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Digital Communications

We are in a global digital (r)evolution

� Mobile data and telephony (GSM, EDGE, 3G, 4G, 5G)
� Digital radio and television, Bluetooth, WLAN
� Data storage, CD, DVD, Flash, magnetic storage
� Optical fiber, DSL (long range, high rate)
� Cloud computing, big data, distributed storage
� Connected devices, Internet of things, machine-to-machine

communication, distributed control, cyber physical systems

The large number of different application scenarios require flexible
communication solutions (data rate / delay / reliability / complexity)

Remark storage of data falls also into the category of a
communication system (why?)
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What is communication?

� The purpose of a communication system is to transmit messages
(information) from a source to a destination
Examples: sound, picture, movie, text, etc.

� The messages are converted into signals that are suitable for
transmission

� The physical medium for transmission is called the channel

information
Source of Channel Receiver information

User of

Information
signal

Transmitted
signal

Received
signal

Estimate of
information signal

Transmitter

� The received signal is used to estimate the messages

What are analog / digital signals?
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Analog versus digital
� Analog communication:

both source and processing are analog
� Digital communication:

the source messages are digital, i.e., can be represented
by discrete numbers (digits)

Example 1: I speak and you listen to the acoustic sound wave

Example 2: I record my speech to MP3 and send it to you,
who plays it back on your computer or phone

Example 3: I use morse code and a flashlight to transmit
a message to my neighbor

In all cases some analog medium has to be used during
the transmission at some point
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Scope of this course

b[i]^

Transmitter
s(t) r(t)

ReceiverChannel
b[i]

� Transmitter principles: bits to analog signals (Chap. 2)
� Receiver principles: analog noisy signals to bits (Chap. 4,5,6)
� Characteristics of the communication link (Chap. 3,6)

Requirements:
� Data should arrive correctly at the receiver
� High bit rates are desirable
� Energy/power efficiency
� Bandwidth efficiency

What are the technical solutions and challenges?
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Not in this course

� Analog to digital conversion, sampling theorem, quantization
⇒ basic signals & systems or signal processing course

� Source coding (compression)
⇒ covered in information theory course (elective)

� Channel coding (robust and reliable communication)
⇒ covered in separate course (elective)

� Cryptography (secure communication)
⇒ covered in separate course (elective))

There exist a large number of specialized courses that can be taken
after this basic course.

There is also a project course in wireless communications.
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The Transmitter

How can we map digital data to analog signals?

b[i] = 1 0 1 1 0 1 0 1 0 0 1 1

A simple approach:
apply some voltage A during transmission of a 1

t

s(t)

T

A

Basic operation: (more general)
represent the sequence of information bits b[i] by a sequence of
analog waveforms, resulting in the transmit signal s(t)
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The Transmitter

� The analog waveform corresponding to the bit b[i] can be written
as a time-shifted version of an elementary pulse g(t)

A

t t

A

i Tb i Tb + TT

g(t) g(t− i Tb)

� Tb is the information bit interval, while T is the pulse duration
� For now we assume that T ≤ Tb, i.e., the pulses do not overlap
� We can now represent the transmit sequence s(t) as follows

s(t) = b[0]g(t)+b[1]g(t−Tb)+b[2]g(t−2Tb)+ · · ·
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Variations of our signaling example

� In our example we only send a signal when b[i] = 1
This modulation type is called on-off signaling

� Instead we could send a pulse with amplitude −A for b[i] = 0:

t

s(t)

T

A

−A

This modulation type is called antipodal signaling

� We could also choose a different pulse shape g(t)

In this chapter: different modulation types and their properties
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Another pulse example ( → p. 10)
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What are the input
sequences b[i] here?
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What data rate can we achieve?

� We could also choose a shorter pulse, with T < Tb (what for?)

A

t

T Tb

s(t)

� An important parameter is the information bit rate

Rb =
B
τ
[bps] (bits per second) ,

if the source produces B information bits during τ seconds
� If we avoid overlapping pulses we need T ≤ Tb and

Rb =
1
Tb

≤ 1
T

Observe: T determines the pulse length and Tb the rate
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What bandwidth is required?

� The bandwidth W of the transmit signal is a valuable resource

S(f)

f
fc

W

� For typical pulses g(t) the bandwidth W is proportional to 1
T

� More details about the bandwidth of s(t) follow next week
� A challenging goal is to achieve a large bandwidth efficiency

ρ =
Rb

W

[
b/s
Hz

]

Question: What happens when the pulse duration gets small?
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Increasing the message alphabet

� Up to this point we have considered binary signaling only
� Each bit b[i] was mapped to one of two signals s0(t) or s1(t)
� More generally, we can combine k bits b1[i],b2[i], . . .bk[i] to a

single message m[i], which then is mapped to a signal s�(t)

b2[i]

b1[i]

bk[i]

...
b Serial

to
parallel

Binary to
decimal

conversion,
see (2.22)

m[i]
s(t)

=0
{s  (t)}

M-1

� In case of M-ary signaling, one of M = 2k messages m[i] is
transmitted by its corresponding signal alternative

s�(t) ∈ {s0(t),s1(t), . . . ,sM−1(t)}
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M-ary signaling
Example: k = 2, M = 22 = 4
The binary sequence

bn[i] = 1 0 1 1 0 1 0 1 0 0 1 1

is mapped by
m[i] =

k

∑
n=1

bn[i] 2n−1 = b1[i]+b2[i] ·2

to M = 4 signal alternatives

b[i] = 00 ↔ m[i] = 0 ↔ s0(t) b[i] = 10 ↔ m[i] = 1 ↔ s1(t)

b[i] = 01 ↔ m[i] = 2 ↔ s2(t) b[i] = 11 ↔ m[i] = 3 ↔ s3(t)

The message sequence becomes

m[i] = 1 3 2 2 0 3

With k = 14 there are M = 16384 signal alternatives
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Symbol rate versus bit rate

� Since k information bits are transmitted with each symbol, the
symbol interval (symbol time) becomes

Ts = k Tb

� Accordingly, the symbol rate (signaling rate) is given by

Rs =
1
Ts

[
symbols

s

]
=

Rb

k

� When the message equals m[i] = j then sj(t− iTs) is sent

s(t) = sm[0](t)+ sm[1](t−Ts)+ sm[2](t−2Ts)+ · · ·

How does k affect the bandwidth efficiency ρ?

Remark: Be careful with the different definitions of time:
t: time variable T: pulse duration Tb: bit time Ts: symbol time
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The Channel

� The channel is often modeled as time-invariant filter with noise

s(t) r(t)

h(t) +

w(t)

� h(t) is the channel impulse response and w(t) the additive noise
� The received signal becomes

r(t) = s(t)∗h(t)+w(t) =
∫ ∞

−∞
h(τ)s(t− τ) dτ +w(t)

� For now we assume the simple case (α: attenuation)

h(t) = α δ (t) ⇒ r(t) = α s(t)+w(t)
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Example: noisy signal at the receiver (p. 13)
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The Receiver
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� Due to the attenuation α during transmission, the noise w(t) has
a strong impact on the received signal r(t)

� A well designed receiver can still detect the symbols correctly!
In this example, only 1 of 105 bits will be wrong in average

� We will learn about the receiver and its performance later,
in Chapters 4 and 5
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Bit Errors
� The bit error probability is an important measure of

communication performance
� It is defined as the average number of information bit errors per

detected information bit

Pb =
E{Berr}

B

Example:
� Assume a bit rate of 1 Mbps and that 10 bit errors occur per hour

on the average. What is the bit error probability?
� The total number of bits in an hour is

B = 1000000 ·60 ·60 = 3.6 ·109

This gives

Pb =
10
B

= 2.78 ·10−9

⇒ Computer simulations become very time consuming!
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Signal energy and power

� The symbol energy E� of a signal alternative s�(t) is given by

E� =
∫ Ts

0
s2
�(t)dt < ∞ , �= 0,1, . . . ,M−1

� An important system parameter is the average symbol energy

Es =
M−1

∑
�=0

P� E� , P� = Pr{m[i] = �}

and the average signal energy per information bit

Eb =
Es

k

� The average signal power is then given by

P = Rs Es =
Rb

k
· k Eb = Rb Eb
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Signal energy and power

� The attenuation α and the noise w(t) determine the quality of a
communication link

r(t) = α s(t)+w(t)

Example:
If a transmitted signal s(t) has energy Eb, how much energy Eb is then
in the received signal z(t) = α · s(t) if α = 0.001?

� Using z2(t) = α2s2(t) we obtain

Pz = α2 P = α2RbEb

and Eb =
Pz

Rb
= α2 P

Rb
= α2Eb

� If α = 0.001 then the power is reduced by a factor 10−6

This will increase the bit error probability!
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How well can we distinguish two signals?
� The squared Euclidean distance between two signals si(t) and

sj(t) is defined as

D2
i,j =

∫ Ts

0
(si(t)− sj(t))

2 dt

=
∫ Ts

0
s2

i (t)+ s2
j (t)−2si(t)sj(t)dt

= Ei +Ej −2
∫ Ts

0
si(t)sj(t)dt

� Two signals are antipodal if

si(t) =−sj(t) , 0 ≤ t ≤ Ts

� Two signals are orthogonal if∫ Ts

0
si(t)sj(t)dt = 0

Antipodal signals have larger Euclidean distance
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Euclidean distance example M = 2
Case 1: on-off signaling

t

s(t)

T

A

s0(t) = A and s1(t) = 0 for 0 < t < Ts = T, which gives D2
0,1 = 2Eb

Observe: on-off signaling is orthogonal
Case 2: antipodal signaling

t

s(t)

T

A

−A

s0(t) = A and s1(t) =−A for 0 < t < Ts = T, and D2
0,1 = 4Eb
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Examples of pulse shapes: Appendix D
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Figure D.1: grec(t)/A.
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1. The rectangular pulse:

grec(t) =

{
A , 0 ≤ t ≤ T

0 , otherwise
(D.1)

Eg =

∫ T

0

g2rec(t)dt =

∫ ∞

−∞
|Grec(f)|2df = A2T (D.2)
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Examples of pulse shapes: Appendix D
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5. The time raised cosine pulse:

grc(t) =

{
A

2 (1− cos(2πt/T )) , 0 ≤ t ≤ T

0 , otherwise
(D.18)

Eg = 3A2T/8 (D.19)
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Example: noisy signal at the receiver (p. 13)
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Euclidean distance example M = 2
Case 1: on-off signaling

t

s(t)

T

A

s0(t) = A and s1(t) = 0 for 0 < t < Ts = T, which gives D2
0,1 = 2Eb

Observe: on-off signaling is orthogonal
Case 2: antipodal signaling

t

s(t)

T

A

−A

s0(t) = A and s1(t) =−A for 0 < t < Ts = T, and D2
0,1 = 4Eb
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How well can we distinguish two signals?

� The squared Euclidean distance between two signals si(t) and
sj(t) is defined as

D2
i,j =

∫ Ts

0
(si(t)− sj(t))

2 dt

=
∫ Ts

0
s2

i (t)+ s2
j (t)−2si(t)sj(t)dt

= Ei +Ej −2
∫ Ts

0
si(t)sj(t)dt

� The symbol energy E� of a signal alternative s�(t) is given by

E� =
∫ Ts

0
s2
�(t)dt < ∞ , �= 0,1, . . . ,M−1
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Signal constellations

b2[i]

b1[i]

bk[i]

...

b Serial
to

parallel

Binary to
decimal

conversion,
see (2.22)

m[i]
s(t)

=0
{s  (t)}

M-1

� In case of M-ary signaling, one of M = 2k messages m[i] is
transmitted by its corresponding signal alternative

s�(t) ∈ {s0(t),s1(t), . . . ,sM−1(t)}
� The signal constellation is the set of possible signal alternatives
� The mapping defines which message is assigned to which signal
� When the message equals m[i] = j then sj(t− iTs) is sent

s(t) = sm[0](t)+ sm[1](t−Ts)+ sm[2](t−2Ts)+ · · ·

Question: how should we choose M distinguishable signals?
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Pulse Width Modulation (PWM)
� In pulse width modulation the message modulates the duration T

of a pulse c(t) within the symbol interval Ts

s�(t) = c
(

t
t�

)
, �= 0,1, . . . ,M−1

� The duration of the pulse c(t) is equal to T = 1
� It follows that s�(t) is zero outside the interval 0 ≤ t ≤ t�
� It is assumed that t� < Ts
� Average symbol energy: Es = Ec t�

Example:

A

t

s(t) Ts

t�

Used in control applications, not much for data transmission
(e.g., speed of CPU fan, LED intensity)
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Pulse Position Modulation (PPM)
� In pulse position modulation the message modulates the position

of a short pulse c(t) within the symbol interval Ts

s�(t) = c
(

t− �
Ts

M

)
, �= 0,1, . . . ,M−1

� The duration T of the pulse c(t) has to satisfy T ≤ Ts/M
� The pulses are orthogonal and we get

Es = Ec , D2
i,j = Ei +Ej = 2 Ec

Example:

bT bT2 bT3 bT4 bT5 bT6 bT7

2
(1) (0) (1) (1) (1) (0)

-2

s(t)

t

(0)

Used for low-power optical links (e.g. IR remote controls)
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Pulse Amplitude Modulation (PAM)

� In pulse amplitude modulation the message is mapped into the
amplitude only:

s�(t) = A� g(t) , �= 0,1, . . . ,M−1

� PAM is a natural generalization of binary on-off signaling and
antipodal signaling, which are special cases for M = 2

� A common choice are equidistant amplitudes located
symmetrically around zero:

A� =−M+1+2� , �= 0,1, . . . ,M−1
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Example of 4-ary PAM
� Example: M = 4, A0 =−3, A1 =−1, A2 =+1, A3 =+3
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3

2 4 6 8
t/Ts

s(
t)
/A

� The same constellation, defined by the amplitudes

{A�}M−1
�=0 = {±1,±3,±5, . . . ,±(M−1)}

could also be used with other mappings

What is the message sequence m[i]?
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Symbol Energy of PAM

� The symbol energy of a PAM signal is

E� =
∫ Ts

0
s2
�(t) dt =

∫ Ts

0
A2
� g2(t) dt

� Using

Eg =
∫ Ts

0
g2(t) dt

we can write the average symbol energy as

Es = Eg

M−1

∑
�=0

P� A2
�

� Often the messages are equally likely, i.e., P� =
1
M = 2−k, and for

the symmetric constellation from above we get

Es = Eg
M2 −1

3
.
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Euclidean distances of PAM signals

� The squared Euclidean distance between two PAM signal
alternatives is

D2
i,j =

∫ Ts

0
(si(t)− sj(t))

2 dt = Eg (Ai −Aj)
2

� With A� =−M+1+2� this becomes

D2
i,j = 4Eg (i− j)2

Compare this with Example 2.7 on page 28
� We will later see that the minimum Euclidean distance mini,j Di,j

strongly influences the error probability of the receiver
� For this reason, equidistant constellations are often used
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Bandpass Signals

� In many applications we want to transmit signals at high
frequencies, centered around a carrier frequency fc

� A typical bandpass signal has the form

s(t) = A(t) · cos
(
2π f (t) t + ϕ(t)

)
� The general idea of carrier modulation techniques is to map the

messages m[i] to the different signal parameters:
� PAM: amplitude A(t)
� PSK: phase ϕ(t)
� FSK: frequency f (t)
� QAM: amplitude A(t) and phase ϕ(t)
� OFDM: amplitude A(t), phase ϕ(t), and frequency f (t)

Remark:
analog modulation (AM or FM) changes the parameters
by means of a continuous input signal
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Bandpass M-ary PAM

� To modulate the pulse amplitude, we can multiply the original
PAM signal s(t) with a sinusoidal signal

sbp(t) = s(t) · cos(2π fc t) =
∞

∑
i=0

Am[i] g(t− i Ts) · cos(2π fc t)

Example:
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Phase Shift Keying (PSK)

� We have seen that with PAM signaling the message modulates
the amplitude A� of the signal s�(t)

� The idea of phase shift keying signaling is to modulate instead
the phase ν� of s�(t)

s�(t) = g(t) cos(2π fc t + ν�) , �= 0,1, . . . ,M−1 ,

� M = 2: binary PSK (BPSK) with ν0 = 0 and ν1 = π is equivalent to
binary PAM with A0 =+1 and A1 =−1

� M = 4: 4-ary PSK is also called quadrature PSK (QPSK)
� If we choose

fc = n Rs

for some positive integer n, then n full cycles of the carrier wave
are contained within a symbol interval Ts
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Example of QPSK
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fc = 2 Rs , ν0 = 0, ν1 = π/2, ν2 = π, and ν3 = 3π/2

What is the message sequence m[i]?
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Symmetric M-ary PSK

� Normally, the phase alternatives are located symmetrically on a
circle

ν� =
2π �

M
+ νconst , �= 0,1, . . . ,M−1 ,

where νconst is a contant phase offset value

� If P� =
1
M , and fc � Rs, then the average symbol energy is

Es =
Eg

2

and D2
i,j = Eg (1− cos(νi −νj))

� PSK has a constant symbol energy
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Frequency Shift Keying (FSK)

� Instead of amplitude and phase, the message can modulate the
frequency f�

s�(t) = A cos(2π f� t + ν) , �= 0,1, . . . ,M−1

� Amplitude A and phase ν are constants
� In many applications the frequency alternatives f� are chosen

such that the signals are orthogonal, i.e.,∫ Ts

0
si(t) sj(t) dt = 0 , i �= j

� If ν = 0 or ν =−π/2 (often used), then we can choose

f� = n0
Rs

2
+ � I

Rs

2
def
= f0 + � f∆ , �= 0,1, . . . ,M−1 ,

where n0 and I are positive integers
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Example of 4-ary FSK
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What is the message sequence m[i]?
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Quadrature Amplitude Modulation (QAM)

� With QAM signaling the message modulates the amplitudes of
two orthogonal signals (inphase and quadrature component)

s�(t) = A� g(t) cos(2π fc t)−B� g(t) sin(2π fc t) , �= 0,1, . . . ,M−1

� We can interpret s�(t) as the sum of two bandpass PAM signals

� Motivation: We can transmit two signals independently using
the same carrier frequency and bandwidth

With QAM we can change both amplitude and phase
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Quadrature Amplitude Modulation (QAM)

s�(t) = A� g(t) cos(2π fc t)−B� g(t) sin(2π fc t)

� The signal s�(t) can also be expressed as

s�(t) = g(t)
√

A2
�
+B2

�
cos(2π fc t + ν�)

� It follows that QAM is a generalization of PSK:

selecting A2
� +B2

� = 1 we can put the information into ν� and get

A� = cos(ν�) , B� = sin(ν�)
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Energy and Distance of M-ary QAM

� Choosing fc � Rs it can be shown that

E
�
=

(
A2
� +B2

�

) Eg

2

D2
i,j =

(
(Ai −Aj)

2 +(Bi −Bj)
2) Eg

2
� A common choice are equidistant amplitudes located

symmetrically around zero: (two
√

M-ary PAM with k/2 bits each)

{A�}
√

M−1
�=0 = {B�}

√
M−1

�=0 =
{
±1,±3,±5, . . . ,±

(√
M−1

)}
� For equally likely messages P� =

1
M , this results in the average

energy

Es =
M−1

∑
�=0

1
M

E� =
2(M−1)

3
Eg

2
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Geometric interpretation

� It is possible to describe QAM signals as two-dimensional
vectors in a so-called signal space

� For this the signal

s�(t) = A� g(t) cos(2π fc t)−B� g(t) sin(2π fc t)

is written as
s�(t) = s�,1 φ1(t)+ s�,2 φ2(t)

� Here s�,1 = A�

√
Eg/2 and s�,2 = B�

√
Eg/2 are the coordinates

� The functions φ1(t) and φ2(t) form an orthonormal basis of a
vector space that spans all possible transmit signals:

φ1(t) =
g(t) cos(2π fc t)√

Eg/2
, φ2(t) =−g(t) sin(2π fc t)√

Eg/2

This looks abstract, but can be very useful!
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Signal space representation of QAM

� Now we can describe each signal alternative s�(t) as a point with
coordinates (s�,1,s�,2) within a constellation diagram

4-QAM 16-QAM 64-QAM

φ2
φ2φ2

φ1 φ1 φ1

φ1

s�,1 = A�

√
Eg/2 , s�,2 = B�

√
Eg/2

� The signal energy E� and the Euclidean distance D2
i,j can

be determined in the signal space
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Signal space representation of PSK and PAM
� PSK and PAM can be seen as a special cases of QAM:

2-PSK
φ2

z1 z0
φ1

(ν =2π
M

)

4-PSK (QPSK)
φ2

φ1

z2

z1

z3

z0

φ2

8-PSK

φ1

z7z6

z5

z4

z3

z2
z1

z0
s0s1 s0

s1

s2

s3

s0

s1

s2
s3

s4

s5
s6

s7

s�,1 = cos(ν�)
√

Eg/2 , s�,2 = sin(ν�)
√

Eg/2

2-PAM 4-PAM 8-PAM

φ1 φ1 φ1
z0 z0z0 z1 z1 z2 z3 z4z1 z2 z3 z5 z6 z7

0 0 0

s0 s1 s0 s1 s2 s3 s0 s1 s2 s3 s4 s5 s6 s7

s�,1 = (−M+1+2 �)
√

Eg
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Multitone Signaling: OFDM

� With FSK signaling, orthogonal signal alternatives are
transmitted at different frequencies

� Disadvantage: only one frequency can be used at the same time
� Orthogonal Frequency Division Multiplexing (OFDM):

use QAM at N orthogonal frequencies and transmit the sum
� OFDM is widely used in modern communication systems:

WLAN, LTE, DAB (radio), DVB (TV), DSL

Example:
N = 4096
64-ary QAM at each frequency (carrier)

Then an OFDM signal carries 4096 ·6 = 24576 bits

How does a typical OFDM signal look like?

How can such a system be realized in practice?
⇒ OFDM will be explained in detail in the advanced course
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Example of an OFDM symbol
N = 16, 16-ary QAM in each subcarrier (p. 52)
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x(t) =
N−1

∑
n=0

(aI [n] g(t) cos(2π fn t)−aQ[n] g(t) sin(2π fn t)) , 0 ≤ t ≤ Ts

In this example the symbol x(t) carries 16 ·4 = 64 bits
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What did we do last week?

Concepts of M-ary digital signaling:
� Modulation of amplitude, phase or both: PAM, PSK, QAM
� Orthogonal signaling: FSK, OFDM
� Pulse position and width: PPM, PWM

We have paid special attention to:
� Average symbol energy Es

� Euclidean distance Di,j

� Both values could be related to the energy Eg of the pulse g(t)
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Signal space representation of QAM

� Now we can describe each signal alternative s�(t) as a point with
coordinates (s�,1,s�,2) within a constellation diagram

4-QAM 16-QAM 64-QAM

φ2
φ2φ2

φ1 φ1 φ1

φ1

s�,1 = A�

√
Eg/2 , s�,2 = B�

√
Eg/2

� The signal energy E� and the Euclidean distance D2
i,j can

be determined in the signal space
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Geometric interpretation

� It is possible to describe QAM signals as two-dimensional
vectors in a so-called signal space

� For this the signal

s�(t) = A� g(t) cos(2π fc t)−B� g(t) sin(2π fc t)

is written as
s�(t) = s�,1 φ1(t)+ s�,2 φ2(t)

� Here s�,1 = A�

√
Eg/2 and s�,2 = B�

√
Eg/2 are the coordinates

� The functions φ1(t) and φ2(t) form an orthonormal basis of a
vector space that spans all possible transmit signals:

φ1(t) =
g(t) cos(2π fc t)√

Eg/2
, φ2(t) =−g(t) sin(2π fc t)√

Eg/2

This looks abstract, but can be very useful!

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 3



Signal space representation of PSK and PAM
� PSK and PAM can be seen as a special cases of QAM:

2-PSK
φ2

z1 z0
φ1

(ν =2π
M

)

4-PSK (QPSK)
φ2

φ1

z2

z1

z3

z0

φ2

8-PSK

φ1

z7z6

z5

z4

z3

z2
z1

z0
s0s1 s0

s1

s2

s3

s0

s1

s2
s3

s4

s5
s6

s7

s�,1 = cos(ν�)
√

Eg/2 , s�,2 = sin(ν�)
√

Eg/2

2-PAM 4-PAM 8-PAM

φ1 φ1 φ1
z0 z0z0 z1 z1 z2 z3 z4z1 z2 z3 z5 z6 z7

0 0 0

s0 s1 s0 s1 s2 s3 s0 s1 s2 s3 s4 s5 s6 s7

s�,1 = (−M+1+2 �)
√

Eg
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Multitone Signaling: OFDM

� With FSK signaling, orthogonal signal alternatives are
transmitted at different frequencies

� Disadvantage: only one frequency can be used at the same time
� Orthogonal Frequency Division Multiplexing (OFDM):

use QAM at N orthogonal frequencies and transmit the sum
� OFDM is widely used in modern communication systems:

WLAN, LTE, DAB (radio), DVB (TV), DSL

Example:
N = 4096
64-ary QAM at each frequency (carrier)

Then an OFDM signal carries 4096 ·6 = 24576 bits

How does a typical OFDM signal look like?

How can such a system be realized in practice?
⇒ OFDM will be explained in detail in the advanced course
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Example of an OFDM symbol
N = 16, 16-ary QAM in each subcarrier (p. 52)
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x(t) =
N−1

∑
n=0

(aI [n] g(t) cos(2π fn t)−aQ[n] g(t) sin(2π fn t)) , 0 ≤ t ≤ Ts

In this example the symbol x(t) carries 16 ·4 = 64 bits
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Bandwidth of Transmitted Signal
� The bandwidth W of a signal is the width of the frequency range

where most of the signal energy or power is located

S(f)

f
fc

W

� W is measured on the positive frequency axis
� The bandwidth is a limited and precious resource
� We must have control of the bandwidth and use it efficiently

Questions:
What is the relationship between information bit rate
and required bandwidth?

How does the bandwidth depend on the signaling method?
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United States Frequency Allocations (2016)

Source: https://www.ntia.doc.gov/category/spectrum-management
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Energy Spectrum
� We have seen last week that the energy of a signal x(t) can be

determined as
Ex =

∫ ∞

−∞
x2(t) dt

� The function x2(t) shows how the energy Ex is distributed along
the time axis

� According to Parseval’s relation we can alternatively express the
energy as

Ex =
∫ ∞

−∞
|X(f )|2 df ,

where X(f ) denotes the Fourier transform of the signal x(t)
� The function |X(f )|2 shows how the energy Ex is distributed in the

frequency domain

⇒ We need the Fourier transform as a tool for finding the
bandwidth of our signals
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Fourier Transform
� The Fourier transform of a signal x(t) is given by

X(f ) = F{x(t)}=
∫ ∞

−∞
x(t) e−j2π f t dt = XRe(f )+ j XIm(f ) ,

where j =
√
−1, i.e., the solution to j2 =−1

� We can also express X(f ) in terms of magnitude |X(f )| and
phase ϕ(f ) = arg X(f ) (argument)

X(f ) = |X(f )| ejϕ(f )

� Then
|X(f )|=

√
X2

Re(f )+X2
Im(f )

XRe(f ) = |X(f )| cos(ϕ(f ))
XIm(f ) = |X(f )| sin(ϕ(f ))
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Fourier Transform
� The original signal x(t) can then be expressed in terms of the

inverse Fourier transform as

x(t) = F−1{X(f )}=
∫ ∞

−∞
X(f ) e+j2π f t df =

∫ ∞

−∞
|X(f )| e+j(2π f t+ϕ(f )) df

� Interpretation: any signal x(t) can be decomposed into
sinusoidal components at different frequencies and phase offsets

� The magnitude |X(f )| measures the strength of the signal
component at frequency f

� Assuming x(t) is a real-valued signal this can be written as

x(t) = 2
∫ ∞

0
|X(f )| cos(2π f t+ϕ(f )) df

and it can be shown that

|X(f )|= |X(−f )| , (even) ϕ(f ) =−ϕ(−f ) , (odd)
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Example: rectangular pulse
� Let us compute the Fourier transform of the following signal:

xrec(t) =

{
A −T

2 ≤ t ≤ T
2

0 otherwise
� We get

Xrec(f ) = F{xrec(t)}=
∫ ∞

−∞
xrec(t) e−j2π f t dt

=
∫ +T/2

−T/2
A e−j2π f t dt =

[
−Ae−j2π f t

j2π f

]+T/2

−T/2

=
A

π f
ejπ f T − e−jπ f T

2j
= AT

sin(π f T)
π f T

� We have found that

xrec(t)←→ AT
sin(π f T)

π f T
= AT sinc(fT)

Notation: x(t)←→F{x(t)}
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Example 2.17: sketch of Xrec(f )

–0.2

0.2

0.4

0.6

0.8
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X

r
ec
(f
)/
X

r
ec
(0
)

fT

� the Fourier transform X(f ) is centered around f = 0: baseband
� we observe a main-lobe and several side-lobes
� Note: fT = 2 means that f = 2 ·1/T

Sketch the function for T = 10−6 s and T = 2 ·10−6 s
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Example 2.17: sketch of |Xrec(f )|2
� Consider now the normalized energy spectrum in dB

10log10

( |Xrec(f )|2
ExT

)
= 10log10

(
sin(π f T)

π f T

)2

–30

–25

–20

–15

–10

–5

–6 –4 –2 2 4 6fT
dB

⇒ most energy is contained in the main-lobe (90.3 %)
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Fourier transform of time-shifted signals
� Did you notice the difference between xrec(t) in this example and

the elementrary pulse grec(t) which we used last week?

xrec(t) =

{
A −T

2 ≤ t ≤ T
2

0 otherwise
, grec(t) =

{
A 0 ≤ t ≤ T
0 otherwise

� The pulse grec(t) = xrec(t−T/2) is a time-shifted version of xrec(t)
� In general, the Fourier transform of a signal y(t) = x(t− td) with a

constant delay td becomes

Y(f )=
∫ ∞

−∞
x(t−td) e−j2π f t dt=

∫ ∞

−∞
x(τ) e−j2π f (τ+td) dτ =X(f ) e−j2π f td

� Observe: the delay td changes only the phase of Y(f )
� The energy spectrum is not affected by time-shifts

|Xrec(f )|2 = |Grec(f )|2 (compare App. D.1)
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A simple Matlab exercise
Let us plot the spectrum of the pulse grec(t)

-6 -4 -2 0 2 4 6

fT

-1
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fT

0

0.5

1

-6 -4 -2 0 2 4 6

fT
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0

Re{Grec(f)} Im{Grec(f)}

|Grec(f)|2

10 log10 |Grec(f)|2
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A simple Matlab exercise
And this is how it was done:

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 3



Fourier transform of other pulses
� The Fourier transforms G(f ) and sketches of the energy spectra

|G(f )|2 are given for a number of different elementary pulses g(t)
in Appendix D

� Example: half cycle sinusoidal pulse

0
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0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

g h
c
s
(t
)/
A

t/T

Figure D.7: ghcs(t)/A.

ghcs(t) =

{
A sin(πt/T ) , 0 ≤ t ≤ T

0 , otherwise

Eg = A2T/2

–60

–50

–40

–30

–20

–10

0
–6 –4 –2 2 4 6

dB fT

Figure D.8: |Ghcs(f)|2
EgT

in dB.

Ghcs(f) = F{ghcs(t)} =
2AT

π

cos(πfT )

1− (2fT )2
e−jπfT

Ghcs(f = ±1/2T ) = ∓jAT/2

Ghcs(n/T ) = 0 if n = ±3/2,±5/2,±7/2, . . .
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Frequency shift operations
� We have seen the effect of a time shift on the Fourier transform

g(t− td) ←→ G(f ) e−j2π f td

� In a similar way we can characterize a frequency shift fc by

g(t) ej2π fc t ←→ G(f − fc)

� Let us make use of the relation ej2π fc t = cos(2π fc t)+ j sin(2π fc t)
� We can now express this in terms of cosine and sine functions,

g(t) cos(2π fc t) ←→ G(f + fc)+G(f − fc)
2

g(t) sin(2π fc t) ←→ j
G(f + fc)−G(f − fc)

2
⇒ by simply changing the carrier frequency fc we can move
our signals to a suitable location along the frequency axis
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Example: time raised cosine pulse
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x(t) = g(t) · cos(2π fc t) = grc(t+T/2) · cos(2π fc t) , fc = 20/T
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Back to the transmitted signal

� We have seen how the Fourier transform can be used to
calculate the energy spectrum |X(f )|2 of a given signal x(t)

� Let us now look at the transmitted signal for M-ary modulation

s(t) = sm[0](t)+ sm[1](t−Ts)+ sm[2](t−2Ts)+ · · ·=
∞

∑
i=0

sm[i](t− iTs)

� Message m[i] selects the signal alternative to be sent at time iTs

� Since the information bit stream is random, the transmitted signal
s(t) consists of a sequence of random signal alternatives

How can we determine the bandwidth W of the transmitted signal?

Does the information sequence influence the spectrum? How?
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Power Spectral Density
� Since the signal has no predefined length the energy is not a

good measure (could be infinite according to our model)
� On the other hand, we know that the signal has finite power
� The power spectral density R(f ) shows how the average signal

power P is distributed along the frequency axis on average

P = Eb Rb =
∫ ∞

−∞
R(f ) df

� Most of the average signal power P [V2] will be contained within
the main-lobe of R(f ) [V2/Hz]

⇒ we can determine the signal bandwidth from R(f )

Our aim is to find R(f ) for a given modulation order M and set of M
signal alternatives (constellation)
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Power Spectral Density
Assumptions:

� The random M-ary sequence of messages m[i] consists of
independent, identically distributed (i.i.d) M-ary symbols

� The probability for each of the M = 2k symbols (messages) is
denoted by P�, �= 0,1, . . . ,M−1

� All signal alternatives s�(t) in the constellation have finite energy
� The average signal over all signal alternatives is denoted a(t),

i.e.,

a(t) =
M−1

∑
�=0

P� s�(t)

A(f ) =
M−1

∑
n=0

Pn Sn(f )

Remark: Source coding (compression) can be used to
remove or reduce correlations in the information stream
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R(f ): Main Result
� The power spectral density R(f ) can be divided into

a continuous part Rc(f ) and a discrete part Rd(f )

R(f ) = Rc(f )+Rd(f )

� The general expression for the continuous part is

Rc(f ) =
1
Ts

M−1

∑
n=0

Pn |Sn(f )−A(f )|2

=

(
1
Ts

M−1

∑
n=0

Pn |Sn(f )|2
)
− |A(f )|2

Ts

� For the discrete part we have

Rd(f ) =
|A(f )|2

T2
s

∞

∑
n=−∞

δ (f −n/Ts)
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R(f ): Main Result
� Assume now that the average signal a(t) = 0 for all t
� It follows that A(f ) = 0 for all f
� This simplifies the result to

R(f ) = Rc(f ) = Rs

M−1

∑
n=0

Pn |Sn(f )|2 = Rs E{|Sm[n](f )|2}

� These general results can also be used to study the
consequences that technical errors or impairments in the
transmitter can have on the frequency spectrum

� We will now consider various special cases used in practice
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R(f ): Binary Signaling

� In the general binary case, i.e., M = 2, we have

A(f ) = P0 S0(f )+P1 S1(f )

� This simplifies the expression for the power spectral density to

R(f ) = Rc(f ) + Rd(f )

=
P0P1

Tb
|S0(f )−S1(f )|2 +

|P0 S0(f )+P1 S1(f )|2
T2

b

∞

∑
n=−∞

δ (f −n/Tb)

(derivation in Ex. 2.20)

� We will now consider some examples from the compendium

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 3



Example 2.21
Assume equally likely antipodal signal alternatives, such that

s1(t) = −s0(t) = g(t)

where g(t) = grec(t), and grec(t) is given in (D.1). Assume also that T ≤ Tb.

i) Calculate the power spectral density R(f).

ii) Calculate the bandwidth W defined as the one-sided width of the mainlobe
of R(f), if the information bit rate is 10 [kbps], and if T = Tb/2.

Calculate also the bandwidth efficiency ρ.

iii) Estimate the attenuation in dB of the first sidelobe of R(f) compared to R(0).

� M = 2 with equally likely antipodal signaling s1(t) =−s0(t) = g(t)
� With P0 = P1 = 1/2 and S1(f ) =−S0(f ) = G(f ) we get

R(f ) = Rb |S1(f )|2 = Rb |S0(f )|2 = Rb |G(f )|2

� Details for the pulse in Appendix D
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Example 2.23
Assume equally likely antipodal signal alternatives below. Assume that s1(t) = −s0(t) =
grc(t), where the time raised cosine pulse grc(t) is defined in (D.18). Assume also that
T = Tb.

Find an expression for the power spectral density R(f). Calculate the bandwidth W ,
defined as the one-sided width of the mainlobe of R(f), if Rb is 10 [kbps]. Calculate
also the bandwidth efficiency ρ.

� Same as Example 2.21, but with grc(t) pulse
� Analogously we get

R(f ) = Rb |Grc(f )|2

� From the one-sided main-lobe we get

W = 2/T [Hz]

� Bandwidth efficiency ρ = 1/2 [bps/Hz] is the same (why?)
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Example 2.24
Assume P0 = P1 and that,

s1(t) = −s0(t) = grc(t) cos(2πfct)

with T = Tb, and fc � 1/T . Hence, a version of binary PSK signaling is considered
here (alternatively binary antipodal bandpass PAM). Calculate the bandwidth W, de-
fined as the double-sided width of the mainlobe around the carrier frequency
fc. Assume that the information bit rate is 10 [kbps]. Calculate also the bandwidth

� This corresponds to the bandpass case
� Let ghf (t) denote the high-frequency pulse

ghf (t) = grc(t)cos(2π fc t) and R(f ) = Rb |Ghf (f )|2

� Using shift operations we get

R(f ) = Rb

∣∣∣∣Grc(f + fc)
2

+
Grc(f − fc)

2

∣∣∣∣2
� From the two-sided main-lobe we get

W = 4/T [Hz]

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 3



EITG05 – Digital Communications

Lecture 4

Bandwidth of Transmitted Signals

Michael Lentmaier
Thursday, September 13, 2018



Fourier transform

X(f ) = F{x(t)}=
∫ ∞

−∞
x(t) e−j2π f t dt

= XRe(f )+ j XIm(f )

= |X(f )|ejϕ(f )

x(t) = F−1{X(f )}=
∫ ∞

−∞
X(f ) e+j2π f t df

=
∫ ∞

−∞
|X(f )| e+j(2π f t+ϕ(f )) df
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Some useful Fourier transform properties

g(at) ↔ 1

|a| G(f/a)

g(−t) ↔ G(−f)

G(t) ↔ g(−f)

g(t− t0) ↔ G(f)e−j2πft0

g(t)ej2πfct ↔ G(f − fc)

d

dt
g(t) ↔ j2πf G(f)

g∗(t) ↔ G∗(−f)

g∗(T − t) ↔ G∗(f)e−j2πfT

δ(t) ↔ 1

1(dc) ↔ δ(f)

ej2πfct ↔ δ(f − fc)

cos(2πfct) ↔ 1

2
(δ(f + fc) + δ(f − fc))

sin(2πfct) ↔ j

2
(δ(f + fc)− δ(f − fc))

αe−πα
2
t
2 ↔ e−πf

2
/α

2

→ full list in Appendix C of the compendium
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Some useful Fourier transform properties
� Consider two signals x(t) and y(t) and their Fourier transforms

x(t) ←→ X(f ) , y(t) ←→ Y(f )

� Recall the convolution operation z(t) = x(t) ∗ y(t):
x(t)

A

τ

y(t)

B

10τ
tt

τ

z(t)

AB τ

10τ 11τ
t

z(t) = x(t) ∗ y(t) =

∫ +∞

−∞
y(ν) · x(t− ν) dν

� Filtering:
x(t) ∗ y(t) ←→ X(f ) ·Y(f )

� Multiplication:

x(t) · y(t) ←→ X(f ) ∗ Y(f )
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Spectrum of time-limited signals
� Consider some time-limited signal sT(t) of duration T, with

sT(t) = 0 for t < 0 and t > T
� Assume that within the interval 0 ≤ t ≤ T, the signal sT(t) is equal

to some signal s(t), i.e.,

sT(t) = s(t) ·grec(t) ,

where grec(t) is the rectangular pulse of amplitude A = 1
� Taking the Fourier transform on both sides we get

ST(f ) = S(f ) ∗ Grec(f ) = S(f ) ∗ AT
sin(π f T)

π f T
e−jπ f T

� Since Grec(f ) is unlimited along the frequency axis, this is the
case for ST(f ) as well (convolution increases length)

Time-limited signals can never be strictly band-limited
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Some definitions of bandwidth
� Main-lobe definition:

Wlobe is defined by the width of the main-lobe of R(f )
This is how we have defined bandwidth in previous examples

� In baseband we use the one-sided width, while in bandpass
applications the two-sided width is used (positive frequencies)

� Percentage definition:
W99 is defined according to the location of 99% of the power

� For bandpass signals W99 is found as the value that satisfies∫ fc+W99/2

fc−W99/2
R(f )df = 0.99

∫ ∞

0
R(f )df

� Other percentages can be used as well: W90, W99.9
� Nyquist bandwidth

Assuming an ideal pulse with finite bandwidth (see Chapter 6)

Wnyq =
Rs

2
[Hz]
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Some definitions of bandwidth

Pulse shape Wlobe % power W90 W99 W99.9 Asymptotic
in Wlobe decay

rec 2/T 90.3 1.70/T 20.6/T 204/T f−2

tri 4/T 99.7 1.70/T 2.60/T 6.24/T f−4

hcs 3/T 99.5 1.56/T 2.36/T 5.48/T f−4

rc 4/T 99.95 1.90/T 2.82/T 3.46/T f−6

Nyquist Rs 100 0.9Rs 0.99Rs 0.999Rs ideal

Table 2.1: Double-sided bandwidth results for power spectral densities according
to (2.212). The grec(t), gtri(t), ghcs(t) and grc(t) pulse shapes are defined in
Appendix D, and T denotes the duration of the pulse. The Nyquist pulse shape
is not limited in time and it is defined in (D.49) with parameters β = 0 and
T = Ts.

� This table is useful for PAM, PSK, and QAM constellations
� Except bandwidth W, the asymptotic decay is also relevant

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 4



Pulse spectrum examples
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Figure 2.19: 10 log10

(
|G(f)|2
EgT

)
for the grec(t), ghcs(t), and grc(t) pulse shapes.

See also Example 2.26.
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From last lecture: R(f ) for Binary Signaling

� In the general binary case, i.e., M = 2, we have

A(f ) = P0 S0(f )+P1 S1(f )

� This simplifies the expression for the power spectral density to

R(f ) = Rc(f ) + Rd(f )

=
P0P1

Tb
|S0(f )−S1(f )|2 +

|P0 S0(f )+P1 S1(f )|2
T2

b

∞

∑
n=−∞

δ (f −n/Tb)

(derivation in Ex. 2.20)

� We will now consider some examples from the compendium
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Example 2.21
Assume equally likely antipodal signal alternatives, such that

s1(t) = −s0(t) = g(t)

where g(t) = grec(t), and grec(t) is given in (D.1). Assume also that T ≤ Tb.

i) Calculate the power spectral density R(f).

ii) Calculate the bandwidth W defined as the one-sided width of the mainlobe
of R(f), if the information bit rate is 10 [kbps], and if T = Tb/2.

Calculate also the bandwidth efficiency ρ.

iii) Estimate the attenuation in dB of the first sidelobe of R(f) compared to R(0).

� M = 2 with equally likely antipodal signaling s1(t) =−s0(t) = g(t)
� With P0 = P1 = 1/2 and S1(f ) =−S0(f ) = G(f ) we get

R(f ) = Rb |S1(f )|2 = Rb |S0(f )|2 = Rb |G(f )|2

� Details for the pulse in Appendix D
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Example 2.23
Assume equally likely antipodal signal alternatives below. Assume that s1(t) = −s0(t) =
grc(t), where the time raised cosine pulse grc(t) is defined in (D.18). Assume also that
T = Tb.

Find an expression for the power spectral density R(f). Calculate the bandwidth W ,
defined as the one-sided width of the mainlobe of R(f), if Rb is 10 [kbps]. Calculate
also the bandwidth efficiency ρ.

� Same as Example 2.21, but with grc(t) pulse
� Analogously we get

R(f ) = Rb |Grc(f )|2

� From the one-sided main-lobe we get

W = 2/T [Hz]

� Bandwidth efficiency ρ = 1/2 [bps/Hz] is the same (why?)
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Example 2.24
Assume P0 = P1 and that,

s1(t) = −s0(t) = grc(t) cos(2πfct)

with T = Tb, and fc � 1/T . Hence, a version of binary PSK signaling is considered
here (alternatively binary antipodal bandpass PAM). Calculate the bandwidth W, de-
fined as the double-sided width of the mainlobe around the carrier frequency
fc. Assume that the information bit rate is 10 [kbps]. Calculate also the bandwidth

� This corresponds to the bandpass case
� Let ghf (t) denote the high-frequency pulse

ghf (t) = grc(t)cos(2π fc t) and R(f ) = Rb |Ghf (f )|2

� Using shift operations we get

R(f ) = Rb

∣∣∣∣Grc(f + fc)
2

+
Grc(f − fc)

2

∣∣∣∣2
� From the two-sided main-lobe we get

W = 4/T [Hz]
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Example: discrete frequencies in R(f )
� Assume M = 2
� Let s0(t) = 0 and s1(t) = 5 with a pulse duration T = Tb/2
� With this the average signal becomes

a(t) =
s0(t)+ s1(t)

2
= 2.5 , 0 ≤ t ≤ T

� We can then write (within the pulse duration T)

s0(t) =−2.5+a(t) , s1(t) = +2.5+a(t)

Observe:
1. this method is a waste of signal energy since a(t) does not carry

any information
2. repetition of a(t) in every symbol interval creates some

periodic signal component in the time domain, which leads
to discrete frequencies in the frequency domain
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From last lecture: general R(f )
� The power spectral density R(f ) can be divided into

a continuous part Rc(f ) and a discrete part Rd(f )

R(f ) = Rc(f )+Rd(f )

� The general expression for the continuous part is

Rc(f ) =
1
Ts

M−1

∑
n=0

Pn |Sn(f )−A(f )|2

=

(
1
Ts

M−1

∑
n=0

Pn |Sn(f )|2
)
− |A(f )|2

Ts

� For the discrete part we have

Rd(f ) =
|A(f )|2

T2
s

∞

∑
n=−∞

δ (f −n/Ts)
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R(f ): M-ary PAM signals
� With M-ary PAM signaling we have

s� = A� g(t) , �= 0,1, . . . ,M−1
� Then

S�(f ) = A� G(f ) , and A(f ) =
M−1

∑
�=0

P� A� G(f )

� With this we obtain the simplified expression

R(f ) =
σ2

A
Ts

|G(f )|2 +
m2

A
T2

s
|G(f )|2

∞

∑
n=−∞

δ (f −n/Ts) ,

where mA denotes the mean and σ2
A = Es/Eg −m2

A the variance of
the amplitudes A�

� Assuming zero average amplitude mA = 0 and using P = σ2
A Eg Rs

this reduces to

R(f ) = Rc(f ) =
σ2

A
Ts

|G(f )|2 = P
Eg

|G(f )|2
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Example 2.28
Assume the bit rate Rb = 9600 [bps], M-ary PAM transmission and that mA = 0.
Determine the (baseband) bandwidth W , defined as the one-sided width of the mainlobe
of the power spectral density R(f), if M = 2, M = 4 and M = 8, respectively. Fur-
thermore, assume a rectangular pulse shape with amplitude Ag, and duration T = Ts.
Calculate also the bandwidth efficiency ρ.

� What is W for a given pulse shape and different M?
� Using T = Ts, mA = 0 and g(t) = grec(t), we have

R(f ) =
σ2

A
Ts

|Grec(f )|2

� For the given pulse we get W = 1/Ts, where Ts = k Tb

k = 1 ⇒ M = 2 ⇒ W = 9600[Hz]
k = 2 ⇒ M = 4 ⇒ W = 4800[Hz]
k = 3 ⇒ M = 8 ⇒ W = 3200[Hz]

� Bandwidth efficiency: ρ = Rb/W = k Tb/Tb = k
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What does bandwidth efficiency tell us?
In the previous example we had a bandwidth efficiency of

ρ =
Rb

W
= k

Saving bandwidth
� The previous example showed that the bandwidth W can be

reduced by increasing M
� T = Ts = k Tb increases with M
� W = 1/T = Rb/k decreases accordingly

Improving bit rate
� Assume instead that the bandwidth W is fixed in the same

example, i.e., the symbol duration Ts = T is fixed
� Then Rb = k W increases with M
� Assume for example W = 1MHz:

Rb = 1Mbps if M = 2 (k = 1)
Rb = 10Mbps if M = 1024 (k = 10)
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R(f ): M-ary QAM signals

� With M-ary QAM signaling the signal alternatives are

s�(t) = A� g(t) cos(2π fc t)−B� g(t) sin(2π fc t) , �= 0,1, . . . ,M−1

� Then the Fourier transform becomes

S�(f ) = A�

G(f + fc) + G(f − fc)
2

− j B�

G(f + fc) − G(f − fc)
2

= (A�− jB�)
G(f + fc)

2
+(A�+ jB�)

G(f − fc)
2

� Assuming a zero average signal a(t) = 0 and fc T ≥ 1 this
simplifies to

R(f ) = Rc(f ) = P
|G(f + fc)|2 + |G(f − fc)|2

2Eg
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R(f ): M-ary QAM signals

� Remember that M-ary QAM signals contain M-ary PSK and
M-ary bandpass PAM signals as special cases:

BP-PAM: B� = 0
PSK: A� = cos(ν�) , B� = sin(ν�)

� ⇒ our results for R(f ) of M-ary QAM signals include these cases

� For symmetric constellations, such that a(t) = 0, the simplified
version applies

� The bandwidth W is determined by |G(f − fc)|2 and hence the
two-sided main-lobe of |G(f )|2

⇒ if the same pulse g(t) is used then M-ary QAM, M-ary bandpass
PAM and M-ary PSK have the same bandwidth W
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Example
Bandwidth consumption for BPSK, QPSK and 16-QAM
assuming equal Rb and fc = 100Rb
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Figure 2.20: The power spectral density for binary QAM (BPSK, widest main-
lobe), 4-ary QAM (QPSK), and 16-ary QAM (smallest mainlobe). The figure
shows 10 log10(RbR(f)/P̄ ) [dB] in the frequency interval 98Rb ≤ f ≤ 102Rb.
The carrier frequency is fc = 100Rb [Hz], and a Ts = kTb long ghcs(t) pulse is
assumed. See also (2.227) and (2.230).
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R(f ): M-ary FSK signals
� With M-ary frequency shift keying (FSK) signaling the signal

alternatives are

s�(t) = A cos(2π f� t + ν) , 0 ≤ t ≤ Ts

� Choosing ν =−π/2 this can be written as

s�(t) = grec(t) sin(2π f� t) , with T = Ts ,

since s�(t) = 0 outside the symbol interval
� The Fourier transform is then

S�(f ) = j
Grec(f + f�)−Grec(f − f�)

2

� The exact power spectral density R(f ) can now be computed
by the general formula (2.202)–(2.204)
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R(f ): M-ary FSK signals
� Let us find an approximate expression for the FSK bandwidth W
� Assume that

f� = f0 + � f∆ , �= 0, . . . ,M−1

� Then the bandwidth W can be approximated by

W ≈ Rs + fM−1 − f0 + Rs = (M−1) f∆ + 2Rs

� Consider now orthogonal FSK with f∆ = I ·Rs/2 for some I > 0
� The bandwidth efficiency is then

ρ =
Rb

W
≈ Rb

(M−1) f∆ +2Rs
=

Rb(
(M−1) I/2+2

)
Rs

=
log2 M

(M−1) I/2+2

Observe: the bandwidth efficiency of orthogonal M-ary FSK gets
small if M is large
Last week we saw: M-ary FSK has good energy and Euclidean
distance properties ⇒ trade-off
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Example 2.36
Assume that orthogonal M-ary FSK is used to communicate digital information in the
frequency band 1.1 ≤ f ≤ 1.2 [MHz].

For each M below, find the largest bit rate that can be used (use bandwidth approxima-
tions):

i) M = 2 ii) M = 4 iii) M = 8 iv) M = 16 v) M = 32

Which of the M-values above give a higher bit rate than the M = 2 case?

Solution:
It is given that WM−FSK = 100 [kHz]. From (2.245), the largest bit rate is obtained
with I = 1:

Rb ≈ 105 · log2(M)

(M − 1)/2 + 2

M log2(M)
(M−1)/2+2

Rb

2 1
5/2

= 0.4 40 kbps

4 2
7/2

= 4
7
≈ 0.5714 ≈ 57 kbps

8 3
11/2

= 6
11

≈ 0.5455 ≈ 55 kbps

16 4
19/2

= 8
19

≈ 0.4211 ≈ 42 kbps

32 5
35/2

= 10
35

≈ 0.2857 ≈ 29 kbps

From this table it is seen that M = 4, 8, 16 give a higher bit rate than M = 2. �
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R(f ): OFDM-type signals
� An OFDM symbol (signal alternative) x(t) can be modeled as a

superposition of N orthogonal QAM signals, each carrying kn
bits, that are transmitted at different frequencies (sub-carriers)

x(t) =
N−1

∑
n=0

sn,QAM(t)

� Assuming each QAM signal has zero mean and that the different
carriers have independent bit streams we get

R(f ) = Rc(f ) = Rs E{|X(f )|2}=
N−1

∑
n=0

Rn(f )

� Using our previous results for QAM in each sub-carrier we get

R(f ) = Rc(f ) =
N−1

∑
n=0

P
|G(f + fc)|2 + |G(f − fc)|2

2Eg
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R(f ): OFDM-type signals
Illustration of Rn(f ) contributed by three neighboring sub-carriers:
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� Assuming fn = f0 +n/(Ts −∆h) we can estimate the bandwidth as

W ≈ (N +1) f∆ =
N +1

1−∆h/Ts
Rs ≈ N ·Rs , N � 1 , ∆h � Ts

� The bandwidth efficiency is then approximated by

ρ =
Rb

W
=

Rs

W

N−1

∑
k=0

kn ≈
1
N

N−1

∑
k=0

kn [bps/Hz]
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Example: R(f ) for OFDM
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� N = 16 sub-carriers
� T = Ts = 0.1 [ms]
� f∆ = Rs/0.95 = 10.53 [kHz]
� W ≈ 17

0.95 Rs = 179 [kHz]
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Example 2.35

ADSL: uses plain telephone cable (twisted pair, copper)

0 4 25 138 1104
f [kHz]

POTS: telephony, modem, FAX

Power
spectral
density

ADSL uplink
   64-1024 kbps

ADSL downlink
0.5-8 Mbps

In ADSL, a coded OFDM technique is used. The level of the power spectral density
in the downstream is roughly -73 dB. As a basic example, let us here assume that the
OFDM symbol rate in the downlink is 4000 [symbol/s], and that the subchannel carrier
spacing is 5 kHz. Furthermore, it is here also assumed that uncoded 16-ary QAM is
used in each subchannel (assumes a very “good” communication link).

For the ADSL downlink above, determine the bit rate in each subchannel, the total bit
rate, and the bandwidth efficiency.
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What about filtering away the side-lobes?
� Let us use a spectral rectangular pulse Xsrec(f ) of amplitude A = 1

and width f∆ to strictly limit the bandwidth
� Similar to the time-limited case we can write

Sf∆(f ) = S(f ) ·Xsrec(f )

� Taking the inverse Fourier transform on both sides we get

sf∆(t) = s(t) ∗ xsrec(t) = s(t) ∗ Af0
sin(π f0 t)

π f0 t

� Since xsrec(t) is unlimited along the time axis, this is the case for
the filtered signal sf∆(t) as well

� The signal xsrec(t) defines the ideal Nyquist pulse

As a consequence of filtering, the transmitted symbols will
overlap in time domain ⇒ inter-symbol-interference (ISI)
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Nyquist Pulse

x    (t)nc

x0

X    (f)nc

x0/Rnyq

R nyq/2R nyq/2

nyqR
1

nyqR
1

= -T s nyqR
1 = Ts

b)

tf [Hz]

a)

Figure 6.6: a) Ideal Nyquist spectrum; b) Ideal Nyquist pulse.

xnc(t) = x0
sin(πRnyqt)

πRnyqt
, −∞ ≤ t ≤ ∞ (6.39)

Xnc(f) =

{
x0/Rnyq , |f | ≤ Rnyq/2
0 , |f | > Rnyq/2

(6.40)

The Nyquist pulse and the effect of ISI will be studied in Chapter 6
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How can we further improve ρ?
MIMO MODEL

d1

dn

dN t

. . .
. . .

αk,n

αk,N t
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r1
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rNr
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d =
^ . . .

d1

^

dN t

^

. . .
. . .

w1

wk

wNr

rk =

Nt∑
n=1

αk,ndn + wk

� MIMO: multiple-input multiple output
� transmission over multiple antennas in the same frequency band
� challenge: the individual wireless channels interfere
� 5G world record 2016: (team from Lund involved)

spectral efficiency of 145.6 bps/Hz with 128 antennas
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EITG05 – Digital Communications

Lecture 5

Receivers in Digital Communication Systems

Michael Lentmaier
Monday, September 17, 2018



Where are we now?

What we have done so far: (Chapter 2)

b2[i]

b1[i]

bk[i]

...

b Serial
to

parallel

Binary to
decimal

conversion,
see (2.22)

m[i]
s(t)

=0
{s  (t)}

M-1

� Concepts of digital signaling: bits to analog signals
� Average symbol energy Es, Euclidean distance Di,j

� Bandwidth of the transmit signal
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Chapter 4: Receivers

Transmitter Channel Receiver
b[i]^

b[i]

{0,1}

s(t) r(t)

{0,1}

Figure 4.1: A digital communication system.

–1

–0.8

–0.6

–0.4

–0.2
0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12

s(
t)
/A

t/T

–4

–2

0

2

4

2 4 6 8 10 12

r(
t)
/α

A

� How can we estimate the transmitted sequence?
� Is there an optimal way to do this?
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The Detection Problem

+{s  (t)}M-1
=0

m[0]=mj s  (t)j z  (t)j
m[0]^

Receiver

in 0   t   Ts≤ ≤
based on r(t)

N(t)

r(t)

b)

h(t)

Assumptions:
� A random (i.i.d.) sequence of messages m[i] is transmitted
� There are M = 2k possible messages, i.e., k bits per message
� All signal alternatives z�(t), �= 1, . . . ,M are known by the receiver
� Ts is chosen such that the signal alternatives z�(t) do not overlap
� N(t) is additive white Gaussian noise (AWGN) with RN(f ) = N0/2

Questions:
� How should decisions be made at the receiver?
� What is the resulting bit error probability Pb?
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An optimal decision strategy

� Suppose we want to minimize the symbol error probability Ps

� That means we maximize the probability of a correct decision

Pr{m = m̂(r(t)) | r(t)}

where m denotes the transmitted message

� This leads to the following decision rule:

m̂(r(t)) = m� ,

where �= argmax
i

Pr{m = mi|r(t)}

� We decide for the message that maximizes the probability above

� A receiver that is based on this decision rule is called
maximum-a-posteriori probability (MAP) receiver
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Structure of the general MAP receiver
� We know that one of the M messages must be the best
� Hence we can simply test each m�, �= 0,1, . . . ,M−1

sent
message

m
r(t)

Pr{m=m     |r(t)}

U0

U1

UM-1

SELECT
LARGEST

MAP-receiver

m̂
received
noisy
signal

decision

M-1

Pr{m=m  |r(t)}0

Pr{m=m  |r(t)}1

. . .

This receiver minimizes the symbol error probability Ps
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A slightly different decision strategy
� The maximum likelihood (ML) receiver is based on a slightly

different decision rule:

m̂(r(t)) = m� : �= argmax
i

Pr{r(t) |mi sent}

� Using the Bayes rule we can write

Pr{m = mi | r(t)}= Pr{r(t) |mi sent} ·Pi

Pr{r(t)}
� The decision rule of the MAP receiver can be formulated as

m̂(r(t)) = m� : �= argmax
i

Pr{r(t) |mi sent} ·Pi

� It follows that the ML receiver is equivalent to the MAP receiver
for equally likely messages, Pi = 1/M, i = 0,1, . . . ,M−1.
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The Minimum Euclidean Distance Receiver

z  (t)jm=mj

Receiver based

on r(t) in

0    t    Ts≤ ≤
+

N(t)

r(t)
m̂

� For our considered scenario with Gaussian noise:
maximizing Pr{r(t) |mi sent} is equivalent to minimizing the
squared Euclidean distance D2

r,i.

� The received signal is compared with all noise-free signals zi(t)
in terms of the squared Euclidean distance

D2
r,i =

∫ Ts

0

(
r(t)− zi(t)

)2 dt

� The message is selected according to the decision rule:

m̂(r(t)) = m� : �= argmin
i

D2
r,i
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The Minimum Euclidean Distance Receiver
� The squared Euclidean distance is a measure of similarity
� An implementation is often based on correlators with output∫ Ts

0
r(t)zi(t) dt , i = 0,1, . . . ,M−1

� Using

D2
r,i =

∫ Ts

0

(
r(t)− zi(t)

)2 dt = Er −2
∫ Ts

0
r(t)zi(t) dt+Ei

we can write

�= argmin
i

D2
r,i = argmax

i

∫ Ts

0
r(t)zi(t) dt−Ei/2

� The received signal is compared with all possible noise-free
signal alternatives zi(t)
The receiver needs to know the channel!

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 5



Correlation based implementation

�= argmin
i

D2
r,i = argmax

i

∫ Ts

0
r(t)zi(t) dt−Ei/2

m̂

Ts

0

(   )dt +

Ts

0

(   )dt +
SELECT

LARGEST

ξ1

ξ0

ξM-1

{z  (t)}
=0

M-1

+

z  (t)1

z  (t)0

z       (t)M-1
Ts

0

(   )dt +

z(t)

N(t)

r(t)

RECEIVER

. .
 .

. .
 .

. .
 .

-E  /2

-E  /2

-E        /2M-1

0

1
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Example: M = 4

       0.5        1.0

t/Ts

-1

1

       0.5        1.0

t/Ts

-1

1

       0.5        1.0

t/Ts

-1

1

       0.5        1.0

t/Ts

-1

1

E0 = E1 = E2 = E3 = E

Stronger noise:

⇒ wrong decision: m̂ = 3
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Example 4.4: 64-QAM receiver
Assume that {z�(t)M−1

�=0 is a 64-ary QAM signal constellation. Draw a block-diagram
of a minimum Euclidean distance receiver that uses only two integrators.

Solution:
A QAM signal alternative can be written as zi(t) = Aig(t) cos(ωct) − Big(t) sin(ωct),
where g(t) is a baseband pulse. The output value from the i:th correlator in Figure 4.8
is,

Ts

0

r(t)zi(t)dt = Ai

Ts

0

r(t)g(t) cos(ωct)dt

x

−Bi

Ts

0

r(t)g(t) sin(ωct)dt

−y

=

= Aix+Biy

Observe that x and y do not depend on the index i.
Hence, a possible implementation of the receiver is to first generate x and y, and then
calculate the M correlations Aix+Biy, i = 0, i, . . . ,M − 1. By subtracting the value
Ei/2 from the i:th correlation, the decision variables ξ0, . . . , ξM−1 are finally obtained.

For M-ary constellations with fixed pulse shape g(t) the
implementation can be further simplified
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Example 4.4: 64-QAM receiver
The implementation of this receiver is shown below:

Select
MAX

Decision

r(t)

A0

B0

A63

B63

-E0/2

-E63/2

ξ0

ξ63

. . .

. . .

Ts

0
(  ) dt

Ts

0
(  ) dt

-sin( ωct)

cos( ωct) g(t)

g(t)

y

x

The complexity of this receiver is significantly reduced compared to the receiver in Figure
4.8 on page 241! Only two integrators are here used, instead of 64 (= M) in Figure
4.8.

� pulse shape and carrier waveform are recreated at the receiver
⇒ these parts are very similar to the transmitter

� integration and comparison can be performed separately

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 5



A geometric interpretation
� Our receiver computes: (maximum correlation)

max
i
{xAi + yBi −Eg/2}

� Equivalently we can compute: (minimum Euclidean distance)

min
i

{(
x− Ai Eg

2

)2

+

(
y− Bi Eg

2

)2
}

Ex. QPSK: received point (x,y) is closest to the point of message m3
x = message points, • = noisy received values (x, y)

(x,y) = noisy received values

y

x

A1=-1

B1= 1

A0=-1

B0=-1

A2=1

B2=1

A3= 1

B3=-1

Eg/2

-Eg/2
Eg/2-Eg/2
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Matched filter implementation

� A filter with impulse response q(t) is matched to a signal zi(t) if

q(t) = zi(−t+Ts) = zi(−(t−Ts))

� Let the received signal r(t) enter this matched filter q(t)
� The matched filter output, evaluated at time t = (n+1)Ts, can be

written as

r(t)∗q(t)
∣∣
t=(n+1)Ts

=
∫ (n+1)Ts

nTs

r(τ)zi(τ −nTs) dτ

� Observe:
this is exactly the same output value as the correlator produces

⇒ We can replace each correlator with a matched filter which is
sampled at times t = (n+1)Ts
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Matched filter vs correlator implementation

z  (t-nT  )0 s

z  (t-nT  )1 s

z       (t-nT  )M-1 s

+

+

+

ξ0[n]

ξM-1 [n]

SELECT

LARGEST

z       (T  -t)sM-1

z  (T  -t)1 s

z  (T  -t)0 s

t=(n+1)Ts

+

+

+

ξ0[n]

ξM-1 [n]

SELECT

LARGEST
m[n]^

m[n]^

+

(n+1)Ts

(n+1)Ts

(n+1)Ts

nTs

nTs

nTs

m[n] s

. .
 .

. .
 .

CORRELATION RECEIVER

. .
 .

-E  /2

-E  /2

-E        /2M-1

0

1

MATCHED FILTER RECEIVER

. .
 .

-E  /2

-E  /2

-E        /2M-1

0

1
N(t)

r(t)

(   )dt

(   )dt

(   )dt

z        (t-nT  )

ξ1[n]

[n]1ξ
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Summary: receiver types

� Minimum Euclidean distance (MED) receiver:
decision is based on the signal alternative zi(t) closest to r(t)

� Correlation receiver:
an implementation of the MED receiver based on correlators

� Matched filter receiver:
an implementation of the MED receiver based on matched filters

� Maximum likelihood (ML) receiver:
equivalent to MED receiver under our assumptions: ML = ED

� Maximum a-posteriori (MAP) receiver:
minimizes symbol error probability Ps
equivalent to ML if Pi = 1/M, i = 0, . . . ,M−1: ML = ED = MAP
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Bit error probability
� Because of the noise the receiver will sometimes make errors
� During a time interval τ we transmit the sequence b of length

B = Rb τ

� The detected (estimated) sequence b̂ will contain Berr bit errors

Berr = dH(b, b̂)≤ B

� The Hamming distance dH(b, b̂) is defined as the number of
positions in which the sequences are different

� The bit error probability Pb is defined as

Pb =
1
B

B

∑
i=1

Pr{b̂[i] �= b[i]}= E{dH(b, b̂)}
B

� It measures the average number of bit errors per detected
(estimated) information bit
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Analysis Binary Signaling
� Binary signaling (M = 2, Ts = Tb) simplifies the general receiver
� Consider the two decision variables

ξi[n] =
∫ (n+1)Ts

nTs

r(t)zi(t−nTs) dt−Ei/2 , i = 0,1

� The decision m̂[n] is made according to the larger value, i.e.,

ξ1[n]
m̂[n]=m1

≷
m̂[n]=m0

ξ0[n]

� This can be reduced to a single decision variable only

ξ [n] =
∫ (n+1)Ts

nTs

r(t)
(
z1(t−nTs)− z0(t−nTs)

)
dt

which is compared to a threshold value

ξ [n]
m̂[n]=m1

≷
m̂[n]=m0

E1 −E0

2
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Receiver for Binary Signaling

� Only one correlator or one matched filter is now required:

m0
or

m1

r(t)

z1(t-nT s)-z0(t-nT s)

(n+1)T s

nTs

(  ) dt

Correlator

ξ [n]
m[n]
^ξ [n]

m1
>
<

m0

E1-E0
2

ξ [n]

m1
>
<

m0

E1-E0
2

Threshold unit

ξ [n]

Matched filter

Threshold unit

v(t)=z 1(Ts-t)-z 0(Ts-t)
t=(n+1)T s

Sampling

m[n]
^

� Matched filter output needs be sampled at correct time
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When do we make a wrong decision?
� Assuming m = m0 is sent, the decision variable becomes

ξ [n] =
∫ Ts

0
r(t)

(
z1(t)− z0(t)

)
dt =

∫ Ts

0

(
z0(t)+N(t)

)
·
(
z1(t)− z0(t)

)
dt

� We can divide this into a signal component β0 and
a noise component N

ξ [n] = β0 +N

β0 =
∫ Ts

0
z0(t)

(
z1(t)− z0(t)

)
dt , N =

∫ Ts

0
N(t)

(
z1(t)− z0(t)

)
dt

� Wrong decision: if ξ [n]> (E1 −E0)/2 then m̂ = m1 �= m0 = m

� Analogously, when m = m1 is sent we get

ξ [n] = β1 +N

β1 =
∫ Ts

0
z1(t)

(
z1(t)− z0(t)

)
dt
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Decision regions

Γ0 (decision Γ1 (decision

Threshold
β

0
β1

ξ [n]

m0) m1)

D2
1,0

� With

β0 +β1 =−
∫ Ts

0
z2

0(t) dt+
∫ Ts

0
z2

1(t) dt = E1 −E0

the decision threshold lies in the center between β0 and β1:
E1 −E0

2
=

β0 +β1

2
� Furthermore we see that

β1 −β0 =
∫ Ts

0

(
z1(t)− z0(t)

)2 dt = D2
1,0 = D2

0,1
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Probability of a wrong decision
� There exist two ways to make an error:

Γ0

ξ [n]

β0
β1

PF
PM

Threshold

Γ1

PF: false alarm probability PM: missed detection probability

� The two probabilities of error can be determined as

PF = Pr{m̂[n] = m1|m = m0}= Pr{β0 +N > (β0 +β1)/2}
PM = Pr{m̂[n] = m0|m = m1}= Pr{β1 +N < (β0 +β1)/2}

� We can express these in terms of the Q(x)-function:

PF = PM = Q
(

β1 −β0

2σ

)
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Gaussian Noise
� The noise component N is a Gaussian random variable with

p(N ) =
1√

2π σ2
e−(N−m)2/2σ2

with mean m = 0 and variance σ2 = N0/2 Ev

� Our bit error probability is related to the probability that the noise
value N is larger than some threshold A

Pr{N ≥ A}= Pr
{N −m

σ
≥ A−m

σ

}
= Q

(
A−m

σ

)
� The Q(x)-function is defined as

Q(x) =
∫ ∞

x

1√
2π

e−y2/2 dy =
1
2

erfc
(

x√
2

)
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The Q(x)-function

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

x

Q
(x
)
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The Q(x)-function (page 182)
x Q(x) x Q(x) x Q(x) x Q(x)

0.0 5.0000e-01 3.0 1.3499e-03 6.0 9.8659e-10 9.0 1.1286e-19
0.1 4.6017e-01 3.1 9.6760e-04 6.1 5.3034e-10 9.1 4.5166e-20
0.2 4.2074e-01 3.2 6.8714e-04 6.2 2.8232e-10 9.2 1.7897e-20
0.3 3.8209e-01 3.3 4.8342e-04 6.3 1.4882e-10 9.3 7.0223e-21
0.4 3.4458e-01 3.4 3.3693e-04 6.4 7.7688e-11 9.4 2.7282e-21
0.5 3.0854e-01 3.5 2.3263e-04 6.5 4.0160e-11 9.5 1.0495e-21
0.6 2.7425e-01 3.6 1.5911e-04 6.6 2.0558e-11 9.6 3.9972e-22
0.7 2.4196e-01 3.7 1.0780e-04 6.7 1.0421e-11 9.7 1.5075e-22
0.8 2.1186e-01 3.8 7.2348e-05 6.8 5.2310e-12 9.8 5.6293e-23
0.9 1.8406e-01 3.9 4.8096e-05 6.9 2.6001e-12 9.9 2.0814e-23
1.0 1.5866e-01 4.0 3.1671e-05 7.0 1.2798e-12 10.0 7.6199e-24
1.1 1.3567e-01 4.1 2.0658e-05 7.1 6.2378e-13
1.2 1.1507e-01 4.2 1.3346e-05 7.2 3.0106e-13
1.3 9.6800e-02 4.3 8.5399e-06 7.3 1.4388e-13
1.4 8.0757e-02 4.4 5.4125e-06 7.4 6.8092e-14
1.5 6.6807e-02 4.5 3.3977e-06 7.5 3.1909e-14
1.6 5.4799e-02 4.6 2.1125e-06 7.6 1.4807e-14
1.7 4.4565e-02 4.7 1.3008e-06 7.7 6.8033e-15
1.8 3.5930e-02 4.8 7.9333e-07 7.8 3.0954e-15
1.9 2.8717e-02 4.9 4.7918e-07 7.9 1.3945e-15
2.0 2.2750e-02 5.0 2.8665e-07 8.0 6.2210e-16
2.1 1.7864e-02 5.1 1.6983e-07 8.1 2.7480e-16
2.2 1.3903e-02 5.2 9.9644e-08 8.2 1.2019e-16
2.3 1.0724e-02 5.3 5.7901e-08 8.3 5.2056e-17
2.4 8.1975e-03 5.4 3.3320e-08 8.4 2.2324e-17
2.5 6.2097e-03 5.5 1.8990e-08 8.5 9.4795e-18
2.6 4.6612e-03 5.6 1.0718e-08 8.6 3.9858e-18
2.7 3.4670e-03 5.7 5.9904e-09 8.7 1.6594e-18
2.8 2.5551e-03 5.8 3.3157e-09 8.8 6.8408e-19
2.9 1.8658e-03 5.9 1.8175e-09 8.9 2.7923e-19

Q(1.2816) ≈ 10−1 Q(5.1993) ≈ 10−7

Q(2.3263) ≈ 10−2 Q(5.6120) ≈ 10−8

Q(3.0902) ≈ 10−3 Q(5.9978) ≈ 10−9

Q(3.7190) ≈ 10−4 Q(6.3613) ≈ 10−10

Q(4.2649) ≈ 10−5 Q(6.7060) ≈ 10−11

Q(4.7534) ≈ 10−6 Q(7.0345) ≈ 10−12
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Bit error probability
� The bit error probability can be written as

Pb = P0 PF +P1 PM = (P0 +P1)PF = PF = PM

� With β1 −β0 = D2
0,1 and σ2 = N0/2 ·D2

0,1 we obtain

Pb = Q
(

β1 −β0

2σ

)
= Q

(
D2

0,1

2σ

)
= Q




√
D2

0,1

2N0




� This fundamental result provides the bit error probability Pb of an
ML receiver for binary transmission over an AWGN channel

� The additive noise N is sampled from a filtered noise process

v(t) = z 1(Ts-t)-z 0(Ts-t) N

t=(n+1)T s

N(t)

σ2 = N0/2 ·Ev = N0/2
∫ Ts

0

(
z1(t)− z0(t)

)2 dt
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Example

� Let z0(t) = 0 and z1(t) rectangular with amplitude A and T = Tb

� The information bit rate is Rb = 400 kbps
� Regarding the noise we know that A2/N0 = 70 dB

Task: determine the bit error probability Pb

Solution:
� First we find that D2

0,1 = A2/Rb

� Then
D2

0,1

2N0
=

A2

N0
· 1

2Rb
= 12.5

� Pb = Q
(√

12.5
)
= Q(3.536) = 2.3 ·10−4

� Last step: check Table 3.1 on page 182
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An energy efficiency perspective
� Consider the case P0 = P1 = 1/2
� The average received energy per bit is then

Eb =
1
2

∫ Tb

0
z2

0(t) dt +
1
2

∫ Tb

0
z2

1(t) dt =
E0 +E1

2

� We can then introduce the normalized squared Euclidean
distance

d2
0,1 =

D2
0,1

2Eb
=

1
2Eb

∫ Tb

0

(
z1(t)− z0(t)

)2 dt

� With this the bit error probability becomes

Pb = Q




√
D2

0,1

2N0


= Q

(√
d2

0,1
Eb

N0

)

� The parameter d2
0,1 is a measure of energy efficiency
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Last week: Analysis Binary Signaling

� Only one correlator or one matched filter is now required:

m0
or

m1

r(t)

z1(t-nT s)-z0(t-nT s)

(n+1)T s

nTs

(  ) dt

Correlator

ξ [n]
m[n]
^ξ [n]

m1
>
<

m0

E1-E0
2

ξ [n]

m1
>
<

m0

E1-E0
2

Threshold unit

ξ [n]

Matched filter

Threshold unit

v(t)=z 1(Ts-t)-z 0(Ts-t)
t=(n+1)T s

Sampling

m[n]
^

� Matched filter output needs be sampled at correct time

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 6



Example: (see Matlab demo)

    1     2     3     4     5     6     7     8     9     10     11     12     13     14     15     16     17     18     19     20

t/Ts

-1

-0.5

0.5

1

    1     2     3     4     5     6     7     8     9     10     11     12     13     14     15     16     17     18     19     20

t/Ts

-10

10

-2

2

Errors:          2      Total errors:         21      Total symbols:        360          Error rate: 0.05833

    1     2     3     4     5     6     7     8     9     10     11     12     13     14     15     16     17     18     19     20

t/Ts
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An energy efficiency perspective
� Consider the case P0 = P1 = 1/2
� The average received energy per bit is then

Eb =
1
2

∫ Tb

0
z2

0(t) dt +
1
2

∫ Tb

0
z2

1(t) dt =
E0 +E1

2

� We can then introduce the normalized squared Euclidean
distance

d2
0,1 =

D2
0,1

2Eb
=

1
2Eb

∫ Tb

0

(
z1(t)− z0(t)

)2 dt

� With this the bit error probability becomes

Pb = Q




√
D2

0,1

2N0


= Q

(√
d2

0,1
Eb

N0

)

� The parameter d2
0,1 is a measure of energy efficiency
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Special case 1: antipodal signals
� In case of antipodal signals we have z1(t) =−z0(t) and

D2
0,1 =

∫ Tb

0

(
z1(t)− z0(t)

)2 dt = 4
∫ Tb

0
z2

1(t) dt = 4E

� From E0 = E1 = E follows

Eb =
E+E

2
= E

and

d2
0,1 =

D2
0,1

2Eb
=

4E
2E

= 2

� The bit error probability for any pair of antipodal signals becomes

Pb = Q

(√
2
Eb

N0

)
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Special case 2: orthogonal signals
� In case of orthogonal signals we have∫ Tb

0
z0(t)z1(t) dt = 0

and hence (compare page 28)

D2
0,1 =

∫ Tb

0

(
z1(t)− z0(t)

)2 dt = E0 +E1

� This gives

Eb =
E0 +E1

2
and

d2
0,1 =

D2
0,1

2Eb
=

E0 +E1

E0 +E1
= 1

� The bit error probability for any pair of orthogonal signals is

Pb = Q

(√
Eb

N0

)
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Comparison
Antipodal vs orthogonal signaling:

−2 0 2 4 6 8 10 12 14
10
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Eb/N0 in dB

Antipodal Orthogonal

Larger values of d2
0,1 give better energy efficiency
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Antipodal vs orthogonal signaling

� There is a constant gap between the two curves
� We can measure the difference in energy efficiency by the ratio

Eb,atp

Eb,ort
=

d2
0,1,ort

d2
0,1,atp

=
1
2

� In terms of dB this corresponds to

10log10

(Eb,atp

Eb,ort

)
= 10log10

(
d2

0,1,ort

d2
0,1,atp

)
=−3 [dB]

⇒ antipodal signaling requires 3 dB less energy for equal Pb
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Example 4.11: rank pairs with respect to d2
0,1

z  (t)10z  (t)

Tb TbTb
2

0z  (t) z  (t)1

Tb

Tb

3Tb
4

3Tb
4

z  (t)10z  (t)

Tb Tb

Tb
2

Tb
2

Tb

Tb

z  (t)=sin(2  t/T  )0 bπ z  (t)=sin(2  3t/2T  )1 bπ

Tb
4

Tb
2

Tb
3Tb

4

Tb
2

0z  (t) z  (t)1

Tb

Tb

0z  (t) z  (t)1 0z  (t)

Tb

TbTb
2

z  (t)1

Tb
2

Tb

z  (t)10z  (t)

A B

-B
tt t

A

t

-A

Pair 1 Pair 2

A

t

-A

t

Pair 3

t

Α

−Α

t

Pair 4

t t
B

A

Pair 5 Pair 6

A A

t t

t

A

-B

A

t tt

-A

A

Pair 7 Pair 8

−Α

Α
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Can we do better?

� It is possible to show that for two equally likely signal alternatives
we always have

d2
0,1 ≤ 2

� Antipodal signaling is hence optimal for binary signaling (M = 2)

Remark:
� Channel coding can be used to further increase d2

0,1
� Sequences of binary pulses with large separation are designed
� This does not contradict the result from above:

coded binary signals correspond to uncoded signals with M > 2

Channel coding can be used for improving energy efficiency
Cost: complexity, latency, (bandwidth)
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Relationship between parameters
� The bit error probability can be expressed in different ways

Pb = Q




√
D2

0,1

2N0


= Q

(√
d2

0,1
Eb

N0

)
= Q

(√
d2

0,1
Pz

Rb N0

)

� Assuming z0(t) = α s0(t) and z1(t) = α s1(t) we also get

Pb = Q




√
d2

0,1
α2P̄sent

Rb N0


= Q




√
d2

0,1

ρ
· α2P̄sent

N0 W




� Recall that ρ = Rb/W is the bandwidth efficiency and N0 W is the
noise power within the bandwidth W

The expression that is most appropriate to use depends on the
specific problem to be solved
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A "typical" type of problem
� The bit error probability must not exceed a certain level,

Pb ≤ Pb,req = Q
(√

X
)

� Example: if Pb,req = 10−9 then X ≈ 36

� Consequences:

d2
0,1

Eb

N0
≥ X

Rb ≤
d2

0,1

X · Pz

N0

Rb ≤
d2

0,1

X · α2P̄sent

N0

� Note: the received signal power Pz decreases with
communication distance
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Example 4.12: transmission hidden in noise

In a specific application equally likely binary antipodal signals are used, and the pulse
shape is grc(t) with amplitude A and duration T ≤ Tb. AWGN with power spectral
density N0/2, and the ML receiver is assumed. It is required that the bit error probability
must not exceed 10−9. It is also required that the power spectral density satisfies R(f) ≤
N0/2 for all frequencies f (the information signal is intentionally “hidden” in the
noise). Determine system and signal parameters above such that these two requirements
are satisfied.

� Pb = Q
(√

2Eb/N0

)
≤ 10−9 ⇒ Eb/N0 ≥ 18

� R(f ) = Rb|Grc(f )|2 has maximum at f = 0
� R(0) = Rb A2T2/4 ≤ N0/2 (check pulse shape)
� Eb/N0 = 3/8A2T/N0 ≥ 18
� Hidden in noise: A2T/N0 ≤ 2/(RbT)
� Pb requirement: A2T/N0 ≥ 48
� Solution:

choose T ≤ Tb/24 and A2 = 48N0/T
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Non-ideal receiver conditions
Example 4.15: unexpected additional noise wx, i.e., w = wN +wx
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Ideal case Error floor

Can be analyzed with our methods
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Non-ideal receiver conditions
Example 4.16: hostile bursty interference, active with pon = 0.05
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Observe: at low power an interference in bursts is
more severe than continuous interference

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 6



M-ary Signaling

m̂

Ts

0

(   )dt +

Ts

0

(   )dt +
SELECT

LARGEST

ξ1

ξ0

ξM-1

{z  (t)}
=0

M-1

+

z  (t)1

z  (t)0

z       (t)M-1
Ts

0

(   )dt +

z(t)

N(t)

r(t)

RECEIVER

. .
 .

. .
 .

. .
 .

-E  /2

-E  /2

-E        /2M-1

0

1

� The receiver computes M decision variables ξ0,ξ1, . . . ,ξM−1
� The selected message m̂ is based on the largest value

m̂ = m� , �= argmax
i

ξi

� Question: when do we make a wrong decision?
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Probability of a wrong decision
� For M = 2 we have considered two error probabilities PF and PM
� For a given message m = mj, in general there are M−1 ways

(events) to make a wrong decision,{
ξi > ξj

∣∣ m = mj
}
, i �= j

� The probability of a wrong decision can be upper bounded by

Pr{m̂ �= mj|m = mj}= Pr
{M−1⋃

i=0
i�=j

ξi > ξj

∣∣∣ m = mj

}

≤
M−1

∑
i=0
i�=j

Pr
{

ξi > ξj
∣∣ m = mj

}
(union bound)

� Note: given some events A and B, the union bound states that

Pr{A∪B} ≤ Pr{A}+Pr{B} ,

where equality holds if A and B are independent
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Symbol error probability
� The symbol error probability can be upper bounded by

Ps ≤
M−1

∑
j=0

Pj

M−1

∑
i=0
i�=j

Pr
{

ξi > ξj
∣∣ m = mj

}
� From the binary case M = 2 we know that (pick i = 0 and j = 1)

Pr
{

ξi > ξj
∣∣ m = mj

}
= Q




√
D2

i,j

2N0




where Di,j is the Euclidean distance between zi(t) and zj(t)
� We obtain the following main result for M-ary signaling:

max
i

i�=j

Q




√
D2

i,j

2N0


 ≤ Ps ≤

M−1

∑
j=0

Pj

M−1

∑
i=0
i�=j

Q




√
D2

i,j

2N0



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Example: orthogonal signaling
� Consider M orthogonal signals with equal energy E
� Examples: FSK, PPM

� For each pair zi(t) and zj(t) we get

D2
i,j = E+E = 2E

� From the union bound we obtain

Ps ≤
M−1

∑
j=0

Pj

M−1

∑
i=0
i�=j

Q




√
D2

i,j

2N0




= (M−1) Q

(√
2E
2N0

)
= (M−1) Q

(√
E
N0

)

� This generalizes the binary case considered previously
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Distances Di,j are important
� Ps is determined by the distances Di,j between the signal pairs
� Let us sort these distances

Dmin < D1 < D2 < · · ·< Dmax

� Then the upper bound on Ps can be written as

Ps ≤ c Q




√
D2

min
2N0


+ c1 Q




√
D2

1
2N0


+ · · ·+ cx Q




√
D2

max

2N0




� The coefficients are

c� =
M−1

∑
j=1

Pj ·nj,� , �= 0,1,2, . . . ,x

� nj,�: number of signals at distance D� from signal zj(t)

How many distinct terms do exist for 4-PAM?
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A useful approximation of Ps

� The union bound is easy to compute if we know all distances D�

� At large signal-to-noise ratio (small N0), i.e., when Ps is small, the
first term provides a good approximation

Ps ≈ c Q




√
D2

min
2N0




� We see that the minimum distance D2
min and the average number

of closest signals c dominate the performance in this case

� Explanation:
the function Q(x) decreases very fast as x increases (faster than
exponentially). The other terms become negligible at some point.

⇒ at small Ps (small N0) we can compare different signal
constellations by means of D2

min, similarly to the binary case
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Energy efficiency and normalized distances
� Consider the case P� = 1/M, �= 0,1, . . . ,M−1
� The average received energy per bit is given by

Eb =
1
k

M−1

∑
i=0

1
M

∫ Ts

0
z2

i (t) dt =
1
k

E0 +E1 + · · ·EM−1

M

� Using the normalized squared Euclidean distances

d2
� =

D2
�

2Eb
,

the union bound can be written as

Ps ≤ c Q

(√
d2

min
Eb

N0

)
+c1 Q

(√
d2

1
Eb

N0

)
+ · · ·+cx Q

(√
d2

max
Eb

N0

)

� The parameters d2
� determine the energy efficiency
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Approximate Ps for some constellations
� Considering the dominating term in the union bound we obtain

Ps ≈ c Q

(√
d2

min
Eb

N0

)

� This approximation is valid if Eb
N0

is sufficiently large

c d2min

M-ary PAM 2(1− 1/M)
6 log2(M)
M2 − 1

M-ary PSK (M > 2) 2 2 log2(M) sin2(π/M)
M-ary FSK M − 1 log2(M)

M-ary QAM 4(1− 1/
√
M)

3 log2(M)
M − 1

Table 4.1: The coefficient c, and d2min, for some common signal constellations.
Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the
M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal
energy orthogonal FSK signals are also assumed.
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Example 4.19
Assume two signal constellations, denoted A and B respectively, with corresponding
parameters d2min,A and d2min,B. From the equality (see e.g. the dominating term in the
union bound),

d2min,AEb,A/N0 = d2min,BEb,B/N0

we find that the difference (in dB) in received energy per information bit is (compare
with (2.13) on page 16),

10 log10(Eb,B)− 10 log10(Eb,A) = 10 log10
d2min,A

d2min,B

Calculate the value 10 log10
d2min,A

d2min,B
if “A” is binary antipodal PAM, and if “B” is

4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.

� For M-ary PAM we have (Table 4.1 or Table 5.1)

d2
min = 6log2(M)/(M2 −1) ⇒ d2

min,A = 2, d2
min,B = 4/5

� 10log10 d2
min,A/d2

min,B = 10log10 5/2 = 3.98 dB

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!
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Example scenario: M-ary QAM
� We want to ensure that Ps ≤ Ps,req, where for M-ary QAM

Ps ≤ 4 Q

(√
d2

min
Eb

N0

)
= 4 Q

(√
X

)
, d2

min = 3 log2
M

M−1

� The pulse shape g(t) is chosen such that

ρ = log2(M) ρBPSK , where ρ =
Rb

W
≤ d2

min
X · Pz

N0 W

� Combining these requirements we obtain

M ≤ 1+
3

X ρBPSK
· Pz

N0 W
= 1+

3
X · Pz Ts

N0

� Hence we want to choose M = 2k such that (QAM: k even)

2k ≤ 1+
3

X ρBPSK
· Pz

N0 W
< 2k+2

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 6



Example 4.22: adapting M to channel quality
Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary
QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or log2(M))
versus Pz/N0W . How large is the bit rate in each case? Assume that ρBPSK = 1/2
[bps/Hz].

log2(M)

8

6

4

2

5 10 21 42

z
N0W

M=16

M=64

M=256

Depending on the channel quality we can achieve different
bit rates Rb = W, 2W, 3W, or 4W[bps]
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Recall: QAM receiver (Example 4.4)

The implementation of this receiver is shown below:

Select
MAX

Decision

r(t)

A0

B0

A63

B63

-E0/2

-E63/2

ξ0

ξ63

. . .

. . .

Ts

0
(  ) dt

Ts

0
(  ) dt

-sin( ωct)

cos( ωct) g(t)

g(t)

y

x

The complexity of this receiver is significantly reduced compared to the receiver in Figure
4.8 on page 241! Only two integrators are here used, instead of 64 (= M) in Figure
4.8.
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Example: QPSK (see Matlab demo)

2

    1     2     3     4     5     6     7     8     9

t/Ts

    1     2     3     4     5     6     7     8     9     10

t/Ts

-1

1

    1     2     3     4     5     6     7     8     9     10

t/Ts

-1

1

    1     2     3     4     5     6     7     8     9

t/Ts

-1

1

    1     2     3     4     5     6     7     8     9

t/Ts

r(t) = z(t) +N(t)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Errors:          0      Total errors:         16      Total symbols:       1000          Error rate: 0.01600
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Distances Di,j are important
� Ps is determined by the distances Di,j between the signal pairs
� Let us sort these distances

Dmin < D1 < D2 < · · ·< Dmax

� Then the upper bound on Ps can be written as

Ps ≤ c Q




√
D2

min
2N0


+ c1 Q




√
D2

1
2N0


+ · · ·+ cx Q




√
D2

max

2N0




� The coefficients are

c� =
M−1

∑
j=1

Pj ·nj,� , �= 0,1,2, . . . ,x

� nj,�: number of signals at distance D� from signal zj(t)

How many distinct terms do exist for QPSK?
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Signal Space Representation

4-PAM 8-PAM

φ1
φ1

z0 z0z1 z2 z3 z4z1 z2 z3 z5 z6 z7

M
)

4-PSK (QPSK)
φ2

φ1

z2

z1

z3

z0

φ2

8-PSK

φ1

z7z6

z5

z4

z3

z2
z1

z0

0 0

φ2
φ2

φ1 φ1

16-QAM 64-QAM

φ1(t) =
g(t)√
Eg

φ1(t) =
g(t) cos(2π fc t)√

Eg/2

φ2(t) =
g(t) sin(2π fc t)√

Eg/2
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A geometric description
� As we have seen in Chapter 2 we can represent our signal

alternatives zj(t) as vectors (points) in signal space

zj =
(
zj,1

)
=

(
Aj

√
Eg

)
PAM

zj =
(
zj,1 zj,2

)
=

(
Aj

√
Eg
2 Bj

√
Eg
2

)
QAM, PSK

� The signal energy can be written as

Ej =
∫ Ts

0
z2

j (t) dt = z2
j,1 + z2

j,2

� Likewise, the squared Euclidean distance becomes

D2
i,j =

∫ Ts

0

(
zi(t)− zj(t)

)2 dt = (zi,1 − zj,1)
2 +(zi,2 − zj,2)

2

Signal energies and distances have a geometric interpretation
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Approximate Ps for some constellations
� Considering the dominating term in the union bound we obtain

Ps ≈ c Q

(√
d2

min
Eb

N0

)

� This approximation is valid if Eb
N0

is sufficiently large

c d2min

M-ary PAM 2(1− 1/M)
6 log2(M)
M2 − 1

M-ary PSK (M > 2) 2 2 log2(M) sin2(π/M)
M-ary FSK M − 1 log2(M)

M-ary QAM 4(1− 1/
√
M)

3 log2(M)
M − 1

Table 4.1: The coefficient c, and d2min, for some common signal constellations.
Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the
M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal
energy orthogonal FSK signals are also assumed.
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Example 4.19
Assume two signal constellations, denoted A and B respectively, with corresponding
parameters d2min,A and d2min,B. From the equality (see e.g. the dominating term in the
union bound),

d2min,AEb,A/N0 = d2min,BEb,B/N0

we find that the difference (in dB) in received energy per information bit is (compare
with (2.13) on page 16),

10 log10(Eb,B)− 10 log10(Eb,A) = 10 log10
d2min,A

d2min,B

Calculate the value 10 log10
d2min,A

d2min,B
if “A” is binary antipodal PAM, and if “B” is

4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.

� For M-ary PAM we have (Table 4.1 or Table 5.1)

d2
min = 6log2(M)/(M2 −1) ⇒ d2

min,A = 2, d2
min,B = 4/5

� 10log10 d2
min,A/d2

min,B = 10log10 5/2 = 3.98 dB

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!
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Comparisons
Pb Q

(√
d2min

Eb

N0

)
, (4.55)

M = 2 d2min 0 ≤ d2min ≤ 2, (4.57)
ρ ρbin , (2.21)

Ps 2
(
1− 1

M

)
Q

(√
d2min

Eb

N0

)
, (5.35)

M-ary PAM d2min
6 log2(M)
M2−1 , Table 4.1 on page 281, (2.50)

ρ ρ2−PAM · log2(M), (2.220)

Ps < 2Q
(√

d2min
Eb

N0

)
, (5.43)

M-ary PSK d2min 2 sin2(π/M) log2(M), Table 4.1, Fig. 5.11
ρ ρBPSK · log2(M), (2.229)

M-ary QAM Ps 4
(
1− 1√

M

)
Q

(√
d2min

Eb

N0

)
−

(rect., k even) −4
(
1− 1√

M

)2

Q2
(√

d2min
Eb

N0

)
, (5.50)

(QPSK with d2min
3 log2(M)

M−1 , Table 4.1, Subsection 2.4.5.1

M = 4) ρ ρBPSK · log2(M), (2.229)

M-ary FSK Ps ≤ (M − 1)Q
(√

d2min
Eb

N0

)
, Example 4.18c, Table 4.1

(orthogonal d2min log2(M), Table 4.1 on page 281
FSK) ρ See (2.245)

Table 5.1, p. 361
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Symbol error probability comparison
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Symbol error probability comparison
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Gain in d2
min compared with binary antipodal

Antipodal M = 2 0[dB]
Orthogonal M = 2 -3.01

M = 2 0
M = 4 -3.98

M-ary PAM M = 8 -8.45
M = 16 -13.27
M = 32 -18.34
M = 64 -23.57
M = 2 0
M = 4 0

M-ary PSK M = 8 -3.57
M = 16 -8.17
M = 32 -13.18
M = 64 -18.40
M = 4 0
M = 16 -3.98

M-ary QAM M = 64 -8.45
M = 256 -13.27
M = 1024 -18.34
M = 4096 -23.57

M = 2 -3.01
M = 4 0

M-ary FSK M = 8 1.76
M = 16 3.01
M = 32 3.98
M = 64 4.77
M = 2 0

M -ary M = 4 0
bi- M = 8 1.76
orthogonal M = 16 3.01

M = 32 3.98
M = 64 4.77

Large values M reduce energy efficiency
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Example scenario: M-ary QAM
� We want to ensure that Ps ≤ Ps,req, where for M-ary QAM

Ps ≤ 4 Q

(√
d2

min
Eb

N0

)
= 4 Q

(√
X

)
, d2

min = 3 log2
M

M−1

� The pulse shape g(t) is chosen such that

ρ = log2(M) ρBPSK , where ρ =
Rb

W
≤ d2

min
X · Pz

N0 W

� Combining these requirements we obtain

M ≤ 1+
3

X ρBPSK
· Pz

N0 W
= 1+

3
X · Pz Ts

N0

� Hence we want to choose M = 2k such that (QAM: k even)

2k ≤ 1+
3

X ρBPSK
· Pz

N0 W
< 2k+2
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Example 4.22: adapting M to channel quality
Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary
QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or log2(M))
versus Pz/N0W . How large is the bit rate in each case? Assume that ρBPSK = 1/2
[bps/Hz].

log2(M)

8

6

4

2

5 10 21 42

z
N0W

M=16

M=64

M=256

Depending on the channel quality we can achieve different
bit rates Rb = W, 2W, 3W, or 4W[bps]
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Bit errors vs symbol errors
� Assume that S symbols are transmitted and Serr are in error
� If a symbol m̂ �= m is decided, this causes at least 1 bit error and

at most k = log2 M bit errors
Serr ≤ Berr ≤ k Serr

� This leads to the following relationship between Pb and Ps:

Ps

k
=

E{Serr}
S · k ≤ Pb ≤

E{Serr · k}
S · k = Ps

� Ps depends on the signal constellation only
� The exact Pb depends on the mapping from bits to messages m�

and hence signal alternatives sm�
(t)

Example: Which mapping is better for 4-PAM? (and why?)

(1) m0 = 00, m1 = 11, m2 = 01, m3 = 10

(2) m0 = 00, m1 = 01, m2 = 11, m3 = 10
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Gray code mappings
� We have seen that for small N0 we can approximate

Ps ≈ c Q




√
D2

min
2N0




� This motivates the use of Gray code mappings:

Example:
16-QAM

1000 1001 1011 1010

1100 1101 1111 1110

0100 0101 0111 0110

0000 0001 0011 0010

z8 z9 z11 z10

z12 z13 z15 z14

z4 z5
z7

z3

z6

-3a -a a 3a
φ1

φ2

z0 z1 z2

3a

a
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How can we achieve large data rates?

� The bit rate Rb can be increased in different ways
� We can select a signal constellation with large M

⇒ this typically increases the error probability Ps
exception: orthogonal signals (FSK): require more bandwidth W

� Achieving equal Ps with larger M is possible by increasing Eb/N0
⇒ this reduces the energy efficiency

� We can also increase Rb by increasing the bandwidth W
⇒ this does not improve the bandwidth efficiency ρ = Rb/W

Question:
what is the largest achievable rate Rb for a given error probability Ps,
channel quality Eb/N0 and bandwidth W?

This question was answered by Claude Shannon in 1948:
"A mathematical theory of communication"
Course EITN45: Information Theory (VT2)
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A fundamental limit: channel capacity
� Consider a single-path channel (|H(f )|2 = α2) with finite

bandwidth W and additive white Gaussian noise (AWGN) N(t)
� The capacity for this channel is given by

C = W log2

(
1+

Pz

N0 W

)
[bps]

� Shannon showed that reliable communication requires that

Rb ≤ C

� Observe: the capacity formula does not include Ps (why?)
� Shannon also showed that if Rb < C, then the probability of error

Ps can be made arbitrarily small

Ps → 0

if messages are coded in blocks of length N → ∞
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Bandwidth efficiency and gap to capacity
(p. 369)

N0

Eb C/W
-12

C/W
=Impossible 

region

10log    (E   /N  )10 b 0

P  =10s
-5

1

2

4

8
10

20

0 5 10 15 20

ρ

1/2

1/4

1/8

QPSK

BPSK

BFSK

32-FSK

16-FSK

8-FSK

8-PAM

16-PSK

64-QAM

16-QAM

4-PAM

-1.6

8-PSK

[dB]

C/W

� ρ ≤ C/W: reliable communication is impossible above
� this limit can be approached with channel coding
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How does channel coding work?
� We have seen that a large minimum distance d2

min between
signals is required to improve the energy efficiency

� For binary signaling (M = 2) we have seen that d2
min ≤ 2

Idea of coding:
� generate M binary sequences of length N
� use binary antipodal signaling to create M signals s�(t)

Example: N = 5, M = 4, grec(t) pulse with T = Ts/N (what is D2
min?)

A

−A

A

−A

A

−A

A

−A

1 0 1 1 0 1 1 0 0 1

0 1 1 1 1 0 0 0 0 0

t

t t

t

s0(t) s1(t)

s2(t) s3(t)
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Increasing d2
min with coding

� In our example we have

D2
min = 4A2 T ·3 = 4Eg 3 = 12Eg

� Normalizing by the average energy Eb = N Eg/k this gives

d2
min =

D2
min

2Eb
=

12Eg

2N/k Eg
= 6 · k

N
=

12
5

= 2.4

� Let dmin,H denote the minimum Hamming distance between the
binary code sequences ⇒ in our example: dmin,H = 3

� Then we can write
d2

min = 2
k
N

dmin,H

where R = k/N is called the code rate
� Larger dmin,H values can be achieved with larger N
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Example: symbol error probability

0 2 4 6 8 10 12 14 16
Eb/N0 [dB]

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
s uncoded

Hamming code
N=7, k=4, d

min,H
=3 

(union bound)

� Hamming code, N = 7, k = 4, dmin,H = 3 ⇒ d2
min = 3.43

� How can we construct good codes?
EITN70: Channel Coding for Reliable Communication (HT2)
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Multiuser Communication
(p. 395/396)

...
...

s(t) r(t)

N(t)

+-User 1:    A φ1(t)

+-User 2:    A φ2(t)

+-User N:    A φN(t)

+-User   :    A φ  ( t)

A simple model:
� N users transmit at same time with orthonormal waveforms φ�(t)
� Binary antipodal signaling is used in this example, such that

s(t) =
N

∑
n=1

An φn(t) , An ∈ ±A

� The orthonormal waveforms satisfy∫ Ts

0
φi(t)φj(t) dt =

{
0 if i �= j ,
1 if i = j
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Multiuser Communication
� The separation of users can be achieved in different ways
� TDMA: (time-division multiple access)

TDMA

TS

User
in time slot

φ  (t)

t

� FDMA / OFDMA: (frequency-division multiple access)
User     in

frequency slot

FDMA

t

φ  (t) = c  sin(2 πf  t)

TS

.

� CDMA: (code-division multiple access)

-a

a

φ  (t) CDMA

TS

Each user is
assigned a

unique pattern of     a's+-

� MC-CDMA: (multi-carrier CDMA) combined OFDM/CDMA
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Receiver for Multiuser Communication

(  )dt

...
...

s(t) r(t)

N(t)

RECEIVER FOR
USER

φ  (t)

ξ     0

1
>
<
0

m̂

+-User 1:    A φ1(t)

+-User 2:    A φ2(t)

+-User N:    A φN(t)

+-User   :    A φ  ( t)

TS

0

ξ

� This permits a simple receiver structure for each user �
� The decision variable becomes

ξ =
∫ Ts

0
φ�(t)r(t) dt =

∫ Ts

0
φ�(t)

(
N

∑
n=1

An φn(t)+N(t)

)
dt

= A�+
∫ Ts

0
φ�(t)N(t) dt = A�+N

⇒ receiver is only disturbed by noise and not by other users!
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Non-coherent receivers
� With phase-shift keying (PSK) the message m[n] at time nTs is

put into the phase θn of the transmit signal

s(t) = g(t)
√

2E cos(2π fc t+θn) , nTs ≤ t ≤ (n+1)Ts

� The channel introduces some attenuation α, some additive noise
N(t) and also some phase offset ν into the received signal

r(t) = α g(t)
√

2E cos(2π fc t+θn +ν)+N(t)

� Challenge: the optimal receiver needs to know α and ν
� In some applications an accurate estimation of ν is infeasible

(cost, complexity, size)
� Non-coherent receivers:

receiver structures that can work well without knowledge
of the exact phase offset

How can we modify our PSK transmission accordingly?
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Differential Phase Shift Keying
� With differential PSK, the message m[n] = m� is mapped to the

phase according to

θn = θn−1 +
2π �

M
�= 0, . . . ,M−1

� The transmitted phase θn depends on both θn−1 and m[n]
� This differential encoding introduces memory and the transmitted

signal alternatives become dependent
� Example 5.25: binary DPSK

b[i]

Delay

Tb

Addition
modulo 2

m[i] s0(t)

s1(t)

s(t)
Channel

z(t) r(t)

N(t)
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Differential Phase Shift Keying (M = 2)

g(T b-t)

g(T b-t)

rc[n]

rs[n]

t=nT b

2cos( ωct)

r(t)

Receiver

Delay

Tb

Delay

Tb

ξ[n]
ξ[n]      0>

<

"0"

"1"

b[n-1]
^

-   2sin( ωct)

� The receiver uses no phase offset ν in the carrier waveforms
� Without noise, the decision variable is

ξ [n] = rc[n]rc[n−1]+ rs[n]rs[n−1]
= A cos(θn−1 +ν) A cos(θn−2 +ν)+A sin(θn−1 +ν) A sin(θn−2 +ν)

= A2 cos(θn−1 −θn−2) ⇒ independent of ν

� Note: non-coherent reception increases variance of noise
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From last lecture: Non-coherent receivers
� With phase-shift keying (PSK) the message m[n] at time nTs is

put into the phase θn of the transmit signal

s(t) = g(t)
√

2E cos(2π fc t+θn) , nTs ≤ t ≤ (n+1)Ts

� The channel introduces some attenuation α, some additive noise
N(t) and also some phase offset ν into the received signal

r(t) = α g(t)
√

2E cos(2π fc t+θn +ν)+N(t)

� Challenge: the optimal receiver needs to know α and ν
� In some applications an accurate estimation of ν is infeasible

(cost, complexity, size)
� Non-coherent receivers:

receiver structures that can work well without knowledge
of the exact phase offset

How can we modify our PSK transmission accordingly?
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Differential Phase Shift Keying
� With differential PSK, the message m[n] = m� is mapped to the

phase according to

θn = θn−1 +
2π �

M
�= 0, . . . ,M−1

� The transmitted phase θn depends on both θn−1 and m[n]
� This differential encoding introduces memory and the transmitted

signal alternatives become dependent
� Example 5.25: binary DPSK

b[i]

Delay

Tb

Addition
modulo 2

m[i] s0(t)

s1(t)

s(t)
Channel

z(t) r(t)

N(t)
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Differential Phase Shift Keying (M = 2)

g(T b-t)

g(T b-t)

rc[n]

rs[n]

t=nT b

2cos( ωct)

r(t)

Receiver

Delay

Tb

Delay

Tb

ξ[n]
ξ[n]      0>

<

"0"

"1"

b[n-1]
^

-   2sin( ωct)

� The receiver uses no phase offset ν in the carrier waveforms
� Without noise, the decision variable is

ξ [n] = rc[n]rc[n−1]+ rs[n]rs[n−1]
= A cos(θn−1 +ν) A cos(θn−2 +ν)+A sin(θn−1 +ν) A sin(θn−2 +ν)

= A2 cos(θn−1 −θn−2) ⇒ independent of ν

� Note: non-coherent reception increases variance of noise
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Chapter 3: Carrier modulation techniques

Transmitter Channel Receiver
b[i]^

b[i]

{0,1}

s(t) r(t)

{0,1}

Figure 4.1: A digital communication system.

What we have done so far:
Chapter 2:

From b[i] and m[i] to signals s�(t)

b2[i]

b1[i]

bk[i]

...

b Serial
to

parallel

Binary to
decimal

conversion,
see (2.22)

m[i]
s(t)

=0
{s  (t)}

M-1

Chapter 4:
From signals zj(t)+N(t) to m̂[i] and b̂[i]

z  (t)jm=mj

Receiver based

on r(t) in

0    t    Ts≤ ≤
+

N(t)

r(t)
m̂

Now more on:
� properties of bandpass signals
� the channel: from s(t) over z(t) to r(t)
� efficient receivers for bandpass signals
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Bandpass Signals
� A general bandpass signal can always be written as

x(t) = xI(t) cos(2π fc t) − xQ(t) sin(2π fc t) , −∞ ≤ t ≤ ∞

� xI(t): inphase component xQ(t): quadrature component
� Corresponding transmitter structure:

signal
Digital

processor
information
Original

(digital or analog) xQ (t)

x I
(t)

cos(2  f  t)cπ

x(t)

-sin(2  f  t)π c

� The information is contained in the signals xI(t) and xQ(t)
(for both analog or digital modulation)

� Not only wireless systems use carrier modulation
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Spectrum of bandpass signals
� Computing the Fourier transform of x(t) we get

X(f ) =
XI(f + fc)− j XQ(f + fc)

2
+

XI(f − fc)+ j XQ(f − fc)
2

� Normally, XI(t) and XQ(t) have baseband characteristic,
and fc is much larger than their bandwidth

� The spectrum can be symmetric or non-symmetric around fc
|X(f)|

2 W

f c- f c

|X(f)|
2

f c- f c

W

a)

f [Hz]
0

b)

f [Hz]
0

� Remember: real signals x(t) always have even |X(f )|

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 8



DSB-SC Carrier Modulation
� Double sideband-suppressed (DSB-SC) carrier modulation is a

special case of our general model
� In this case only xI(t) contains information and xQ(t) = 0, i.e.,

xdsb−sc(t) = xI(t) cos(2π fc t)

� The Fourier transform then simplifies to

X(f ) =
XI(f + fc)

2
+

XI(f − fc)
2

� XI(f ) is symmetric around f = 0 ⇒ XI(f ) is symmetric around fc

WLPWLP fc fc

WLP2

| X  (f) |I | X           (f) |dsb-sc

f [Hz]

a

f [Hz]

a) b)
Lower sideband Upper sideband

= | F{x  (t)cos(2  f  t)} |cI π

0

a/2

Where does the name come from?
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Example 3.1: 4-ary PAM

–3

–2

–1

0

1

2

3

1 2 3 4 5 6 7
t/Ts

s(
t)
/A

–3

–2

–1

0

1

2

3

1 2 3 4 5 6 7
t/Ts

x
d
sb
−s

c
(t
)/
A

xI(t) = s(t) =
∞

∑
n=−∞

Am[n] grec(t−nTs)

0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20
fTs

R
d
sb
−s

c
(f
)/
(P

d
sb
−s

cT
s
)
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How can we revert the frequency shift to fc?
Hint: check Example 2.19 (p. 68)

G(f)

-fc fc
0

f

A

Find the frequency content of

x(t) = g(t) cos(2π f0 t) , f0 = 3 fc/4

Solution:
If we apply (2.157) using G(f) above, we obtain the frequency content in x(t) as

X(f)

-fc fc0
f

A/2

fc/4 7fc/4

How should we choose f0 to get the baseband signal back?
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Problem 3.9
In the three-user (digital) communication system below, the frequency con-
tent in the user information signals u1(t), u2(t) and u3(t) are,

User1:

User2:

User3:

cos(2 πf1t)

cos(2 πf2t)

cos(2 πf3t)

x(t) r(t)

d(t)

cos(2 πf4t)

b(t) Lowpass
filter

c(t)

Receiver

f [kHz]
0 100

|U2(f)| |U3(f)|

0 200
f [kHz]

0 300
f [kHz]

|U1(f)|

u1(t)

u2(t)

u3(t)

It is known that the individual carrier frequencies are: f1 = 3.5 MHz,
f2 = 4.0 MHz, f3 = 3 MHz. The disturbance d(t) is d(t) = cos(2π2fdt)
where fd = 1.7 MHz.
Only frequencies up to 100 kHz pass the lowpass filter.
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Envelope and Phase
� A frequency shift corresponds to a multiplication with ej2π fc t

� For connecting this to the cosine and sine function we use

ej2π fc t = cos(2π fc t) + jsin(2π fc t)

� The general bandpass signal can then be written in terms of a
frequency shifted version of a complex signal xI(t)+ j xQ(t)

x(t) = xI(t) cos(2π fc t) − xQ(t) sin(2π fc t)

= Re
{(

xI(t)+ j xQ(t)
)
ej2π fc t}

� Expressing xI(t)+ j xQ(t) in terms of magnitude and phase we get

x(t) = e(t) cos(2π fc t + θ(t)) , −∞ ≤ t ≤ ∞

with
e(t) =

√
x2

I (t)+ x2
Q(t)≥ 0

xI(t) = e(t) cos(θ(t))
xQ(t) = e(t) sin(θ(t))
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I-Q Diagram
� In the representation

x(t) = xI(t) cos(2π fc t) − xQ(t) sin(2π fc t)

the information is contained in the inphase component xI(t) and
quadrature component xQ(t)

� In the representation
x(t) = e(t) cos(2π fc t + θ(t)) , −∞ ≤ t ≤ ∞

the information is contained in the envelope e(t) and
instantaneous phase θ(t)

(t)θ

(t2)

xQ(t)

xI (t)

(t1)

e(t)

I(t)

Q(t)

(t)

connection: I-Q diagram
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Analog Information Transmission
� Suppose that the information signal is an analog waveform a(t)

Examples: music, speech, video
� If we use digital modulation, the waveform a(t) is first converted

to a binary sequence b[i], which then is mapped to signals s�(t)
� In case of analog modulation, the waveform a(t) is used directly

to modulate the carrier signal
� Let v(t) denote the bandpass signal of an analog transmitter

v(t) = vI(t) cos(2π fc t) − vQ(t) sin(2π fc t) , −∞ ≤ t ≤ ∞
= e(t) cos

(
2π fc t + θ(t)

)
� Amplitude modulation (AM):

the waveform a(t) modulates the envelope e(t) only

� Frequency modulation (FM):
here a(t) modulates the instantaneous phase θ(t) only
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Amplitude Modulation (AM)

+

cos(2πfc t+ϕ)B C

a(t) v(t)

� The AM signal is the sum of a DSB-SC signal and carrier wave

v(t) =
(
a(t)B+C

)
cos(2π fc t+ϕ)

= a(t)B cos(2π fc t+ϕ) + C cos(2π fc t+ϕ)

� Let us introduce the modulation index

m =
Bamax

C
≤ 1 , where amax = max |a(t)|

� Using the normalized signal an(t) = a(t)/amax we can write

v(t) =
(
1+man(t)

)
C cos(2π fc t+ϕ)
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Example: AM signal
e(t)/C = 1+ma(t) , an(t) = sin(2π fp t) , fp = 1/Tp

–2

–1

0

1

2

0.5 1 1.5 2 2.5 3 3.5
t/Tp

e
(t
)/
C

a
n
d
v
(t
)/
C

–2

–1

0

1

2

0.5 1 1.5 2 2.5 3 3.5
t/Tp

q
(t
)
a
n
d
v
(t
)/
C

� m = 0.5 < 1:
the information signal an(t) is contained in the envelope e(t)

� m = 1.2 > 1: (right picture)
overmodulation: the baseband signal q(t) = (1+1.2an(t))
is no longer equal to e(t)
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Frequency Modulation (FM)

(f dev,fc)

VCOa(t) v(t)
FM signal

� With FM modulation, the transmitted signal

v(t) =
√

2P cos(2π fc t+θ(t))

is generated by a voltage controlled oscillator (VCO)
� The information carrying signal a(t) is related to the phase θ(t) by

1
2π

dθ(t)
dt

= fdev ·a(t)
� The signal a(t) hence modulates the instantaneous frequency

fins(t) = fc +
1

2π
dθ(t)

dt
= fc + fdev a(t)

� FM modulation is a non-linear operation, hard to analyze
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Example 3.13: FM stereo
A possible block-diagram of conventional analog FM stereo is shown below.

xr(t)

cos(2 π2f1t)

Frequency
doubling

Acos(2 πf1t)

z(t) Frequency
modulator

Channel
Frequency
demodulator

x̂r(t)

x (t)^Extract
x (t) and

 xr(t)

z(t)^

+

-

x (t)

x�(t) and xr(t) denotes the left and the right audio-channel, respectively, and they are
both bandlimited to 15 [kHz]. The frequency f1 = 19 [kHz] (often referred to as a
so-called pilot-tone).

|Z(f)|
Pilot DSB modulated

difference signal

Left+right signal
(mono-signal)

f [kHz]
15 19 38 5323

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 8



Digital Information Transmission
� In Chapter 2 the signal alternatives s�(t) could have arbitrary

shape within the signaling interval 0 ≤ t ≤ Ts

� The bandpass signal for digital modulation then has the form

x(t) = xI(t) cos(2π fc t) − xQ(t) sin(2π fc t)

=

(
∞

∑
n=−∞

sm[n],I(t−nTs)

)
cos(2π fc t)

−
(

∞

∑
n=−∞

sm[n],Q(t−nTs)

)
sin(2π fc t)

� In case of M-ary QAM we have

xI(t) =
∞

∑
n=−∞

Am[n] g(t−nTs) , xQ(t) =
∞

∑
n=−∞

Bm[n] g(t−nTs)

� Also M-ary FSK signals have bandpass characteristics
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A simple Matlab example
How does a QPSK signal look like? Here is an example:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

fTs

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

fTs

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

fTs

-1

0

1

xI(t) cos(2π fc t)

xQ(t) sin(2π fc t)

x(t) = xI(t) cos(2π fc t)− xQ(t) sin(2π fc t)

t/Ts
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And how it was done:
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Example 3.5: offset QPSK
Below, two information carrying baseband signals xI(t) and s(t) are first generated.
Binary antipodal signaling with a rectangular pulse shape is used for both xI(t) and
s(t). The signal xQ(t) is a delayed version of s(t), xQ(t) = s(t− Tb).

b Serial
to

parallel

{s  (t)}
1

=0

{s  (t)}
1

=0

b2[i]

b1[i]

s(t) xQ(t)

x
I

(t)

x(t)

cos( ωct)

-sin( ωct)s1(t) = -s0(t)

A

t
Ts=2T b

Delay

Tb

The information bit rate (in b) is Rb = 1/Tb. Hence, the signaling rate in the quadra-
ture components is Rs = Rb/2.

QPSK signal with delayed transmission of xQ(t)

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 8



Example 3.5: offset QPSK

b6Tb2T 10Tb

b2T 10Tbb6T 8Tb

xI (t)

xQ(t)
xI (t)

b0<t<T

4Tb<t<5Tb 3Tb<t<4Tb

Tb<t<3Tb
t>8Tb

5Tb<t<8Tb

xQ(t)

-A

A
1 1 0 0 1

t

A

-A

1 0 1 1 1

t

A

t<0

A

� Special feature:
xI(t) and xQ(t) can never change at the same time

� it follows that the envelope does not pass the origin, i.e., e(t)> 0
� the variation of instantaneous power P(t) = e2(t)/2 is small,

which allows more efficient power amplifiers
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Example 3.6: constant envelope signaling
Change pulse shape:
half cycle sinusoidal ghcs(t)
instead of grec(t)

–1

–0.5

0

0.5

1

2 4 6 8 10 12

x
I
(t
)/
A

t/Tb

–1

–0.5

0

0.5

1

2 4 6 8 10 12

x
Q
(t
)/
A

t/Tb

The squared envelope becomes

e2(t) = x2
I (t)+ x2

Q(t)

= A2 sin2(πt/(2Tb))+A2 cos2(πt/(2Tb))

= A2 ⇒ constant envelope e(t) = A

(t)θ

xQ(t)

xI(t)

t=5Tb,7Tb

t=0,4Tb

t=Tb,3T ,9Tbb

t=2Tb ,6Tb ,8Tb,10Tb

A

Continuous phase modulation (CPM) is used in GSM
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Example 3.7: GSM

Mobile

890-915 [MHz] 935-960 [MHz]

Uplink Downlink

N  W [MHz]. N  W [MHz].

Each sub-band of W [Hz] carries information from X users, which are time-multiplexed
using X time-slots. The total number of speech-channels (or data-channels) in the
uplink (and in the downlink) is N ·X.

A specific user is allocated one of the N sub-bands, and one of the X time-slots. A
time-slot has duration 576.92 [µs], and 148 binary symbols are transmitted within this
time, see the figure below.

Start
3

Coded bits
57

Flag
1

Training sequence
26

Stop
3

ISI
margin

Flag
1

Coded bits
57

148

30.46 µs

576.92 µs
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From 2G to 4G

� GSM: (Global System for Mobile Communications)
based on combined time-division multiple access (TDMA) and
frequency division multiple access (FDMA)

� UMTS: (Universal Mobile Telecommunications Service)
based on wideband code division multiple access (W-CDMA)
each user has an individual code, no TDMA or FDMA

� LTE (advanced): (Long Term Evolution)
orthogonal frequency-division multiple access (OFDMA)

Multiple access:
refers to how different active users are separated
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Channel Noise
� In almost all applications the received signal r(t) is disturbed by

some additive noise N(t):

r(t) = z(t)+N(t)

–3

–2

–1

0

1

2

3

1 2 3 4 5
t/Ts

N
(t
)/

√ P̄ N

� Since the received noise disturbs that transmitted signal, we
need to characterize its influence on the performance
in terms of bit error rate or achievable information bit rate
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White Gaussian Noise
� White Gaussian noise w(t) is a common model for background

noise, such as created by electronic equipment
� The samples of w(t) have a zero-mean Gaussian distribution
� Any two distinct samples of w(t) are uncorrelated

rw(τ) = E{w(t+ τ)w(t)}= N0

2
δ (τ)

� This leads to a constant power spectral density

Rw(f ) =
∫ ∞

−∞
rw(τ)e−j2π f τ dτ =

N0

2
, −∞ ≤ f ≤ ∞

R   (f)w

N  /20

0
f [Hz]

All frequencies are disturbed equally strongly
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Filtered Gaussian Noise
� In reality we usually deal with filtered noise of limited bandwidth,

so-called colored noise
� Assuming that white Gaussian noise w(t) passes a filter v(t) we

obtain colored noise c(t) with power spectral density

Rc(f ) = Rw(f ) |V(f )|2 = N0

2
|V(f )|2

� For an ideal bandpass filter v(t) with bandwidth W the spectrum
is shown below:

Rc(f)

N0/2

-fc fc

f [Hz]

W

w(t) v(t) c(t)
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Filtered Gaussian Noise
� Since R(f ) is constant within the bandwidth W, such a process

c(t) is usually referred to as "white" bandpass process
� Let the noise process c(t) be sampled at some time t = t0. Then

the sample value c(t0) is a Gaussian random variable with

p(c) =
1√

2π σ2
e−(c−m)2/2σ2

with mean m = 0 and variance σ2 = N0/2 Ev = N0 W = Pc

Example: matched filter output (recall Chapter 4)

The additive noise N is sampled from a filtered noise process

v(t) = z 1(Ts-t)-z 0(Ts-t) N

t=(n+1)T s

N(t)

σ2 = N0/2 ·Ev = N0/2
∫ Ts

0

(
z1(t)− z0(t)

)2 dt
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Linear-Filter Channels
� The channel is often modeled as time-invariant filter with noise

r(t)

h(t) +

w(t)

x(t) z(t)

� h(t) is the channel impulse response and w(t) the additive noise
� The received signal becomes

r(t) = x(t)∗h(t)+w(t) =
∫ ∞

−∞
h(τ)x(t− τ) dτ +w(t)

� The simplest case is an attenuated noisy channel:

h(t) = α δ (t) ⇒ r(t) = α s(t)+w(t)
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N-ray Channel Model
� In many applications (wired and wireless) the transmitted signal

x(t) reaches the receiver along several different paths
� Such multi-path propagation motivates the N-ray channel model

+

Nα δ (t-     )τN

α δ (t-    )2 τ2

α1δ (t-    )τ1

....

x(t) z(t)

� The output signal becomes

z(t) =
N

∑
i=1

αi x(t− τi) = x(t)∗h(t)

� The impulse response h(t) and its Fourier transform are given by

h(t) =
N

∑
i=1

αi δ (t− τi) , H(f ) =
N

∑
i=1

αi e−j2π f τi
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Example 3.19: multipath propagation

α1

α2

α3

Delay 2 µs

Delay 1 µs

z1(t)
or

z0(t)

s1(t)
or

s0(t)

s1(t) = −s0(t) =
A , 0 ≤ t ≤ 10−6

0 , otherwise

z1(t) =  -z0(t)

0.01A

-0.01A
3

t [µs]

α1 = 0.01,α2 =−0.01,α3 = 0.01

� The channel (= filter) increases the length of the signals
� Signals exceed their time interval and will overlap if Ts is not

increased accordingly ⇒ inter-symbol interference (ISI)
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Example 3.20
EXAMPLE 3.20
Calculate and sketch |H(f)|2 for the 2-ray channel model.

Solution:
From (3.128) we obtain,

H(f) = α1e
−j2πfτ1 + α2e

−j2πfτ2 =

= e−j2πfτ1 α1 + α2e
−j2πf(τ2−τ1)

|H(f)|2 = α1 + α2e
−j2πf(τ2−τ1) α1 + α2e

+j2πf(τ2−τ1) =

= α2
1 + α2

2 + α1α2 ej2πf(τ2−τ1) + e−j2πf(τ2−τ1) =

= α2
1 + α2

2 + 2α1α2 cos(2πf(τ2 − τ1))

|H(f)|2

τ2- τ1
2

τ2- τ1

1

α( 1 α2)2+

α( 1- α2)2
f [Hz]

Channel fading: some frequencies are attenuated strongly
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Features of Multipath Channels
Challenges:

� the receiver needs to know the channel
� training sequences need be transmitted for channel estimation
� the impulse response can change over time
� the line-of-sight (LOS) component is sometimes not received

Opportunities:
� with multiple paths we can collect more signal energy
� receiver can work without direct LOS component
� channel knowledge, once we have it, can give useful information:

Examples: distance, angle of arrival, speed (Doppler)
� positioning/navigation is often based on channel estimation

If you want to know more:
EITN85: Wireless Communication Channels, VT 1
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Receiver for linear filter channel model
� For a simple channel with a direct transmission path only

h(t) = α δ (t) ⇒ z�(t) = α s�(t)

� In case of multipath propagation the channel filter can change
the shape and duration of the signals z�(t)

� It can be shown that the matched filter of the overall system can
be replaced with a cascade of two separate matched filters

z�(Ts − t) ⇔ h(Th − t) , s�(Tmax − t) , Ts = Tmax +Th

� The channel matching filter h(Th − t) simplifies the
implementation of the receiver
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ML receiver with channel matching filter

+

+

+

+

s        (T       -t)M-1 max

s  (T       -t)max0

s  (T       -t)max1
ξ [n]1

ξ [n]0

SYNCHRONIZATION

t=(n+1)Ts

m[n]
^

h(t)

m[n](t-nT  )szsm[n] s(t-nT  )

h(T  -t)h
r(t)

. .
 .

LARGEST

SELECT

R E C E I V E R

-E  /20

-E  /21N(t)

-E       /2

ξ [n]

M-1

M-1
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Example: three-ray channel
� Consider a channel with three signal paths

h(t) = α1 δ (t− τ1)+α2 δ (t− τ2)+α3 δ (t− τ3)

� Assuming τ1 < τ2 < τ3 we have Th = τ3
� The channel matching filter becomes

h(Th − t) = h(τ3 − t)

= α3 δ (t)+α2 δ (t− (τ3 − τ2))+α1 δ (t− (τ3 − τ1))

RAKE receiver structure:

s      (t-nT  )m[n] α1δ(t-τ1)

α2δ(t-τ2)

α3δ(t-τ3)
Delay
τ3-τ2

Delay
τ3-τ1

α1

α2

α3

r(t) To matched
filters

Channel matching
filter h(T  -t)

N(t)

Three-ray channel

s

h
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Recall: receiver for M-ary signaling
� Consider the general receiver structure from Chapter 4:

m̂

Ts

0

(   )dt +

Ts

0

(   )dt +
SELECT

LARGEST

ξ1

ξ0

ξM-1

{z  (t)}
=0

M-1

+

z  (t)1

z  (t)0

z       (t)M-1
Ts

0

(   )dt +

z(t)

N(t)

r(t)

RECEIVER

. .
 .

. .
 .

. .
 .

-E  /2

-E  /2

-E        /2M-1

0

1

� Decision variables are computed by correlators or matched filters
� Each possible signal alternative is recreated in the receiver
� Question: can we apply this to bandpass signals? Yes!

But: recreating signals at large frequencies fc is a challenge
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Example: QAM Signaling
� Recall the simplified receiver considered in Example 4.4:

Select
MAX

Decision

r(t)

A0

B0

A63

B63

-E0/2

-E63/2

ξ0

ξ63
. . .

. . .
Ts

0
(  ) dt

Ts

0
(  ) dt

-sin( ωct)

cos( ωct) g(t)

g(t)

y

x

� Only two correlator branches are required instead of M
� Separation of carrier waveforms from baseband pulse possible

Our aim: a general baseband representation of the receiver
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Transmission of bandpass signals
� Recall from last lecture:

signal
Digital

processor
information
Original

(digital or analog) xQ (t)

x I
(t)

cos(2  f  t)cπ

x(t)

-sin(2  f  t)π c

� A general bandpass signal can always be written as

x(t) = xI(t) cos(2π fc t) − xQ(t) sin(2π fc t) , −∞ ≤ t ≤ ∞

� xI(t): inphase component xQ(t): quadrature component
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QPSK Example

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

fTs

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

fTs

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

fTs

-1

0

1

xI(t) cos(2π fc t)

xQ(t) sin(2π fc t)

x(t) = xI(t) cos(2π fc t)− xQ(t) sin(2π fc t)

t/Ts

What are xI(t) and xQ(t) in this case?
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Receivers for bandpass signals
� Our goal: reproduce components xI(t) and xQ(t) at the receiver
� In the transmitted bandpass signal x(t) these components were

shifted to the carrier frequency fc

|X(f)|
2

f c- f c

W

f [Hz]
0

� Idea: shifting the signal back to the baseband by multiplying with
the carrier waveform again (see Ex. 2.19 and Problem 3.9)

� A lowpass filter HLP(f ) is then applied in the baseband to remove
undesired other signals or copies from the carrier multiplication

-W lp Wlp

1

|HLP(f)|

f [Hz]
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Homodyne receiver frontend

HLP(f)

HLP(f)

-Asin( ωct+φerr(t))

Acos( ωct+φerr(t))

v(t)
u
I
(t)

uQ(t)

H     (f)BP
r(t)

� Receiver is not synchronized to transmitter: phase errors φerr(t)
� Assume first r(t) = xI(t) cos(2π fc t) (xQ(t) = 0 and no noise)

uI(t) =
[
xI(t) cos(2π fc t) ·A cos(2π fc t+φerr(t))

]
LP

=
[xI(t)

2
A (cos(φerr(t))+ cos(2π 2fc t+φerr(t)))

]
LP

=
xI(t)

2
A cos(φerr(t))

� Likewise uQ(t) =−xI(t)
2

A sin(φerr(t))
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The impact of phase errors
� Assuming r(t) = xI(t) cos(2π fc t) we have found that

uI(t) =
xI(t)

2
A cos(φerr(t)) , uQ(t) =−xI(t)

2
A sin(φerr(t))

� Ideal case: φerr(t) = 0

uI(t) = xI(t)/2 ·A and uQ(t) = 0

⇒ the inphase branch is independent of the quadrature branch

� Phase errors: φerr(t) �= 0

uI(t)< xI(t)/2 ·A and uQ(t) �= 0 (crosstalk)

� If φerr(t) changes randomly (jitter) the average uI(t) can vanish

� Ignoring the effect of phase errors can lead to bad performance

Question: what can we then do about phase errors?
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Coherent receivers
� Assume now that we can estimate φerr(t)
� The signal xI(t) is contained in both uI(t) and uQ(t)

uI(t) =
xI(t)

2
A cos(φerr(t)) , uQ(t) =−xI(t)

2
A sin(φerr(t))

� Coherent reception:

by combining both components the signal can be recovered by

ûI(t)= uI(t) ·cos(φerr(t))−uQ(t) ·sin(φerr(t))

=
xI(t)

2
A cos2(φerr(t))+

xI(t)
2

A sin2(φerr(t)) =
xI(t)

2
A

� Observe: same result as in the ideal case φerr(t) = 0

Compare: non-coherent DPSK receiver (last lecture, p. 400-403)
can be used if phase estimation is not possible
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Overall transmission model

x   (t)Q

x  (t)I

+ H(f) +

H     (f)LP

H     (f)LP u   (t)Q

u  (t)I

cos(    t)ωc

-sin(    t)cω

w(t)+y  (t)+...+y   (t)1 N

Acos(     t+        (t))φerrωc

-Asin(     t+        (t))ωc φerr

H     (f)BPinformation

Original

processor

Signal x(t) z(t) r(t) v(t)

Transmitter side Channel Homodyne reception

� The signal y(t) is given by

y(t) = z(t)+w(t) = x(t) ∗ h(t)+w(t)

� It can be written as

y(t) = yI(t)cos(2π fc t)− yQ(t)sin(2π fc t)

Can we express uI(t) and uQ(t) in terms of xI(t) and xQ(t)?
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Inphase and quadrature relationship

� With the complete signal r(t) entering the receiver the output
signals become

uI(t) =
[
y(t)A cos(2π fc t+φerr(t))

]
LP

=
yI(t)

2
A cos(φerr(t))

+
yQ(t)

2
A sin(φerr(t))

uQ(t) =
[
− y(t)A sin(2π fc t+φerr(t))

]
LP

=
yQ(t)

2
A cos(φerr(t))

− yI(t)
2

A sin(φerr(t))

φerrsin(       (t))A/2

φerrcos(       (t))A/2

φerrcos(       (t))A/2

y  (t)I u  (t)I

u   (t)Q+

+

y   (t)Q +

-
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Including the channel filter
� Before we can relate y(t) = z(t)+w(t) to x(t) we need to consider

the effect of the channel

z(t) = x(t) ∗ h(t) x(t) z(t)h(t)

� We assume that the impulse response h(t) can be represented
as a bandpass signal

h(t) = hI(t) cos(2π fc t)−hQ(t) sin(2π fc t)

� With some calculations the signals can be written as (p. 159-160)

2
1

h   (t)I

2
1 h   (t)Q

2
1 h   (t)Q

2
1

h   (t)I

+

+

x   (t)I

x   (t)Q

z   (t)I

z   (t)Q

+

- zI(t) =
1
2
(
xI(t) ∗ hI(t)− xQ(t) ∗ hQ(t)

)
zQ(t) =

1
2
(
xI(t) ∗ hQ(t)+ xQ(t) ∗ hI(t)

)
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Equivalent baseband model
� Combining the channel with the receiver frontend we obtain

h   (t)Q
2

h   (t)Q
2

h  (t)I
2

+ +

φerrcos(       (t))A/2

φerrsin(       (t))A/2

u   (t)Q

h  (t)I
2

+
z  (t)I

+ + u  (t)I

φerrcos(       (t))A/2

y   (t)Q
+

z   (t)Q

y  (t)I

w   (t)Q

w  (t)I

x  (t)I

x   (t)Q

-

+

+

� Observe that all the involved signals are in the baseband
� The same is true for channel filter, noise and phase error

Digital signal processing can be applied easily in baseband
What happened with the carrier waveforms?
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Overall transmission model

x   (t)Q

x  (t)I

+ H(f) +

H     (f)LP

H     (f)LP u   (t)Q

u  (t)I

cos(    t)ωc

-sin(    t)cω

w(t)+y  (t)+...+y   (t)1 N

Acos(     t+        (t))φerrωc

-Asin(     t+        (t))ωc φerr

H     (f)BPinformation

Original

processor

Signal x(t) z(t) r(t) v(t)

Transmitter side Channel Homodyne reception

� The signal y(t) is given by

y(t) = z(t)+w(t) = x(t) ∗ h(t)+w(t)

� It can be written as

y(t) = yI(t)cos(2π fc t)− yQ(t)sin(2π fc t)

Can we express uI(t) and uQ(t) in terms of xI(t) and xQ(t)?
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Inphase and quadrature relationship

� With the complete signal r(t) entering the receiver the output
signals become

uI(t) =
[
y(t)A cos(2π fc t+φerr(t))

]
LP

=
yI(t)

2
A cos(φerr(t))

+
yQ(t)

2
A sin(φerr(t))

uQ(t) =
[
− y(t)A sin(2π fc t+φerr(t))

]
LP

=
yQ(t)

2
A cos(φerr(t))

− yI(t)
2

A sin(φerr(t))

φerrsin(       (t))A/2

φerrcos(       (t))A/2

φerrcos(       (t))A/2

y  (t)I u  (t)I

u   (t)Q+

+

y   (t)Q +

-
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Including the channel filter
� Before we can relate y(t) = z(t)+w(t) to x(t) we need to consider

the effect of the channel

z(t) = x(t) ∗ h(t) x(t) z(t)h(t)

� We assume that the impulse response h(t) can be represented
as a bandpass signal

h(t) = hI(t) cos(2π fc t)−hQ(t) sin(2π fc t)

� With some calculations the signals can be written as (p. 159-160)

2
1

h   (t)I

2
1 h   (t)Q

2
1 h   (t)Q

2
1

h   (t)I

+

+

x   (t)I

x   (t)Q

z   (t)I

z   (t)Q

+

- zI(t) =
1
2
(
xI(t) ∗ hI(t)− xQ(t) ∗ hQ(t)

)
zQ(t) =

1
2
(
xI(t) ∗ hQ(t)+ xQ(t) ∗ hI(t)

)
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Equivalent baseband model
� Combining the channel with the receiver frontend we obtain

h   (t)Q
2

h   (t)Q
2

h  (t)I
2

+ +

φerrcos(       (t))A/2

φerrsin(       (t))A/2

u   (t)Q

h  (t)I
2

+
z  (t)I

+ + u  (t)I

φerrcos(       (t))A/2

y   (t)Q
+

z   (t)Q

y  (t)I

w   (t)Q

w  (t)I

x  (t)I

x   (t)Q

-

+

+

� Observe that all the involved signals are in the baseband
� The same is true for channel filter, noise and phase error

Digital signal processing can be applied easily in baseband
What happened with the carrier waveforms?
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A compact description
� A more compact description is possible by combining xI(t) and

xQ(t) to an equivalent baseband signal

x̃(t) = xI(t)+ j xQ(t)

� The transmitted signal can then be described as

x(t) = Re
{
(xI(t)+ j xQ(t))e+j2π fc t}= Re

{
x̃(t)e+j2π fc t}

|X(f)|
2

f c- f c

W

f [Hz]
0

� With Re{a}= (a+a∗)/2 we can write

x(t) =
x̃(t)

2
· e+j2π fc t +

x̃∗(t)
2

· e−j2π fc t
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A compact description
� Let us first ignore the effect of the channel: w(t) = 0, h(t) = δ (t)
� The receiver can invert the frequency shift operation by

ũ(t) =
[
x(t) ·Ae−j(2π fc t+φerr(t))

]
LP

� Using the expression for x(t) from the previous slide we get

ũ(t) =
[

A
2
(
x̃(t)e+j2π fc t + x̃∗(t)e−j2π fc t) · e−j(2π fc t+φerr(t))

]
LP

=
x̃(t)

2
A · e−jφerr(t) = uI(t)+ juQ(t)

� Observe that this expression is equivalent to our earlier result

ũ(t) =
(

xI(t)
2

A cos(φerr(t)) +
xQ(t)

2
A sin(φerr(t))

)

+ j
(

xQ(t)
2

A cos(φerr(t))−
xI(t)

2
A sin(φerr(t))

)
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Compact equivalent baseband model
� The effect of the channel filter becomes

z̃(t) = zI(t)+ j zQ(t) = x̃(t) ∗ h̃(t)
2

� Combining these parts and the noise we obtain the simple model

+x(t)~ ~u(t)

w(t)~ φerr(t)-jA
2
e

h(t)
2

~

ũ(t) =
[(

x̃(t) ∗ h̃(t)
2

)
+ w̃(t)

]
· e−jφerr(t) · A

2
, w̃(t) = wI(t)+ jwQ(t)

� Complex signal notation simplifies expressions significantly
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The two equivalent baseband models

h   (t)Q
2

h   (t)Q
2

h  (t)I
2

+ +

φerrcos(       (t))A/2

φerrsin(       (t))A/2

u   (t)Q

h  (t)I
2

+
z  (t)I

+ + u  (t)I

φerrcos(       (t))A/2

y   (t)Q
+

z   (t)Q

y  (t)I

w   (t)Q

w  (t)I

x  (t)I

x   (t)Q

-

+

+

+x(t)~ ~u(t)

w(t)~ φerr(t)-jA
2
e

h(t)
2

~
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M-ary QAM signaling
� Considering M-ary QAM signals we get

xI(t) =
∞

∑
n=−∞

Am[n] g(t−nTs) , xQ(t) =
∞

∑
n=−∞

Bm[n] g(t−nTs)

� Let us now introduce

Ãm[n] = Am[n] + jBm[n]

� Then our complex baseband signal x̃(t) can be written as

x̃(t) = xI(t)+ j xQ(t) =
∞

∑
n=−∞

Ãm[n] g(t−nTs)

� Example: (on the board)

Consider 4-QAM transmission of b = 1 0 1 1 1 0 0 1
Determine Am[n], Bm[n] and Ãm[n]

How can we design the receiver for QAM signals?
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Matched filter receiver
� At the receiver we see the complex baseband signal ũ(t)

+x(t)~ ~u(t)

w(t)~ φerr(t)-jA
2
e

h(t)
2

~

� If we know the channel we can design a matched filter for

z̃(t) = x̃(t) ∗ h̃(t)
2

⇒ ṽ(t) = z̃∗(Ts − t)

� It is often convenient to match ṽ(t) to the pulse g(t) instead

ṽ(t) = g∗(Ts − t) ⇒ ξ̃ [n] =
[
ũ(t) ∗ g∗(Ts − t)

]
t=(n+1)Ts

r(t) r1 m̂
t=T S

Receiver

Decision
ruleϕ1(Ts-t)

ũ(t)
g̃∗(Ts − t)

ξ̃[n]

t = (n+ 1)Ts
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Decision rule
� Consider now h̃(t) = δ (t) and w̃(t) = 0
� The ideal values of the decision variable are then given by

ξ̃m[n] =
[
ũ(t) ∗ g∗(Ts − t)

]
t=(n+1)Ts

=

[(
Ãm[n]g(t−nTs) · e−jφerr(t) · A

2

)
∗ g∗(Ts − t)

]
t=(n+1)Ts

= Ãm[n]e
−jφerr(t) · A

2

[
g(t−nTs) ∗ g∗(Ts − t)

]
t=(n+1)Ts

= Ãm[n]e
−jφerr((n+1)Ts) · A

2
Eg

� Due to noise w(t) �= 0 and non-ideal channel h̃(t) the decision
variables at the receiver will differ from these ideal values

� The Euclidean distance receiver will base its decision on the
ideal value ξ̃m[n] which is closest to the received value ξ̃ [i]
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Example: 4-PSK
� Assuming φerr(t) = 0 we obtain the ideal decision variables

ξ̃m[n] = Ãm[n] ·
A
2

Eg = (Am[n] + jBm[n]) ·
A
2

Eg

ideal ξ̃

received ξ̃

decision boundary
Re{ξ̃}

Im{ξ̃}

� Based on the received value ξ̃ [n] we decide for

m̂[n] : Ãm̂[n] = (1+ j ·0)
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Example: 4-PSK with phase offset
� Consider now a constant phase offset of φerr(t) = φerr = 25◦

� As a result the values ξ̃m[n] and ξ̃ [n] are rotated accordingly

ideal ξ̃

received ξ̃

decision boundary
Re{ξ̃}

Im{ξ̃}

φerr

How can we compensate for φerr?
1. we can rotate the decision boundaries by the same amount
2. or we can rotate back ξ̃ [n] by multiplying with e+jφerr
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Summary: M-ary QAM transmission

� We can describe the transmitted messages Ãm̂[n] and the
decision variables ξ̃ [n] at the receiver as complex variables

� The effect of the noise w̃(t) and the channel filter h̃(t) on ξ̃ [n] can
be described by the equivalent baseband model

� The transmitter and receiver frontends can be separated from
the (digital) baseband processing

� Assumptions:
- the pulse shape g(t) satisfies the ISI-free condition
- the carrier frequency fc is much larger than the bandwidth of g(t)

� Under these conditions the design of the baseband receiver and
its error probability analysis can be applied as in Chapter 4
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Intersymbol Interference (ISI)
� Consider transmission of a single M-ary PAM signal alternative

sj(t) = A jg(t)

h(t)
zj(t) = A ju(t)

v(t)
y(t) = A jx(t) ξ

t=T s

Threshold
detector

w(t) = 0

Channel Receivera)

m̂
r(t)

� In the noise-free case (w(t) = 0) the signal x(t) can be written as

x(t) = u(t) ∗ v(t) = g(t) ∗ h(t) ∗ v(t)
Example:

g(t)

0 Tg
t

u(t)

Tg + T h

Tu

t

)

x(t)

Ts

Tu + T v

Tx

t

What happens if Tu = Tg +Th ≥ Ts? ⇒ ISI occurs
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Intersymbol Interference (ISI)
� For Rs = 1/Ts < 1/Tu we can use the ML receiver from Chapter 4
� Question: can we use such a receiver for larger rates Rs ≥ 1/Tu?
� Consider the following receiver structure (compare to last slide)

h(t) m[i]^+

t=t  +LT  +iT0 s s

Threshold
detector

[i]ξsA[n]g(t-nT  )
n= 8 v(t)

ChannelTransmitter

w(t)

z(t)s(t) = ∑

8

r(t) y(t)

Receiver

� Note that z(t) now is a superposition of overlapping pulses u(t)
� The signal y(t) after the receiver filter v(t) is

y(t) =
∞

∑
n=−∞

A[n]x(t−nTs)+wc(t) ,

where wc(t) is a filtered Gaussian process
� The decision variable is obtained after sampling

ξ [i] = y(T + iTs) , T = t0 +LTs , where LTs ≥ Tu
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Illustration of ISI in the receiver

ξ [0] ξ [1] [3]ξ[2]ξ

Ts
T  =Tu s

2Ts 3Ts 4Ts 5TsT  =Tu s

y(t)

Individual pulses

t
0

ξ [0] ξ [1] [2]ξ

Ts

Ts
2 sT 3Ts2Ts

Ts
2

T   =uy(t)

t

2Ts

ξ [0] ξ [1] [2]ξ [3]ξ ξ [4]

sT sT sTsT

T  =2Tu s

ISI

ISI

. . . . . .

t

Message term
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Discrete time model for ISI
� According to our model the decision variable can be written as

ξ [i] = y(T + iTs) =
∞

∑
n=−∞

A[n]x(T + iTs −nTs)+wc(T + iTs)

� Let us introduce the discrete sequences

x[i] = x(T + iTs) , wc[i] = wc(T + iTs)

� This leads to the following discrete-time model of our system

[i]ξ
+

w  [i]c

x[i] Threshold
detection m[i]^A[i]

ξ [i] =
∞

∑
n=−∞

A[n]x[i−n]+wc[i] = A[i] ∗ x[i]+wc[i]

Remark: the discrete-time impulse response x[i] represents
pulse shape g(t), channel filter h(t), and receiver filter v(t)
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Example 6.1
The transmitted sequence of amplitudes A[i] is given as,

A[i]

1

1 5 8 9
i

Calculate, and plot, the sequence of decision variables ξ[i] in Figure 6.2, for 0 ≤ i ≤ 8,
in the noiseless case (i.e. w(t) = 0) if t0 = 0 and if the output pulse x(t) is:

Ts 2Ts

x0

2Ts 4TsTs

x0

x(t)

0
t

x(t)

t

i) L=1 and x(t) as below. ii) L=2 and x(t) as below.

� i) ξ [i] = x0 A[i] ii) ξ [i] = x0
2 A[i+1]+ x0 A[i]+ x0

2 A[i−1]
ξ [i]

x0

-x 0

i
1 5 6 8
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Intersymbol Interference (ISI)
� For Rs = 1/Ts < 1/Tu we can use the ML receiver from Chapter 4
� Question: can we use such a receiver for larger rates Rs ≥ 1/Tu?
� Consider the following receiver structure (compare to last slide)

h(t) m[i]^+

t=t  +LT  +iT0 s s

Threshold
detector

[i]ξsA[n]g(t-nT  )
n= 8 v(t)

ChannelTransmitter

w(t)

z(t)s(t) = ∑

8

r(t) y(t)

Receiver

� Note that z(t) now is a superposition of overlapping pulses u(t)
� The signal y(t) after the receiver filter v(t) is

y(t) =
∞

∑
n=−∞

A[n]x(t−nTs)+wc(t) ,

where wc(t) is a filtered Gaussian process
� The decision variable is obtained after sampling

ξ [i] = y(T + iTs) , T = t0 +LTs , where LTs ≥ Tu
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Illustration of ISI in the receiver

ξ [0] ξ [1] [3]ξ[2]ξ

Ts
T  =Tu s

2Ts 3Ts 4Ts 5TsT  =Tu s

y(t)

Individual pulses

t
0

ξ [0] ξ [1] [2]ξ

Ts

Ts
2 sT 3Ts2Ts

Ts
2

T   =uy(t)

t

2Ts

ξ [0] ξ [1] [2]ξ [3]ξ ξ [4]

sT sT sTsT

T  =2Tu s

ISI

ISI

. . . . . .

t

Message term
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Discrete time model for ISI
� According to our model the decision variable can be written as

ξ [i] = y(T + iTs) =
∞

∑
n=−∞

A[n]x(T + iTs −nTs)+wc(T + iTs)

� Let us introduce the discrete sequences

x[i] = x(T + iTs) , wc[i] = wc(T + iTs)

� This leads to the following discrete-time model of our system

[i]ξ
+

w  [i]c

x[i] Threshold
detection m[i]^A[i]

ξ [i] =
∞

∑
n=−∞

A[n]x[i−n]+wc[i] = A[i] ∗ x[i]+wc[i]

Remark: the discrete-time impulse response x[i] represents
pulse shape g(t), channel filter h(t), and receiver filter v(t)
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Example 6.1
The transmitted sequence of amplitudes A[i] is given as,

A[i]

1

1 5 8 9
i

Calculate, and plot, the sequence of decision variables ξ[i] in Figure 6.2, for 0 ≤ i ≤ 8,
in the noiseless case (i.e. w(t) = 0) if t0 = 0 and if the output pulse x(t) is:

Ts 2Ts

x0

2Ts 4TsTs

x0

x(t)

0
t

x(t)

t

i) L=1 and x(t) as below. ii) L=2 and x(t) as below.

� i) ξ [i] = x0 A[i] ii) ξ [i] = x0
2 A[i+1]+ x0 A[i]+ x0

2 A[i−1]
ξ [i]

x0

-x 0

i
1 5 6 8

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 11



How much ISI can we tolerate?
� We can divide the decision variable ξ [i] into a desired term

(message) and an undesired term (interference plus noise)

ξ [i] = A[i]x[0]

︸ ︷︷ ︸
message

+
∞

∑
n=−∞

n�=i

A[n]x[i−n]

︸ ︷︷ ︸
ISI

+wc[i]

︸︷︷︸
noise

� The influence of ISI depends on its relative strength

ISI-free
noise-free
value
A[i]x[0]

ξ [i]

Noise
margin

Worst
case:

ISIwc

Worst
case:

ISIwc

Noise
margin

Noise margin
without ISI = D/2

Decision boundaries

- +
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Worst case ISI
� The ISI term can be written as

ISI =
∞

∑
n=−∞

n�=i

A[n]x[i−n] =
∞

∑
n=−∞

n�=0

A[i−n]x[n]

� Question: when does this term become largest?
� For symmetric M-ary PAM we have max |A[i]|= M−1 and get

ISI+wc = max(ISI) =
∞

∑
n=−∞

n�=0

max(A[i−n]x[n]) = (M−1)
∞

∑
n=−∞

n�=0

|x[n] |

� Similarly, the worst case minimal ISI becomes

ISI−wc = min(ISI) =−(M−1)
∞

∑
n=−∞

n�=0

|x[n] |

Observe: the worst case ISI occurs for a information sequence
A[i] consisting of a particular pattern of ±(M−1) values
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Condition for ISI free reception
� Let us assume that x[i] satisfies the following condition:

x[i] = x(T + iTs) = x0 δ [i] =

{
x0 if i = 0
0 if i �= 0

� Then

ξ [i] =
∞

∑
n=−∞

A[n]x[i−n]+wc[i] = A[i]x[0] +wc[i]

� Otherwise there always will exist some non-zero ISI term
� For this reason we are interested in signals

x(t) = g(t) ∗ h(t) ∗ v(t)

for which the above condition is satisfied

Which parts of x(t) can we influence?

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 11



Symbol rates for ISI free reception
� Suppose that the ISI free condition is satisfied for symbol rate R∗

s

� Then it will be satisfied for rates

Rs =
R∗

s

�
, �= 1,2,3, . . .

Example 6.6:
Consider the overall pulse shape x(t) below, and T = 4/7200.

x0

7200
4

7200
1

7200
8

t [s]

x(t)

Assume the bitrate 14400 [b/s] and 16-ary PAM signaling. Does ISI occur in the
receiver?
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Representation in frequency domain
� The discrete sequence x[i] can be obtained by sampling a

non-causal pulse xnc(t) at times iTs,

x[i] = xnc(iTs) , where xnc(t) = x(T + t) ,

� The Fourier transform X (ν) of x[i] can then be expressed in
terms of the Fourier transform Xnc(f ) of the signal xnc(t):

X (ν) =
∞

∑
n=−∞

x[n]e− j2π ν n =
1
Ts

∞

∑
n=−∞

Xnc

(
ν −n

Ts

)
,

where

Xnc(f ) =
∫ ∞

−∞
xnc(t)e−j2π f t dt = G(f )H(f )V(f )e+j2π f T

Observe: the spectrum of the sampled sequence x[i] consists
of the periodically repeated spectrum of the continuous signal
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Nyquist condition in frequency domain
� Let us now formulate the ISI free condition in frequency domain:

x[i] = x0 δ [i] ⇒X (ν) = F{x[i]}= x0 ∀ν

� Choosing ν = f Ts this leads to the equivalent Nyquist condition

X (f Ts)

Rs
=

∞

∑
n=−∞

Xnc(f −nRs) =
x0

Rs
, Rs =

1
Ts

� Let Wlp denote the baseband bandwidth of xnc(t),

Xnc(f ) = 0, |f |> Wlp

� Then ISI always will be present if the symbol rate satisfies

Rs > 2Wlp

(non-overlapping spectrum cannot add up to a constant)
� If we have Rs ≤ 2Wlp:

ISI-free reception is possible if Xnc(f ) has a proper shape
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Example 6.7
Assume that Xnc(f) is given below.

X    (f)nc

4000 4000

A

f [Hz]
0

a) Sketch the left hand side of (6.33), ∞
n=−∞ Xnc(f−nRs), if Rs = 12000 symbols

per second.

b) Does ISI occur in the receiver?

What happens if Rs = 8000?

And Rs = 4000?
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Example 6.8
Assume that Xnc(f) is,

4000

X    (f)nc

4000
f [Hz]

0

A

A = x0Ts.
Show that there is no ISI if the symbol rate is Rs = 8000 [symbol/s].

Solution:

X    (f-n8000)nc
n= 8

∑

8

800016000 4000 8000 160004000 24000
f [Hz]

A

0

Since

∞

n=−∞
Xnc(f − n8000) = x0/Rs, for all f , there is no ISI in the receiver.
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Ideal Nyquist pulse
� The maximum possible signaling rate for ISI-free reception is

Rnyq = Rs =
1
Ts

= 2Wlp (Nyquist rate)

� With ideal Nyquist signaling, the bandwidth efficiency is

ρnyq =
Rb

Wlp
=

Rnyq log2(M)

Rnyq/2
= 2 log2 M = 2k [bps/Hz]

� The ideal Nyquist pulse must have rectangular spectrum

Xnc(f ) =

{
x0/Rnyq , if |f | ≤ Rnyq/2
0 , else

⇒ xnc(t) = x0
sin(π Rnyq t)

π Rnyq t

x    (t)nc

x0

X    (f)nc

x0/Rnyq

R nyq/2R nyq/2

nyqR
1

nyqR
1

= -T s nyqR
1 = Ts

b)

tf [Hz]

a)
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Some comments on bandwidth
� Remember: in Chapter 2 we have seen that strictly band-limited

signals always have to be unlimited in time
� In practice we have to find compromises, which was leading to

different definitions of bandwidth for time-limited signals

Pulse shape Wlobe % power W90 W99 W99.9 Asymptotic
in Wlobe decay

rec 2/T 90.3 1.70/T 20.6/T 204/T f−2

tri 4/T 99.7 1.70/T 2.60/T 6.24/T f−4

hcs 3/T 99.5 1.56/T 2.36/T 5.48/T f−4

rc 4/T 99.95 1.90/T 2.82/T 3.46/T f−6

Nyquist Rs 100 0.9Rs 0.99Rs 0.999Rs ideal

� We can see that time-limited signals need at least about twice
the Nyquist bandwidth

� For OFDM with many sub-carriers N this is negligible (why?)
� For single-carrier systems, some close-to-Nyquist pulses

are typically used in practice
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Spectral Raised Cosine Pulses
� The spectral raised cosine pulse shape is defined by the

following spectrum
X    (f)nc

x  T0 s

Ts

1
Ts

1
Ts2
1

Ts2
1

β=1

β=0

Rs
2pW    =(1+   )β

0
f

� The name refers to the way the shape is composed

Xnc(f ) =




x0 Ts , 0 ≤ |f | ≤ 1−β
2Ts

x0 Ts
2

[
1+ cos

(
π|f |Ts

β − π
2 · 1−β

β

)]
,

1−β
2Ts

≤ |f | ≤ Wlp

0 |f |> Wlp

where Wlp =
1+β
2Ts

= (1+β )
Rs

2
, 0 ≤ β ≤ 1

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 11



Spectral Raised Cosine Pulses
� The parameter β , 0 ≤ β ≤ 1, is called the rolloff factor and can be

used to smoothly control the bandwidth efficiency

ρsrc =
Rb

Wlp
=

Rs log2 M
(1+β )Rs/2

=
2 log2 M

1+β
=

2k
1+β

� In time domain the signal can be expressed as

xnc(t) = x0
sin(πt/Ts)

πt/Ts
· cos(πβ t/Ts)

1− (2β t/Ts)2 , −∞ ≤ t ≤ ∞

x    (t)nc

β=1

β=0

Ts Ts2 Ts3 Ts4 Ts5 Ts6

Ts-4 Ts-2

Ts-5 Ts-3 Ts-

t

� Larger rolloff factors β ⇒ faster amplitude decay of xnc(t)
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Spectral Raised Cosine Pulses

-5 -4 -3 -2 -1 0 1 2 3 4 5

t/Ts

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
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Signaling with overlapping pulses: β = 1

    1     2     3     4     5     6     7

t/Ts

-1

-0.5

0.5

1

    1     2     3     4     5     6     7

t/Ts

-1

-0.5

0.5

1
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Signaling with overlapping pulses: β = 0

    1     2     3     4     5     6     7

t/Ts

-1

-0.5

0.5

1

    1     2     3     4     5     6     7

t/Ts

-1

1
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Spectral Root Raised Cosine Pulse
� When analyzing the Nyquist condition we have considered the

output signal of the receiver filter v(t), i.e.,

xnc(t) = g(t) ∗ h(t) ∗ v(t) = u(t) ∗ v(t)

� The matched filter for our receiver structure with delay T = LTs
should be equal to

v(t) = u(LTs − t)

� As a consequence, we need to choose pulse shape g(t) and
receiver filter v(t) in such a way that

|V(f )|=
√

Xrc
nc(f ) and |G(f )H(f )|=

√
Xrc

nc(f )

in order to ensure a raised cosine spectrum for
Xnc(f ) = |G(f )H(f )|2 = |V(f )|2 = Xrc

nc(f )

� Hence v(t) is a pulse with root-raised cosine spectrum
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Introduction to equalizers
� We have considered the receiver structure

h(t) m[i]^+

t=t  +LT  +iT0 s s

Threshold
detector

[i]ξsA[n]g(t-nT  )
n= 8 v(t)

ChannelTransmitter

w(t)

z(t)s(t) = ∑
8

r(t) y(t)

Receiver

� When ISI occurs this receiver is suboptimal and is no longer
equivalent to the ML rule (sequence estimation, Viterbi algorithm)

� Equalization:
instead of tolerating the ISI in the above structure, an equalizer
can be used for removing (or reducing) the effect of ISI

� Linear equalizer: zero-forcing, MMSE
can be implemented by linear filters, low complexity

� Decision feedback equalizer:
non-linear device with feedback, aims at subtracting the
estimated ISI from the signal

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 11



Introduction to equalizers

s(t) =   Σ   A[n]g(t-nT  )

8

n=-

8 H(f) v(t)
z(t) r(t) y[i]

w(t)
CHANNEL

t=T 0+iT s

a)

Adfe [i]
~

DECISION-FEEDBACK EQUALIZER

pff[i]
Threshold
detector

pfb[i]

p[i]

LINEAR
EQUALIZER

A[i]
~

Threshold
detector

A[i]
^

Adfe [i]
^

Adfe [i]
~

DECISION-FEEDBACK EQUALIZER

pff[i]
Threshold
detector

pfb[i]

p[i]

LINEAR
EQUALIZER

A[i]
~

Threshold
detector

A[i]
^

Adfe [i]
^

x[i]A[i]
y[i]

wc[i]

b)

s
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