(a) True.

 $d_{min}^2 = 4/5$ for both cases.

16 QAM: $\rho = k \cdot \rho_{BPSK} = 4 \cdot \rho_{BPSK}$.

Baseband PAM: $\rho = 2 \cdot \rho_{\text{PAM,bp}} = 2 \cdot 2 \cdot \rho_{\text{BPSK}}$.

(b) False.

The signals are antipodal, which means that $d_{min}^2=2$.

(c) False.

$$\xi_1=\int_0^{T_s}r(t)\cdot z_1(t)dt-\frac{E_1}{2}$$
, which is equal to $\int_0^{T_s}z_0(t)\cdot z_1(t)dt-\frac{E_1}{2}$ if $N(t)=0$. Since $z_0(t)$ and $z_1(t)$ are sine waves with frequency $f_0=1/T_s$ and $f_1=2/T_s$ they are orthogonal, which means that $\xi_1=-E_1/2=A^2T_s/2\neq 0$.

(d) False.

A general bandpass transmit signal x(t) can be expressed as

$$x(t) = Re\left\{ (x_I(t) + jx_Q(t)) e^{j 2\pi f_c t} \right\} = x_I(t) \cos(2\pi f_c t) - x_Q(t) \sin(2\pi f_c t)$$

Since $x_Q(t) \neq 0$ for PSK (if M > 2), the equivalent baseband signal $x_I(t) + jx_Q(t)$ is complex-valued with a spectrum that is not symmetric around f = 0. As a consequence, the bandpass signal spectrum |X(f)| is not symmetric around f_c .

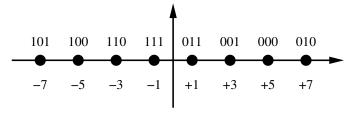
(e) True.

The one-sided bandwidth of a spectral raised cosine pulse is $W_{lp} = (1 + \beta) \cdot R_s/2$. For $\beta = 1$ this corresponds to twice the bandwidth of a Nyquist pulse ($\beta = 0$).

Answers without explanation do not give any points.

(10p)

- (a) The signal can be identified as PAM signal with amplitudes -3, +1, -7, +3, +5. With $A_{\ell}=-7, -5, -3, -1, +1, +3, +5, +7$ we obtain $\mathbf{m}=2\ 4\ 0\ 6$. $f_{c}=5\ \mathrm{MHz}$. From M=8 we get $R_{b}=k/T_{s}=3$ Mbps.
- (b) With the Gray mapping below we obtain $b = 110\ 011\ 101\ 001\ 000$.



(c) We obtain

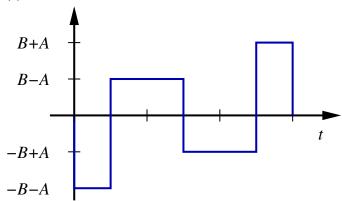
$$\xi_0 = \int_0^{T_s} r(t) \cdot z(t) dt - \frac{E_0}{2} = 0 - \frac{E_0}{2} = -A^2 T_s$$

and

$$\xi_1 = \int_0^{T_s} r(t) \cdot z(t) dt - \frac{E_1}{2} = \frac{ABT_s}{2} - A^2 T_s$$

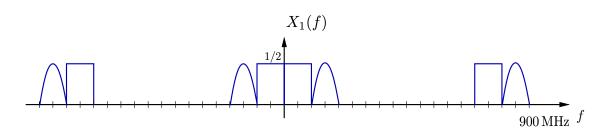
Since $\xi_1 > \xi_0$ the receiver will choose $z_1(t)$.

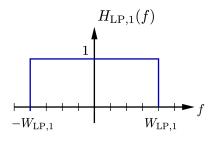
(d) $N(t) = r(t) - z_1(t)$



(10p)

(a)

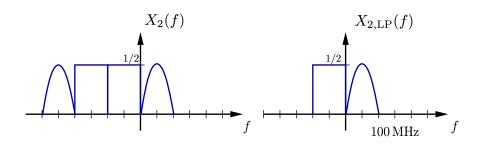






The bandwidth $W_{\rm LP,1}$ should be at least 200 MHz and at most 700 MHz.

(b)



(c) The signals x(t), $x_1(t)$, and $x_{1,LP}$ are all real-valued. Their spectrum is symmetric around f = 0 (even function).

The signals $x_2(t)$ and $x_{2,LP}$ are complex-valued. Their spectrum is not symmetric around f=0.

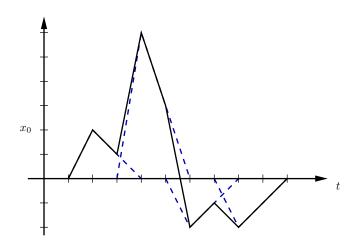
(d) Coherent receiver: (see Lecture 9)

Using both inphase and quadrature components of the signal, the coherent receiver can recover the signal correctly despite of the presence of a phase error $\phi_{err}(t)$. An estimate of the phase error $\phi_{err}(t)$ is required for coherent reception.

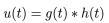
Non-coherent receiver: (see Lecture 7)

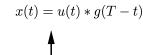
Can work well without the knowledge of the phase error. Example: differential PSK (DPSK). Disadvantage: variance of noise is increased.

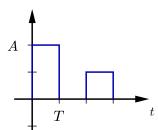
y(t)(a)

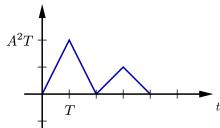


(b)







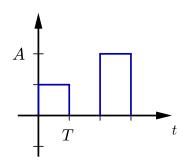


x[i]

Yes, ISI occurs for $T_s = 2T$.

No ISI for $T_s = 3T \Rightarrow R_s = 1/3 \,\mathrm{Mbps}$

(c) $v(t) = u(T_u - t)$



With $T_s = T_u = 3T$ the transmitted signals do not overlap.

 $\Rightarrow R_s = 1/T_s = 1/3 \,\mathrm{Mbps}$

- (a) Since BPSK requires a carrier it is a bandpass signal and $\rho_{BPSK} = 1/2 \cdot \rho = 1/8$.
- (b) Yes. From $\rho = R_b/W$ we get $W = 4\,R_b = 400 \mathrm{kHz} = 4/T_s = 4/(2T) = 2/T$. Baseband signaling implies that this is the *one-sided* bandwidth, which could correspond to a triangular or raised cosine pulse (see Table 2.1). Using a rectangular pulse this can be reduced to $W = 1/T = 200 \, \mathrm{kHz}$, which gives $\rho = 1/2$. Choosing $T_s = T$ we can reduce the bandwidth to $W = 100 \, \mathrm{kHz}$ and achieve $\rho = 1$.

Alternatively, choosing a Nyquist pulse we have $W=R_s/2=R_b/2$ and $\rho=2$. Choosing a spectral raised cosine pulse with $\beta=1$ this is reduced to $\rho=1$.

(c) From $P_s=P_b=Q(\sqrt{2\,\mathcal{E}_b/N_0})\leqslant 10^{-9}$ we obtain $\mathcal{X}>6.0^2=36$. With $\mathcal{E}_b=\alpha^2E_g=\alpha^2A^2T$ this results in

$$A^2 > \frac{36N_0}{\alpha^2 T_s}$$
 and $A > 1.34 \cdot 10^{-3} [V]$

(d) We have

$$d_{min}^2 = \frac{6 \log_2 M}{M^2 - 1}$$

Compared to $d_{min}^2=2$, increasing M leads to a reduction by 13.27 dB for M=16 (fine) and 18.34 dB for M=32 (too much). We can verify for M=16 that

$$P_s = 2\left(1 - \frac{1}{M}\right) Q\left(\sqrt{d_{min}^2 \mathcal{E}_b/N_0}\right) < 10^{-9}$$

i.e., the factor 2(1-1/M) is negligible. We can achieve $R_b=k/T_s=400$ kbps.

(10p)