Recall: QAM receiver (Example 4.4)
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The complexity of this receiver is significantly reduced compared to the receiver in Figure
4.8 on page 241! Only two integrators are here used, instead of 64 (= M) in Figure

4.8.
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Example: QPSK (see Matlab demo) Distances D, ; are important
. » P, is determined by the distances D;; between the signal pairs
» Let us sort these distances
f 1,111 =
[ f B 3 P 5 s B s A Erors: 0 Totalerrors: 16 Tnul:ymbols: 1000  Error rate: 0.01600 Dmin < [)1 < D2 < e K& Dmax
» Then the upper bound on P, can be written as
D2, D? D?
P.< min 1 . max
% e 3 s <cQ Ny +c Q 2No +oite O 2N,
z[n]
T o o o PPN i » The coefficients are
4 ! M—1
y[n] N " Cy= ZPj'nj,€7 £:0,1,2,...,X
T s =

» nj,: number of signals at distance D, from signal z;(t)
How many distinct terms do exist for QPSK?
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Signal Space Representation A geometric description

AN AN » As we have seen in Chapter 2 we can represent our signal
z, 7, 7, 1z 2,07 7, 7, 7 % % % i) alternatives z;(¢) as vectors (points) in signal space
P ‘ > o, ‘ _ $1(t) = VI
0 0 9

2= (31) = (AVE) PAM

5= (1 52)=(an/% Bp/%) QAM,PSK

ot) cos(2n £.1) » The signal energy can be written as
h(t) = =————
Fal? Loy 2 2
E-:/ () dt=z1+7
g(t)sin(2 £.1) 1= Jy G0 A=5115
b2(t) = T JER
! » Likewise, the squared Euclidean distance becomes
2 fs 2 2 2
Dij=J, (zi(t) = 4(1)" dt = (zig = 211)* + (zi2 — Zj2)
Signal energies and distances have a geometric interpretation
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Approximate P, for some constellations Example 4.19
. . . . . . . Assume two signal constellations, denoted A and B respectively, with corresponding
> ConS|der|ng the domlnatlng term in the union bound we obtain parameters day, 4 and day, . From the equality (see e.g. the dominating term in the
union bound),
Pi~cQ &2 é davin, aEb,4/No = dein, 5E0,5/No
$ "N we find that the difference (in dB) in received energy per information bit is (compare

with (2.13) on page 16),
» This approximation is valid if f,—g is sufficiently large

dinin
1010g,4(Es,8) — 1010g,4(Ep,.4) = 101og;, <d2 1A>

‘min, B
¢ Izllill 2
M-ary PAM 2(1— 1/M) 6log, (M) Calculate the value 10log, (Z;‘""’A> if “A” is binary antipodal PAM, and if “B” is
T 2 _ min, B
M-ary PSK (M > 2) 2 b} lOgQ(%) sin%(ﬂ/]\/[) 4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.
M-ary FSK M—-1 log, (M)
» -
Meary QAM 41— 1/V30) 31;\;;27(];4) For M-ary PAM we have (Table 4.1 or Table 5.1)

2 2 2 2
dyin = 6]0g2(M)/(M - 1) = dmin,A =2, dmin,B = 4/5
Table 4.1: The coefficient ¢, and d2;,, for some common signal constellations.
Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the
M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal

energy orthogonal FSK signals are also assumed.

> 101ogodn,, 4/dnin p = 1010g195/2 = 3.98 dB
Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 7 Michael Lentmaier, Fall 2018 Digital Communications: Lecture 7



Comparisons Symbol error probability comparison

P | QB &) (459) P—

Eo 0<%, <2, (A57)

min min_—

14 Phin (2 21)

P 2(1- )@ (i &), 5:35)

M-ary PAM | &2, ‘“;f#”’ Table 4.1 on page 281, (2.50)
p | p2—pam -logy (M), (2.220)

P | <2Q (i, &), (5.43)

M-ary PSK d2 . | 2sin®(m/M)logy (M), Table 4.1, Fig. 5.11
p__| pppsk -logy(M), (2.229)

T

M

Il
o

M-ary PAM M-ary PSK

M =8 {ub) M =16 (ub) NV =32 (ub)

Mary QAM | P, |4 (1 - L) <\/d2 i) - Wl : ; : ¥ ol : : : ¥
ary Q ’ vM Q2 min No ° ° SlNpimdB ® # ° ° Sr,?’m, mag ® =
(rect., k even) —4 (1 — ﬁ) Q? (,/ 2 No) (5.50)
(QPSK with 2 % . Table 4.1, Subsection 2.4.5.1 M-ary PAM, M =2,4,8,16 M-ary PSK, M =2.,4,8,16,32
M = 4) P PBPSK * lng(Af) (2 229)
log, M 2 -2
Mary FSK | P, | <(M=1)Q 1/, &), Bxample 4.18c, Table 4.1 2 =6- % i = 28in° (/M) log, M
(orthogonal dZ. logQ(]\/[) Table 4.1 on page 281
FSK) p | See (2.245)
Table 5.1, p. 361
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ags . . . 2 - - -
Symbol error probability comparison Gain in d;;,, compared with binary antipodal
: Antipodal M=2 0[dB]
ok Meary QAM T\[qm FSK | Orthogonal =2 3.01
M=2 0
M=4 -3.98
, M-ary PAM M =38 -8.45 M= -3.01
BPSK;ref) M =2 (exact) 1 M= 16 -13.27 M=4 0
: M = 32 _18.34 Me-ary FSK M =38 1.76
M =64 -23.57 M =16 3.01
M=2 0 M =32 3.98
M =4 0 M = 64 4.77
M-ary PSK | M =38 -3.57 M=2 0
* . M =16 817 M -ary M=1 0
° ) s E N 2 25 © o s P 20 > M =32 T13.18 bi- M = 1.76
M = 64 ~18.40 orthogonal M =16 3.01
M=4 0 M =32 3.98
M-ary QAM, M =4,16,64,256  M-ary FSK, M =2,4.8,16,32, 64 e M =61 | 47
M-ary QAM | M = 64 845
log, M M =256 | -13.27
2, =3 =2 iy = logy M M =1024 | -18.34
M—1 M = 4096 | -23.57
Large values M reduce energy efficiency
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Example scenario: M-ary QAM

» We want to ensure that P, < P; ,.,, Where for M-ary QAM

Example 4.22: adapting M to channel quality

Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary
QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or log,(M))
versus P./NoW . How large is the bit rate in each case? Assume that pppsk = 1/2

PsS“'Q( drzn 8b)_4Q<VX)7 drznin::;logZML_

in Nio 1 [bps/Hz].
» The pulse shape g() is chosen such that log (M)
M=256
R, d2. P 8
=log,(M where p = — < “min, 2 =
p =logy(M) pppsk , p WX NgW 6 M=64
M=16
» Combining these requirements we obtain N
2
M<1+# PZ =1 i‘pZTS T T T T T > ?Z
= Xpgpsk NoW X N X 5¥ 10% 21% 42% NoW

» Hence we want to choose M = 2% such that (QAM: k even)

2k < 1+;.&
X pppsk NoW

Depending on the channel quality we can achieve different

< ok+2 bit rates R, = W, 2W, 3W, or 4W[bps]
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Bit errors vs symbol errors

» Assume that S symbols are transmitted and S.,, are in error

Gray code mappings

» We have seen that for small Ny we can approximate

» If a symbol 7 # m is decided, this causes at least 1 bit error and 5
at most k = log, M bit errors P ) Puin
Serr < Berr < kSerr 21\]0
) ) ) ) » This motivates the use of Gray code mappings:
» This leads to the following relationship between P, and P,: o,
% _ Egse;;r} SP}, S E{‘S;r;}{k} :Ps z>é3 t? . z;<1 Z>20
; : al
1000 1001 1011 1010
» P, depends on the signal constellation only , LT
» The exact P, depends on the mapping from bits to messages m, Example: M X a X X
and hence signal alternatives s, (¢) 16-QAM e e »o
-3a -a a 3a 1
Example: Which mapping is better for 4-PAM? (and why?) :‘:OXO ;Sof a ZS1X11 ZGOXﬂO
(1) my=00, my =11, my =01, m3 =10 2, T 2,
X X T X X
(2) mo = 00’ my = 017 my = 117 mz = 10 0000 0001 0011 0010
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How can we achieve large data rates? A fundamental limit: channel capacity

» Consider a single-path channel (|H(f)|> = a?) with finite
bandwidth W and additive white Gaussian noise (AWGN) N(¢)

The capacity for this channel is given by

» The bit rate R, can be increased in different ways
» We can select a signal constellation with large M
= this typically increases the error probability P;
exception: orthogonal signals (FSK): require more bandwidth W P,
» Achieving equal P, with larger M is possible by increasing &, /Ny € =Wlog, <1 N W) [bps|
= this reduces the energy efficiency
» We can also increase R, by increasing the bandwidth W
= this does not improve the bandwidth efficiency p = R,/W

v

v

Shannon showed that reliable communication requires that

Ry, <C
Question: » Observe: the capacity formula does not include P, (why?)
what is the largest achievable rate R;, for a given error probability Ps, » Shannon also showed that if R, < C, then the probability of error
channel quality &,/Ny and bandwidth w? P, can be made arbitrarily small

This question was answered by Claude Shannon in 1948: Py —0

"A mathematical theory of communication”

Course EITN45: Information Theory (VT2) if messages are coded in blocks of length N — oo
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Bandwidth efficiency and gap to capacity How does channel coding work?
(p. 369) P » We have seen that a large minimum distance 42, between
signals is required to improve the energy efficiency
0 » For binary signaling (M = 2) we have seen that d?;, <2
C/W
lg r Eéng?g;sible C/W\ ]% = 2C/V\-71 Idea Of coding: .
64-QAM » generate M binary sequences of length N
4t 16-QAM 16-PSK » use binary antipodal signaling to create M signals s,(¢)
8-PS 8-PAM
2 b QPSK o Example: N =5, M =4, g,..(t) pulse with T = T, /N (what is D ?)
161 — P \ —=10log(Ep/No) sy 1 0 o0 1
I P T ]
l §-FSK ' ; ¢
i F1/4 16-FSK A :
! 32-FSK sty 0 0 0 0 0
=178 A

» p < C/W: reliable communication is impossible above
» this limit can be approached with channel coding
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Increasing 42, with coding

in
» In our example we have

D2, =4A’T -3 =4E,3 = 12E,

» Normalizing by the average energy &, = NE, /k this gives
2 _ng'n_ 12E, 6~E:E:2.4

min = g, ~ 2NJkE; N 5

v

Let dyin,z denote the minimum Hamming distance between the
binary code sequences = in our example: d,i,x =3

Then we can write

v

k
in = 2 din 1
where R = k/N is called the code rate

Larger din z values can be achieved with larger N

v
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Multiuser Communication
(p. 395/396)

User 1: tA ¢,(1)
User 2: A 0,(t) s(t) r(t)

User2: A ,(1)
User N: A (1)

A simple model:

> N users transmit at same time with orthonormal waveforms ¢(¢)

» Binary antipodal signaling is used in this example, such that
N
s(t)=Y Anou(t), Ap€+A
n=1

» The orthonormal waveforms satisfy

T o ifi#,
/0 ¢i(t)¢j(t)dt_{1 if i =)
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Example: symbol error probability

uncoded

10'5 E Hamming code \
N=7,k=4,d =3
minH

(union bound)

10-8 L L L I h
0 2 4 6 8 10 12 14 16

E,/N,, [dB]

» Hamming code, N =7, k=4, dpin =3 = d>,;,
» How can we construct good codes?
EITN70: Channel Coding for Reliable Communication (HT2)

=343
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Multiuser Communication
» The separation of users can be achieved in different ways
» TDMA: (time-division multiple access)

00 TDMA

User ¢
intime slot 2

» FDMA / OFDMA: (frequency-division multiple access)

t)=c sin(2 nfgt)
0200 (@ gt User 2in

frequency slot ¢
t
TS
FDMA

» CDMA: (code-division multiple access)

Og(t) CDMA Each user is
a assigned a
unique pattern of +a's

TS

-a

» MC-CDMA: (multi-carrier CDMA) combined OFDM/CDMA (5
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Receiver for Multiuser Communication Non-coherent receivers
o » With phase-shift keying (PSK) the message m|[n] at time nT; is

RECEIVER FOR

v

The channel introduces some attenuation o, some additive noise
N(¢) and also some phase offset v into the received signal

| USER £ i put into the phase 6, of the transmit signal
N |
User 1: +A ,(1) i T, ] i s(r) = g(1) V2E cos(2nf.t+6,), nTy<t<(n+1)T;
User2: #A 0,0 : [Oa sl ezof—ts 4
: 1 ! 2

Usere: A o (1)

UserN: +tA o) — Lt

r(t) = o g(t) V2E cos(2rf.t+ 6, + V) +N(r)

» This permits a simple receiver structure for each user ¢
» The decision variable becomes

v

Challenge: the optimal receiver needs to know « and v
T T, N > In some applications an accurate estimation of v is infeasible

= [T ar= [ "o (Z An ) +N<r>) dr (cost, complexity, size)

0 0 n=1 Non-coherent receivers:

receiver structures that can work well without knowledge

of the exact phase offset

v

T
:Ag+/0 0 ()N(1) di = Ag+ N

= receiver is only disturbed by noise and not by other users! How can we modify our PSK transmission accordingly?
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Differential Phase Shift Keying Differential Phase Shift Keying (M = 2)

» With differential PSK, the message m[n] = m,is mappedtothe ~ orroomsmmemoemee e ey
phase according to

2nl
9,,= n_]+7 EIO,,M—I

o .
] 20 [~ bln-1]
oy

» The transmitted phase 6, depends on both 6,_; and m[n]
» This differential encoding introduces memory and the transmitted
signal alternatives become dependent

» Example 5.25: binary DPSK

Addition » The receiver uses no phase offset v in the carrier waveforms
N(t . . L . :
modulo 2 ® » Without noise, the decision variable is

s(t) 2(t) e (1) E[n] = re[n)reln— 1]+ rg[n) rg[n—1]

=Acos(0,—1+V)Acos(6—2+V)+Asin(,—; + V) Asin(6,_,+ V)

=A%cos(6,_1 — 6,_2) = independent of v

» Note: non-coherent reception increases variance of noise
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