently, δ[0] = 1 and δ[i] = 0 for all i ̸= 0.

i) T = Ts

x[i] = x(T + iTs) = x((i + 1)Ts) = x0δ[i]
Hence, ξ[i] = A[i] ∗ x[i] = A[i] ∗ x0δ[i] = x0A[i]

I i) ξ [i] = x0 A[i] ii) ξ [i] = x0
2 A[i+1]+ x0 A[i]+ x0

2 A[i−1]
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ii) T = 2Ts

x[i] = x(2Ts + iTs) = x0
2

δ[i + 1] + x0δ[i] + x0
2

δ[i − 1]

Hence, ξ[i] = A[i]∗x[i] = x0
2

A[i+1]+x0A[i]+ x0
2

A[i−1]. Observe that the decision
variable ξ[i] in this case also depends on the symbols A[i − 1] and A[i + 1]!
This is an example of so-called intersymbol interference (ISI). The sequence ξ[i] of
decision variables is plotted below.
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Note that the sequence of decision variables above in this noiseless case is quite different
from the sequence of transmitted amplitudes! In i) all amplitudes are only scaled with
x0, but in ii) above, the decision variables ξ[5] and ξ[6] are both equal to zero, and
this is due to the influence of x[i]. Observe that ξ[5] and ξ[6] are located on the
decision threshold! Hence, the corresponding symbol decisions will be very unreliable.

✷

The i:th transmitted message is represented by the amplitude A[i], and the
receiver in Figure 6.2 will use only the decision variable ξ[i] when making the
decision m̂[i]. So, let us therefore express ξ[i] in a way that reflects this (see
(6.15)),

ξ[i] = A[i]x[0]︸ ︷︷ ︸
Message term

+

∞∑

n=−∞
n ̸=i

A[n]x[i − n]

︸ ︷︷ ︸
ISI

+ wc[i]︸ ︷︷ ︸
noise

(6.17)

The desired message term A[i]x[0] ∈ {±x[0], ±3x[0], . . . ± (M − 1)x[0]}.

Compared with (6.9), the decision variable ξ[i] in (6.17) contains a component
that depends on the other messages! This component is referred to as intersym-
bol interference (ISI), and we can, to a certain extent control it by controlling
the sequence x[i],

x[i] = x(T + iTs) = [g(t) ∗ h(t) ∗ v(t)]T +iTs (6.18)

through proper choices of g(t) and v(t).

Note that if the receiver filter v(t) is matched to the pulse u(t), i.e., if v(t) =
u(Ts − t) and if Tu ≤ Ts (as in Chapter 4), then the ISI term in (6.17) is equal
to zero, since the pulse x(t) then is zero outside 0 ≤ t ≤ 2Ts, and T = Ts (this
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