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Channel Noise
� In almost all applications the received signal r(t) is disturbed by

some additive noise N(t):

r(t) = z(t)+N(t)
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� Since the received noise disturbs that transmitted signal, we
need to characterize its influence on the performance
in terms of bit error rate or achievable information bit rate
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White Gaussian Noise
� White Gaussian noise w(t) is a common model for background

noise, such as created by electronic equipment
� The samples of w(t) have a zero-mean Gaussian distribution
� Any two distinct samples of w(t) are uncorrelated

rw(τ) = E{w(t+ τ)w(t)}= N0

2
δ (τ)

� This leads to a constant power spectral density

Rw(f ) =
∫ ∞

−∞
rw(τ)e−j2π f τ dτ =

N0

2
, −∞ ≤ f ≤ ∞

R   (f)w

N  /20

0
f [Hz]

All frequencies are disturbed equally strongly
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Filtered Gaussian Noise
� In reality we usually deal with filtered noise of limited bandwidth,

so-called colored noise
� Assuming that white Gaussian noise w(t) passes a filter v(t) we

obtain colored noise c(t) with power spectral density

Rc(f ) = Rw(f ) |V(f )|2 = N0

2
|V(f )|2

� For an ideal bandpass filter v(t) with bandwidth W the spectrum
is shown below:

Rc(f)

N0/2

-fc fc

f [Hz]

W

w(t) v(t) c(t)
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Filtered Gaussian Noise
� Since R(f ) is constant within the bandwidth W, such a process

c(t) is usually referred to as "white" bandpass process
� Let the noise process c(t) be sampled at some time t = t0. Then

the sample value c(t0) is a Gaussian random variable with

p(c) =
1√

2π σ2
e−(c−m)2/2σ2

with mean m = 0 and variance σ2 = N0/2 Ev = N0 W = Pc

Example: matched filter output (recall Chapter 4)

The additive noise N is sampled from a filtered noise process

v(t) = z 1(Ts-t)-z 0(Ts-t) N

t=(n+1)T s

N(t)

σ2 = N0/2 ·Ev = N0/2
∫ Ts

0

(
z1(t)− z0(t)

)2 dt
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Linear-Filter Channels
� The channel is often modeled as time-invariant filter with noise

r(t)

h(t) +

w(t)

x(t) z(t)

� h(t) is the channel impulse response and w(t) the additive noise
� The received signal becomes

r(t) = x(t)∗h(t)+w(t) =
∫ ∞

−∞
h(τ)x(t− τ) dτ +w(t)

� The simplest case is an attenuated noisy channel:

h(t) = α δ (t) ⇒ r(t) = α s(t)+w(t)
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N-ray Channel Model
� In many applications (wired and wireless) the transmitted signal

x(t) reaches the receiver along several different paths
� Such multi-path propagation motivates the N-ray channel model

+

Nα δ (t-     )τN

α δ (t-    )2 τ2

α1δ (t-    )τ1

....

x(t) z(t)

� The output signal becomes

z(t) =
N

∑
i=1

αi x(t− τi) = x(t)∗h(t)

� The impulse response h(t) and its Fourier transform are given by

h(t) =
N

∑
i=1

αi δ (t− τi) , H(f ) =
N

∑
i=1

αi e−j2π f τi
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Example 3.19: multipath propagation

α1

α2

α3

Delay 2 µs

Delay 1 µs

z1(t)
or

z0(t)

s1(t)
or

s0(t)

s1(t) = −s0(t) =
A , 0 ≤ t ≤ 10−6

0 , otherwise

z1(t) =  -z0(t)

0.01A

-0.01A
3

t [µs]

α1 = 0.01,α2 =−0.01,α3 = 0.01

� The channel (= filter) increases the length of the signals
� Signals exceed their time interval and will overlap if Ts is not

increased accordingly ⇒ inter-symbol interference (ISI)
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Example 3.20
EXAMPLE 3.20
Calculate and sketch |H(f)|2 for the 2-ray channel model.

Solution:
From (3.128) we obtain,

H(f) = α1e
−j2πfτ1 + α2e

−j2πfτ2 =

= e−j2πfτ1 α1 + α2e
−j2πf(τ2−τ1)

|H(f)|2 = α1 + α2e
−j2πf(τ2−τ1) α1 + α2e

+j2πf(τ2−τ1) =

= α2
1 + α2

2 + α1α2 ej2πf(τ2−τ1) + e−j2πf(τ2−τ1) =

= α2
1 + α2

2 + 2α1α2 cos(2πf(τ2 − τ1))

|H(f)|2

τ2- τ1
2

τ2- τ1

1

α( 1 α2)2+

α( 1- α2)2
f [Hz]

Channel fading: some frequencies are attenuated strongly
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Features of Multipath Channels
Challenges:

� the receiver needs to know the channel
� training sequences need be transmitted for channel estimation
� the impulse response can change over time
� the line-of-sight (LOS) component is sometimes not received

Opportunities:
� with multiple paths we can collect more signal energy
� receiver can work without direct LOS component
� channel knowledge, once we have it, can give useful information:

Examples: distance, angle of arrival, speed (Doppler)
� positioning/navigation is often based on channel estimation

If you want to know more:
EITN85: Wireless Communication Channels, VT 1
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Receiver for linear filter channel model
� For a simple channel with a direct transmission path only

h(t) = α δ (t) ⇒ z�(t) = α s�(t)

� In case of multipath propagation the channel filter can change
the shape and duration of the signals z�(t)

� It can be shown that the matched filter of the overall system can
be replaced with a cascade of two separate matched filters

z�(Ts − t) ⇔ h(Th − t) , s�(Tmax − t) , Ts = Tmax +Th

� The channel matching filter h(Th − t) simplifies the
implementation of the receiver
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ML receiver with channel matching filter

+

+

+

+

s        (T       -t)M-1 max

s  (T       -t)max0

s  (T       -t)max1
ξ [n]1

ξ [n]0

SYNCHRONIZATION

t=(n+1)Ts

m[n]
^

h(t)

m[n](t-nT  )szsm[n] s(t-nT  )

h(T  -t)h
r(t)
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Example: three-ray channel
� Consider a channel with three signal paths

h(t) = α1 δ (t− τ1)+α2 δ (t− τ2)+α3 δ (t− τ3)

� Assuming τ1 < τ2 < τ3 we have Th = τ3
� The channel matching filter becomes

h(Th − t) = h(τ3 − t)

= α3 δ (t)+α2 δ (t− (τ3 − τ2))+α1 δ (t− (τ3 − τ1))

RAKE receiver structure:

s      (t-nT  )m[n] α1δ(t-τ1)

α2δ(t-τ2)

α3δ(t-τ3)
Delay
τ3-τ2

Delay
τ3-τ1

α1

α2

α3

r(t) To matched
filters

Channel matching
filter h(T  -t)

N(t)

Three-ray channel

s

h
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Recall: receiver for M-ary signaling
� Consider the general receiver structure from Chapter 4:

m̂

Ts

0

(   )dt +

Ts

0

(   )dt +
SELECT

LARGEST

ξ1

ξ0

ξM-1

{z  (t)}
=0

M-1

+

z  (t)1

z  (t)0

z       (t)M-1
Ts

0

(   )dt +

z(t)

N(t)

r(t)

RECEIVER

. .
 .

. .
 .

. .
 .

-E  /2

-E  /2

-E        /2M-1

0

1

� Decision variables are computed by correlators or matched filters
� Each possible signal alternative is recreated in the receiver
� Question: can we apply this to bandpass signals? Yes!

But: recreating signals at large frequencies fc is a challenge
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Example: QAM Signaling
� Recall the simplified receiver considered in Example 4.4:

Select
MAX

Decision

r(t)

A0

B0

A63

B63

-E0/2

-E63/2

ξ0

ξ63

. . .

. . .

Ts

0
(  ) dt

Ts

0
(  ) dt

-sin( ωct)

cos( ωct) g(t)

g(t)

y

x

� Only two correlator branches are required instead of M
� Separation of carrier waveforms from baseband pulse possible

Our aim: a general baseband representation of the receiver
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Transmission of bandpass signals
� Recall from last lecture:

signal
Digital

processor
information
Original

(digital or analog) xQ (t)

x I
(t)

cos(2  f  t)cπ

x(t)

-sin(2  f  t)π c

� A general bandpass signal can always be written as

x(t) = xI(t) cos(2π fc t) − xQ(t) sin(2π fc t) , −∞ ≤ t ≤ ∞

� xI(t): inphase component xQ(t): quadrature component
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QPSK Example
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-1
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1
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fTs

-1

0

1

xI(t) cos(2π fc t)

xQ(t) sin(2π fc t)

x(t) = xI(t) cos(2π fc t)− xQ(t) sin(2π fc t)

t/Ts

What are xI(t) and xQ(t) in this case?
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Receivers for bandpass signals
� Our goal: reproduce components xI(t) and xQ(t) at the receiver
� In the transmitted bandpass signal x(t) these components were

shifted to the carrier frequency fc

|X(f)|
2

f c- f c

W

f [Hz]
0

� Idea: shifting the signal back to the baseband by multiplying with
the carrier waveform again (see Ex. 2.19 and Problem 3.9)

� A lowpass filter HLP(f ) is then applied in the baseband to remove
undesired other signals or copies from the carrier multiplication

-W lp Wlp

1

|HLP(f)|

f [Hz]

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 9

Homodyne receiver frontend

HLP(f)

HLP(f)

-Asin( ωct+φerr(t))

Acos( ωct+φerr(t))

v(t)
u
I
(t)

uQ(t)

H     (f)BP
r(t)

� Receiver is not synchronized to transmitter: phase errors φerr(t)
� Assume first r(t) = xI(t) cos(2π fc t) (xQ(t) = 0 and no noise)

uI(t) =
[
xI(t) cos(2π fc t) ·A cos(2π fc t+φerr(t))

]
LP

=
[xI(t)

2
A (cos(φerr(t))+ cos(2π 2fc t+φerr(t)))

]
LP

=
xI(t)

2
A cos(φerr(t))

� Likewise uQ(t) =−xI(t)
2

A sin(φerr(t))
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The impact of phase errors
� Assuming r(t) = xI(t) cos(2π fc t) we have found that

uI(t) =
xI(t)

2
A cos(φerr(t)) , uQ(t) =−xI(t)

2
A sin(φerr(t))

� Ideal case: φerr(t) = 0

uI(t) = xI(t)/2 ·A and uQ(t) = 0

⇒ the inphase branch is independent of the quadrature branch

� Phase errors: φerr(t) �= 0

uI(t)< xI(t)/2 ·A and uQ(t) �= 0 (crosstalk)

� If φerr(t) changes randomly (jitter) the average uI(t) can vanish

� Ignoring the effect of phase errors can lead to bad performance

Question: what can we then do about phase errors?
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Coherent receivers
� Assume now that we can estimate φerr(t)
� The signal xI(t) is contained in both uI(t) and uQ(t)

uI(t) =
xI(t)

2
A cos(φerr(t)) , uQ(t) =−xI(t)

2
A sin(φerr(t))

� Coherent reception:

by combining both components the signal can be recovered by

ûI(t)= uI(t) ·cos(φerr(t))−uQ(t) ·sin(φerr(t))

=
xI(t)

2
A cos2(φerr(t))+

xI(t)
2

A sin2(φerr(t)) =
xI(t)

2
A

� Observe: same result as in the ideal case φerr(t) = 0

Compare: non-coherent DPSK receiver (last lecture, p. 400-403)
can be used if phase estimation is not possible
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Overall transmission model

x   (t)Q

x  (t)I

+ H(f) +

H     (f)LP

H     (f)LP u   (t)Q

u  (t)I

cos(    t)ωc

-sin(    t)cω

w(t)+y  (t)+...+y   (t)1 N

Acos(     t+        (t))φerrωc

-Asin(     t+        (t))ωc φerr

H     (f)BPinformation

Original

processor

Signal x(t) z(t) r(t) v(t)

Transmitter side Channel Homodyne reception

� The signal y(t) is given by

y(t) = z(t)+w(t) = x(t) ∗ h(t)+w(t)

� It can be written as

y(t) = yI(t)cos(2π fc t)− yQ(t)sin(2π fc t)

Can we express uI(t) and uQ(t) in terms of xI(t) and xQ(t)?
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Inphase and quadrature relationship

� With the complete signal r(t) entering the receiver the output
signals become

uI(t) =
[
y(t)A cos(2π fc t+φerr(t))

]
LP

=
yI(t)

2
A cos(φerr(t))

+
yQ(t)

2
A sin(φerr(t))

uQ(t) =
[− y(t)A sin(2π fc t+φerr(t))

]
LP

=
yQ(t)

2
A cos(φerr(t))

− yI(t)
2

A sin(φerr(t))

φerrsin(       (t))A/2

φerrcos(       (t))A/2

φerrcos(       (t))A/2

y  (t)I u  (t)I

u   (t)Q+

+

y   (t)Q +

-
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Including the channel filter
� Before we can relate y(t) = z(t)+w(t) to x(t) we need to consider

the effect of the channel

z(t) = x(t) ∗ h(t) x(t) z(t)h(t)

� We assume that the impulse response h(t) can be represented
as a bandpass signal

h(t) = hI(t) cos(2π fc t)−hQ(t) sin(2π fc t)

� With some calculations the signals can be written as (p. 159-160)

2
1

h   (t)I

2
1 h   (t)Q

2
1 h   (t)Q

2
1

h   (t)I

+

+

x   (t)I

x   (t)Q

z   (t)I

z   (t)Q

+

- zI(t) =
1
2
(
xI(t) ∗ hI(t)− xQ(t) ∗ hQ(t)

)

zQ(t) =
1
2
(
xI(t) ∗ hQ(t)+ xQ(t) ∗ hI(t)

)
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Equivalent baseband model
� Combining the channel with the receiver frontend we obtain

h   (t)Q
2

h   (t)Q
2

h  (t)I
2

+ +

φerrcos(       (t))A/2

φerrsin(       (t))A/2

u   (t)Q

h  (t)I
2

+
z  (t)I

+ + u  (t)I

φerrcos(       (t))A/2

y   (t)Q
+

z   (t)Q

y  (t)I

w   (t)Q

w  (t)I

x  (t)I

x   (t)Q

-

+

+

� Observe that all the involved signals are in the baseband
� The same is true for channel filter, noise and phase error

Digital signal processing can be applied easily in baseband
What happened with the carrier waveforms?
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