

Exam in Digital Communications, EITG05

November 1, 2018

- During this exam you are allowed to use a calculator, the compendium, a printout of the lecture slides, and Tefyma (or equivalent).
- Please use a new sheet of paper for each solution. Write your anonymized assessment code + a personal identifier on each paper.
- Solutions should clearly show the line of reasoning and follow the methods presented in the course. If you use results from the compendium or lecture slides, please add a reference in your solution.
- ▶ If any data is lacking, make reasonable assumptions.

Good luck!

Determine for each of the five statements below if it is true or false. Give a motivation for each of your answers.

- (a) "Baseband PAM with M = 4 and QAM with M = 16 have the same bandwidth efficiency and the same energy efficiency."
- (b) "For the signal constellation given in the figure below, the normalized squared Euclidean distance is equal to $d_{min}^2 = 1.5$ "

(c) Consider a minimum Euclidean distance receiver (as shown in Fig. 4.8 on p. 241) used for binary transmission with the following signal alternatives:

"If the signal $z_0(t)$ is transmitted and the noise is N(t) = 0, then the decision variable ξ_1 at time T_s will be equal to zero."

- (d) *"For M-ary PSK, the spectrum* |X(f)| *of the transmitted signal* x(t) *is always symmetric around the carrier frequency* f_c *."*
- (e) "For a given symbol rate R_s , a spectral raised cosine pulse with $\beta = 1$ requires twice the bandwidth as a Nyquist pulse."

Consider the following transmitted signal s(t), where $T_s = 1 \mu s$:

- (a) Determine the message sequence m, the carrier frequency f_c , and the bit rate R_b .
- (b) Draw a constellation diagram for this signaling method, and use some Gray mapping to assign bits to the signal alternatives. Determine the corresponding sequence of transmitted bits b.

Consider now a receiver for a binary constellation with signal alternatives $z_0(t)$ and $z_1(t)$. The received signal r(t) = z(t) + N(t) is disturbed by an unknown signal N(t).

- (c) Determine the decision variables ξ_0 and ξ_1 computed by a minimum Euclidean distance receiver. Which of the signal alternatives is selected by the receiver?
- (d) Assuming the decision above was correct, draw the signal N(t) within the interval $0 \le t \le T_s$.

Remark: Parts (c) and (d) can be solved independently from (a) or (b).

A communication system can serve two users simultaneously, at carrier frequencies $f_1 = 400 \text{ MHz}$ and $f_2 = 500 \text{ MHz}$, respectively. The frequency spectrum X(f) of the combined bandpass signal $x(t) = x_1(t) + x_2(t)$ is given in the figure below:

A two-stage receiver is used to convert both signals to low-pass domain simultaneously. The second stage has the advantage that it could be implemented with digital signal processing after an analog/digital conversion of the signal.

(a) In the first stage, an analog mixer is used to create the signal

 $x_1(t) = x(t) \cdot \cos(2\pi f_3 t)$, $f_3 = 350 \text{ MHz}$.

An (ideal) analog low-pass filter with bandwidth $W_{\text{LP},1}$ is applied to this signal, resulting in the signal $x_{1,\text{LP}}(t) = x_1(t) * h_{\text{LP},1}(t)$.

Choose a suitable value for $W_{\text{LP},1}$ and draw the spectrum $X_1(f)$ of the unfiltered signal, the frequency response $H_{\text{LP},1}(f)$ of the filter, and the spectrum $X_{1,\text{LP}}(f)$ after filtering.

(b) In the second stage, the receiver creates the signal

 $x_2(t) = x_{1,\text{LP}}(t) \cdot e^{-j 2\pi f_4 t}$, $f_4 = 100 \text{ MHz}$.

A second (ideal) low-pass filter with bandwidth $W_{\text{LP},2} = 100 \text{ MHz}$ is then applied, resulting in the signal $x_{2,\text{LP}}(t) = x_2(t) * h_{\text{LP},2}(t)$.

Draw the spectra $X_2(f)$ and $X_{2,LP}(f)$ of the signals before and after the filtering.

- (c) Which of the five signals x(t), $x_1(t)$, $x_{1,LP}(t)$, $x_2(t)$, and $x_{2,LP}(t)$ are real-valued / complex-valued? Explain.
- (d) Describe the difference between a coherent receiver and a non-coherent receiver.

Remark: Part (d) can be solved independently from (a), (b), or (c).

Consider a communication system employing 4 PAM modulation with equally likely signal alternatives. The combination of the transmit pulse g(t), channel filter h(t), and receiver filter v(t) can be written as x(t) = g(t) * h(t) * v(t). The signal is sampled in the receiver at time instants $\mathcal{T} + i T_s$, i = 0, 1, 2, ...

(a) We want to transmit the amplitude sequence A[0] = 1, A[1] = 3, A[2] = -1, A[3] = -1. Assume that $T_s = 2 \mu s$ and the signal x(t) is given in the figure below:

Draw the signal y(t) at the output of the receiver filter in the interval $0 < t < 10 \,\mu s$ in the absence of noise, i.e., w(t) = 0. Does ISI occur?

Assume now transmission with a rectangular pulse $g(t) = g_{rec}(t)$ of duration $T = 1 \, \mu s$ and a multipath channel with $h(t) = \delta(t) + 0.5 \cdot \delta(t - 2T)$.

(b) Let the impulse response of the receiver filter be chosen as v(t) = g(T - t).

Draw the corresponding signal x(t). For the case $T_s = 2 \mu s$ draw the discrete impulse response x[i]. Does ISI occur? Determine the largest symbol rate R_s that can be achieved without ISI.

(C) Let us instead use a receiver filter that is matched to the signal at the output of the channel filter. Draw the corresponding impulse response v(t). What is now the largest symbol rate R_s that can be achieved without ISI?

Consider a communication system with binary antipodal baseband PAM signaling. The pulse shape g(t) and pulse duration $T = T_s/2$ are chosen such that a bandwidth efficiency of $\rho = 1/4$ is achieved with a bit rate of $R_b = 100$ kbps. The system bandwidth W is measured by the main-lobe.

- (a) Assume that BPSK modulation is used instead. What is the bandwidth efficiency ρ in this case?
- (b) Consider again the original signaling method. Is it possible to change the pulse shape g(t) in such a way that $\rho = 1$ can be achieved without changing the bit rate R_b and without introducing ISI? Motivate your answer.
- (c) Assume now that a rectangular pulse $g(t) = g_{rec}(t)$ with amplitude A and duration $T = T_s/2$ is used. The parameter of the additive white Gaussian noise is equal to $N_0 = 2 \cdot 10^{-20} \, [W/Hz]$ and the propagation attenuation is $\alpha = 0.0002$. What is the smallest amplitude A to ensure that the symbol error probability P_s satisfies $P_s \leq 10^{-9}$?
- (d) In order to increase the bit rate R_b , you are considering *M*-ary baseband PAM signaling with equally likely signal alternatives. To be able to fulfill the same requirements on P_s as in (c) you are allowed to reduce the energy efficiency of the system by 15 dB.

How much can you increase R_b by only changing the modulation order M?