Recall: QAM receiver (Example 4.4)

LUND
University

EITG05 - Digital Communications

Lecture 7

Receivers continued:
Geometric representation, Capacity,
Multiuser receiver, Non-coherent receiver

Example: QPSK (see Matlab demo)

The implementation of this receiver is shown below:

The complexity of this receiver is significantly reduced compared to the receiver in Figure 4.8 on page 241! Only two integrators are here used, instead of $64(=M)$ in Figure 4.8.

Distances $D_{i, j}$ are important

$-P_{s}$ is determined by the distances $D_{i, j}$ between the signal pairs

- Let us sort these distances

$$
D_{\min }<D_{1}<D_{2}<\cdots<D_{\max }
$$

- Then the upper bound on P_{s} can be written as

$$
P_{s} \leq c Q\left(\sqrt{\frac{D_{\min }^{2}}{2 N_{0}}}\right)+c_{1} Q\left(\sqrt{\frac{D_{1}^{2}}{2 N_{0}}}\right)+\cdots+c_{x} Q\left(\sqrt{\frac{D_{\max }^{2}}{2 N_{0}}}\right)
$$

- The coefficients are

$$
c_{\ell}=\sum_{j=1}^{M-1} P_{j} \cdot n_{j, \ell}, \quad \ell=0,1,2, \ldots, x
$$

- $n_{j, \ell}$: number of signals at distance D_{ℓ} from signal $z_{j}(t)$

How many distinct terms do exist for QPSK?

Signal Space Representation

Approximate P_{s} for some constellations

- Considering the dominating term in the union bound we obtain

$$
P_{s} \approx c Q\left(\sqrt{d_{\min }^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right)
$$

- This approximation is valid if $\frac{\mathcal{E}_{b}}{N_{0}}$ is sufficiently large

	c	$d_{\min }^{2}$
M-ary PAM	$2(1-1 / M)$	$\frac{6 \log _{2}(M)}{M^{2}-1}$
M-ary PSK $(M>2)$	2	$2 \log _{2}(M) \sin ^{2}(\pi / M)$
M-ary FSK	$M-1$	$\log _{2}(M)$
M-ary QAM	$4(1-1 / \sqrt{M})$	$\frac{3 \log _{2}(M)}{M-1}$

Table 4.1: The coefficient c, and $d_{\min }^{2}$, for some common signal constellations Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal energy orthogonal FSK signals are also assumed

A geometric description

- As we have seen in Chapter 2 we can represent our signal alternatives $z_{j}(t)$ as vectors (points) in signal space

$$
\begin{array}{cc}
\mathbf{z}_{j}=\left(z_{j, 1}\right)=\left(A_{j} \sqrt{E_{g}}\right) & \text { PAM } \\
\mathbf{z}_{j}=\left(\begin{array}{ll}
z_{j, 1} & z_{j, 2}
\end{array}\right)=\left(\begin{array}{ll}
A_{j} \sqrt{\frac{E_{g}}{2}} & B_{j} \sqrt{\frac{E_{g}}{2}}
\end{array}\right) & \text { QAM, PSK }
\end{array}
$$

- The signal energy can be written as

$$
E_{j}=\int_{0}^{T_{s}} z_{j}^{2}(t) d t=z_{j, 1}^{2}+z_{j, 2}^{2}
$$

- Likewise, the squared Euclidean distance becomes

$$
D_{i, j}^{2}=\int_{0}^{T_{s}}\left(z_{i}(t)-z_{j}(t)\right)^{2} d t=\left(z_{i, 1}-z_{j, 1}\right)^{2}+\left(z_{i, 2}-z_{j, 2}\right)^{2}
$$

Signal energies and distances have a geometric interpretation

$$
\begin{array}{ll}
\hline \text { Michael Lentmaier, Fall 2018 } & \text { Digital Communications: Lecture } 7
\end{array}
$$

Example 4.19

Assume two signal constellations, denoted A and B respectively, with corresponding parameters $d_{\min , A}^{2}$ and $d_{\min , B}^{2}$. From the equality (see e.g. the dominating term in the union bound),

$$
d_{\min , A}^{2} \mathcal{E}_{b, A} / N_{0}=d_{\min , B}^{2} \mathcal{E}_{b, B} / N_{0}
$$

we find that the difference (in $d B$) in received energy per information bit is (compare with (2.13) on page 16),

$$
10 \log _{10}\left(\mathcal{E}_{b, B}\right)-10 \log _{10}\left(\mathcal{E}_{b, A}\right)=10 \log _{10}\left(\frac{d_{\min , A}^{2}}{d_{\min , B}^{2}}\right)
$$

Calculate the value $10 \log _{10}\left(\frac{d_{\min , A}^{2}}{d_{\min , B}}\right)$ if " A " is binary antipodal PAM, and if " B " is 4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.

- For M-ary PAM we have (Table 4.1 or Table 5.1)

$$
d_{\min }^{2}=6 \log _{2}(M) /\left(M^{2}-1\right) \quad \Rightarrow d_{\min , A}^{2}=2, d_{\min , B}^{2}=4 / 5
$$

- $10 \log _{10} d_{\min , A}^{2} / d_{\min , B}^{2}=10 \log _{10} 5 / 2=3.98 \mathrm{~dB}$

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!

Comparisons

$M=2$	P_{b}	$Q\left(\sqrt{d_{\text {min }}^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right),(4.55)$
	$d_{\text {min }}^{2}$	$0 \leq d_{\min }^{2} \leq 2,(4.57)$
	,	$\rho_{\text {bin }},(2.21)$
M-ary PAM	P_{s}	$2\left(1-\frac{1}{M}\right) Q\left(\sqrt{d_{\text {min }}^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right),(5.35)$
	$d_{\text {min }}^{2}$	$\frac{6 \log _{2}(M)}{M^{2}-1}$, Table 4.1 on page 281, (2.50)
	,	$\rho_{2-P A M} \cdot \log _{2}(M),(2.220)$
M-ary PSK	P_{s}	$<2 Q\left(\sqrt{d_{\text {min }}^{2}} \frac{\mathcal{E}_{6}}{N_{0}}\right), ~(5.43)$
	$d_{\text {min }}^{2}$	$2 \sin ^{2}(\pi / M) \log _{2}(M)$, Table 4.1, Fig. 5.11
	ρ	$\rho_{B P S K} \cdot \log _{2}(M),(2.229)$
M-ary QAM (rect., k even) (QPSK with $M=4$)	P_{s}	$\begin{align*} & 4\left(1-\frac{1}{\sqrt{M}}\right) Q\left(\sqrt{d_{\min }^{2} \frac{\varepsilon_{b}}{N_{0}}}\right)- \\ & -4\left(1-\frac{1}{\sqrt{M}}\right)^{2} Q^{2}\left(\sqrt{d_{\min }^{2} \frac{\varepsilon_{b}}{N_{0}}}\right), \tag{5.50} \end{align*}$
	$d_{\text {min }}^{2}$	$\frac{3 \log _{2}(M)}{M-1}$, Table 4.1, Subsection 2.4.5.1
	ρ	$\rho_{B P S K} \cdot \log _{2}(M),(2.229)$
$\begin{aligned} & \text { M-ary FSK } \\ & \text { (orthogonal } \\ & \text { FSK) } \\ & \hline \end{aligned}$	P_{s}	$\leq(M-1) Q\left(\sqrt{d_{\min }^{2} \frac{\varepsilon_{b}}{N_{0}}}\right)$, Example 4.18c, Table 4.1
	$d_{\text {min }}^{2}$	$\log _{2}(M)$, Table 4.1 on page 281
	ρ	See (2.245)

Table 5.1, p. 361
Michael Lentmaier, Fall 2018

Gain in $d_{\text {min }}^{2}$ compared with binary antipodal

Large values M reduce energy efficiency

Example scenario: M-ary QAM

- We want to ensure that $P_{s} \leq P_{s, r e q}$, where for M-ary QAM

$$
P_{s} \leq 4 Q\left(\sqrt{d_{\min }^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right)=4 Q(\sqrt{\mathcal{X}}), \quad d_{\min }^{2}=3 \log _{2} \frac{M}{M-1}
$$

- The pulse shape $g(t)$ is chosen such that

$$
\rho=\log _{2}(M) \rho_{B P S K}, \quad \text { where } \rho=\frac{R_{b}}{W} \leq \frac{d_{\min }^{2}}{\mathcal{X}} \cdot \frac{\mathcal{P}_{z}}{N_{0} W}
$$

- Combining these requirements we obtain

$$
M \leq 1+\frac{3}{\mathcal{X} \rho_{B P S K}} \cdot \frac{\mathcal{P}_{z}}{N_{0} W}=1+\frac{3}{\mathcal{X}} \cdot \frac{\mathcal{P}_{z} T_{S}}{N_{0}}
$$

- Hence we want to choose $M=2^{k}$ such that (QAM: k even)

$$
2^{k} \leq 1+\frac{3}{\mathcal{X} \rho_{B P S K}} \cdot \frac{\mathcal{P}_{z}}{N_{0} W}<2^{k+2}
$$

$$
\text { Digital Communications: Lecture } 7
$$

Bit errors vs symbol errors

- Assume that S symbols are transmitted and $S_{e r r}$ are in error
- If a symbol $\hat{m} \neq m$ is decided, this causes at least 1 bit error and at most $k=\log _{2} M$ bit errors

$$
S_{e r r} \leq B_{e r r} \leq k S_{e r r}
$$

- This leads to the following relationship between P_{b} and P_{s} :

$$
\frac{P_{s}}{k}=\frac{E\left\{S_{e r r}\right\}}{S \cdot k} \leq P_{b} \leq \frac{E\left\{S_{e r r} \cdot k\right\}}{S \cdot k}=P_{s}
$$

- P_{s} depends on the signal constellation only
- The exact P_{b} depends on the mapping from bits to messages m_{ℓ} and hence signal alternatives $s_{m_{\ell}}(t)$

Example: Which mapping is better for 4-PAM? (and why?)
(1) $m_{0}=00, m_{1}=11, m_{2}=01, m_{3}=10$
(2) $m_{0}=00, m_{1}=01, m_{2}=11, m_{3}=10$

Example 4.22: adapting M to channel quality

Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary $Q A M$ and 256-ary $Q A M$. Show when a new M is chosen by plotting $M\left(\operatorname{or} \log _{2}(M)\right)$ versus $\mathcal{P}_{z} / N_{0} W$. How large is the bit rate in each case? Assume that $\rho_{B P S K}=1 / 2$ [bps/Hz].

Depending on the channel quality we can achieve different bit rates $R_{b}=W, 2 W, 3 W$, or $4 W[\mathrm{bps}]$

Gray code mappings

- We have seen that for small N_{0} we can approximate

$$
P_{s} \approx c Q\left(\sqrt{\frac{D_{\min }^{2}}{2 N_{0}}}\right)
$$

- This motivates the use of Gray code mappings:

Example: 16-QAM

How can we achieve large data rates?

- The bit rate R_{b} can be increased in different ways
- We can select a signal constellation with large M \Rightarrow this typically increases the error probability P_{s} exception: orthogonal signals (FSK): require more bandwidth W
- Achieving equal P_{s} with larger M is possible by increasing \mathcal{E}_{b} / N_{0} \Rightarrow this reduces the energy efficiency
- We can also increase R_{b} by increasing the bandwidth W \Rightarrow this does not improve the bandwidth efficiency $\rho=R_{b} / W$

Question:

what is the largest achievable rate R_{b} for a given error probability P_{s}, channel quality \mathcal{E}_{b} / N_{0} and bandwidth W ?

This question was answered by Claude Shannon in 1948: "A mathematical theory of communication"
Course EITN45: Information Theory (VT2)

$$
\text { Michael Lentmaier, Fall } 2018
$$

Bandwidth efficiency and gap to capacity

(p. 369)

- $\rho \leq C / W$: reliable communication is impossible above
- this limit can be approached with channel coding

A fundamental limit: channel capacity

- Consider a single-path channel $\left(|H(f)|^{2}=\alpha^{2}\right)$ with finite bandwidth W and additive white Gaussian noise (AWGN) $N(t)$
- The capacity for this channel is given by

$$
\mathcal{C}=W \log _{2}\left(1+\frac{\mathcal{P}_{z}}{N_{0} W}\right)[\mathrm{bps}]
$$

- Shannon showed that reliable communication requires that

$$
R_{b} \leq \mathcal{C}
$$

- Observe: the capacity formula does not include P_{s} (why?)
- Shannon also showed that if $R_{b}<\mathcal{C}$, then the probability of error P_{s} can be made arbitrarily small

$$
P_{s} \rightarrow 0
$$

if messages are coded in blocks of length $N \rightarrow \infty$

$$
\text { Michael Lentmaier, Fall } 2018
$$

$$
\text { Digital Communications: Lecture } 7
$$

How does channel coding work?

- We have seen that a large minimum distance $d_{\text {min }}^{2}$ between signals is required to improve the energy efficiency
- For binary signaling $(M=2)$ we have seen that $d_{\min }^{2} \leq 2$

Idea of coding:

- generate M binary sequences of length N
- use binary antipodal signaling to create M signals $s_{\ell}(t)$

Example: $N=5, M=4, g_{\text {rec }}(t)$ pulse with $T=T_{s} / N \quad$ (what is $D_{\text {min }}^{2}$?)

Increasing $d_{\text {min }}^{2}$ with coding

- In our example we have

$$
D_{\text {min }}^{2}=4 A^{2} T \cdot 3=4 E_{g} 3=12 E_{g}
$$

- Normalizing by the average energy $\mathcal{E}_{b}=N E_{g} / k$ this gives

$$
d_{\min }^{2}=\frac{D_{\min }^{2}}{2 \mathcal{E}_{b}}=\frac{12 E_{g}}{2 N / k E_{g}}=6 \cdot \frac{k}{N}=\frac{12}{5}=2.4
$$

- Let $d_{\text {min }, H}$ denote the minimum Hamming distance between the binary code sequences \Rightarrow in our example: $d_{\text {min }, H}=3$
- Then we can write

$$
d_{\min }^{2}=2 \frac{k}{N} d_{\min , H}
$$

where $R=k / N$ is called the code rate

- Larger $d_{\text {min }, H}$ values can be achieved with larger N

$$
\text { Digital Communications: Lecture } 7
$$

Multiuser Communication

(p. 395/396)

A simple model:

- N users transmit at same time with orthonormal waveforms $\phi_{\ell}(t)$
- Binary antipodal signaling is used in this example, such that

$$
s(t)=\sum_{n=1}^{N} A_{n} \phi_{n}(t), \quad A_{n} \in \pm A
$$

- The orthonormal waveforms satisfy

$$
\int_{0}^{T_{s}} \phi_{i}(t) \phi_{j}(t) d t= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

Example: symbol error probability

- Hamming code, $N=7, k=4, d_{\text {min }, H}=3 \Rightarrow d_{\text {min }}^{2}=3.43$
- How can we construct good codes?

EITN70: Channel Coding for Reliable Communication (HT2)

Multiuser Communication

- The separation of users can be achieved in different ways
- TDMA: (time-division multiple access)

- FDMA / OFDMA: (frequency-division multiple access)

- CDMA:

- MC-CDMA: (multi-carrier CDMA) combined OFDM/CDMA

Receiver for Multiuser Communication

- This permits a simple receiver structure for each user ℓ
- The decision variable becomes

$$
\begin{aligned}
\xi & =\int_{0}^{T_{s}} \phi_{\ell}(t) r(t) d t=\int_{0}^{T_{s}} \phi_{\ell}(t)\left(\sum_{n=1}^{N} A_{n} \phi_{n}(t)+N(t)\right) d t \\
& =A_{\ell}+\int_{0}^{T_{s}} \phi_{\ell}(t) N(t) d t=A_{\ell}+\mathcal{N}
\end{aligned}
$$

\Rightarrow receiver is only disturbed by noise and not by other users!

$$
\text { Michael Lentmaier, Fall } 2018
$$

$$
\text { Digital Communications: Lecture } 7
$$

Differential Phase Shift Keying

- With differential PSK, the message $m[n]=m_{\ell}$ is mapped to the phase according to

$$
\theta_{n}=\theta_{n-1}+\frac{2 \pi \ell}{M} \quad \ell=0, \ldots, M-1
$$

- The transmitted phase θ_{n} depends on both θ_{n-1} and $m[n]$
- This differential encoding introduces memory and the transmitted signal alternatives become dependent
- Example 5.25: binary DPSK

Non-coherent receivers

- With phase-shift keying (PSK) the message $m[n]$ at time $n T_{s}$ is put into the phase θ_{n} of the transmit signal

$$
s(t)=g(t) \sqrt{2 E} \cos \left(2 \pi f_{c} t+\theta_{n}\right), \quad n T_{s} \leq t \leq(n+1) T_{s}
$$

- The channel introduces some attenuation α, some additive noise $N(t)$ and also some phase offset v into the received signal

$$
r(t)=\alpha g(t) \sqrt{2 E} \cos \left(2 \pi f_{c} t+\theta_{n}+v\right)+N(t)
$$

- Challenge: the optimal receiver needs to know α and v
- In some applications an accurate estimation of v is infeasible (cost, complexity, size)
- Non-coherent receivers: receiver structures that can work well without knowledge of the exact phase offset
How can we modify our PSK transmission accordingly?

$$
\begin{array}{ll}
\hline \text { Michael Lentmaier, Fall } 2018 & \text { Digital Communications: Lecture } 7
\end{array}
$$

Differential Phase Shift Keying ($M=2$)

- The receiver uses no phase offset v in the carrier waveforms
- Without noise, the decision variable is

$$
\begin{aligned}
\xi[n] & =r_{c}[n] r_{c}[n-1]+r_{s}[n] r_{s}[n-1] \\
& =A \cos \left(\theta_{n-1}+v\right) A \cos \left(\theta_{n-2}+v\right)+A \sin \left(\theta_{n-1}+v\right) A \sin \left(\theta_{n-2}+v\right) \\
& =A^{2} \cos \left(\theta_{n-1}-\theta_{n-2}\right) \Rightarrow \text { independent of } v
\end{aligned}
$$

- Note: non-coherent reception increases variance of noise

