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Geometric representation, Capacity,

Multiuser receiver, Non-coherent receiver

Michael Lentmaier
Thursday, September 27, 2018

Recall: QAM receiver (Example 4.4)

The implementation of this receiver is shown below:
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The complexity of this receiver is significantly reduced compared to the receiver in Figure
4.8 on page 241! Only two integrators are here used, instead of 64 (= M) in Figure
4.8.
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Example: QPSK (see Matlab demo)
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Distances Di,j are important
� Ps is determined by the distances Di,j between the signal pairs
� Let us sort these distances

Dmin < D1 < D2 < · · ·< Dmax

� Then the upper bound on Ps can be written as

Ps ≤ c Q
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D2
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2N0


+ c1 Q



√
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√
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� The coefficients are

c� =
M−1

∑
j=1

Pj ·nj,� , �= 0,1,2, . . . ,x

� nj,�: number of signals at distance D� from signal zj(t)

How many distinct terms do exist for QPSK?
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Signal Space Representation
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A geometric description
� As we have seen in Chapter 2 we can represent our signal

alternatives zj(t) as vectors (points) in signal space

zj =
(
zj,1

)
=
(
Aj
√

Eg
)

PAM

zj =
(
zj,1 zj,2

)
=
(

Aj

√
Eg
2 Bj

√
Eg
2

)
QAM, PSK

� The signal energy can be written as

Ej =
∫ Ts

0
z2

j (t) dt = z2
j,1 + z2

j,2

� Likewise, the squared Euclidean distance becomes

D2
i,j =

∫ Ts

0

(
zi(t)− zj(t)

)2 dt = (zi,1 − zj,1)
2 +(zi,2 − zj,2)

2

Signal energies and distances have a geometric interpretation

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 7

Approximate Ps for some constellations
� Considering the dominating term in the union bound we obtain

Ps ≈ c Q

(√
d2

min
Eb

N0

)

� This approximation is valid if Eb
N0

is sufficiently large

c d2min

M-ary PAM 2(1− 1/M)
6 log2(M)
M2 − 1

M-ary PSK (M > 2) 2 2 log2(M) sin2(π/M)
M-ary FSK M − 1 log2(M)

M-ary QAM 4(1− 1/
√
M)

3 log2(M)
M − 1

Table 4.1: The coefficient c, and d2min, for some common signal constellations.
Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the
M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal
energy orthogonal FSK signals are also assumed.
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Example 4.19
Assume two signal constellations, denoted A and B respectively, with corresponding
parameters d2min,A and d2min,B. From the equality (see e.g. the dominating term in the
union bound),

d2min,AEb,A/N0 = d2min,BEb,B/N0

we find that the difference (in dB) in received energy per information bit is (compare
with (2.13) on page 16),

10 log10(Eb,B)− 10 log10(Eb,A) = 10 log10
d2min,A

d2min,B

Calculate the value 10 log10
d2min,A

d2min,B
if “A” is binary antipodal PAM, and if “B” is

4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.

� For M-ary PAM we have (Table 4.1 or Table 5.1)

d2
min = 6log2(M)/(M2 −1) ⇒ d2

min,A = 2, d2
min,B = 4/5

� 10log10 d2
min,A/d2

min,B = 10log10 5/2 = 3.98 dB

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!
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Comparisons
Pb Q

(√
d2min

Eb

N0

)
, (4.55)

M = 2 d2min 0 ≤ d2min ≤ 2, (4.57)
ρ ρbin , (2.21)

Ps 2
(
1− 1

M

)
Q
(√

d2min
Eb

N0

)
, (5.35)

M-ary PAM d2min
6 log2(M)
M2−1 , Table 4.1 on page 281, (2.50)

ρ ρ2−PAM · log2(M), (2.220)

Ps < 2Q
(√

d2min
Eb

N0

)
, (5.43)

M-ary PSK d2min 2 sin2(π/M) log2(M), Table 4.1, Fig. 5.11
ρ ρBPSK · log2(M), (2.229)

M-ary QAM Ps 4
(
1− 1√

M

)
Q
(√

d2min
Eb

N0

)
−

(rect., k even) −4
(
1− 1√

M

)2

Q2
(√

d2min
Eb

N0

)
, (5.50)

(QPSK with d2min
3 log2(M)

M−1 , Table 4.1, Subsection 2.4.5.1

M = 4) ρ ρBPSK · log2(M), (2.229)

M-ary FSK Ps ≤ (M − 1)Q
(√

d2min
Eb

N0

)
, Example 4.18c, Table 4.1

(orthogonal d2min log2(M), Table 4.1 on page 281
FSK) ρ See (2.245)

Table 5.1, p. 361
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Symbol error probability comparison
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Symbol error probability comparison
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Gain in d2
min compared with binary antipodal

Antipodal M = 2 0[dB]
Orthogonal M = 2 -3.01

M = 2 0
M = 4 -3.98

M-ary PAM M = 8 -8.45
M = 16 -13.27
M = 32 -18.34
M = 64 -23.57
M = 2 0
M = 4 0

M-ary PSK M = 8 -3.57
M = 16 -8.17
M = 32 -13.18
M = 64 -18.40
M = 4 0
M = 16 -3.98

M-ary QAM M = 64 -8.45
M = 256 -13.27
M = 1024 -18.34
M = 4096 -23.57

M = 2 -3.01
M = 4 0

M-ary FSK M = 8 1.76
M = 16 3.01
M = 32 3.98
M = 64 4.77
M = 2 0

M -ary M = 4 0
bi- M = 8 1.76
orthogonal M = 16 3.01

M = 32 3.98
M = 64 4.77

Large values M reduce energy efficiency
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Example scenario: M-ary QAM
� We want to ensure that Ps ≤ Ps,req, where for M-ary QAM

Ps ≤ 4 Q

(√
d2

min
Eb

N0

)
= 4 Q

(√
X

)
, d2

min = 3 log2
M

M−1

� The pulse shape g(t) is chosen such that

ρ = log2(M) ρBPSK , where ρ =
Rb

W
≤ d2

min
X · Pz

N0 W

� Combining these requirements we obtain

M ≤ 1+
3

X ρBPSK
· Pz

N0 W
= 1+

3
X · Pz Ts

N0

� Hence we want to choose M = 2k such that (QAM: k even)

2k ≤ 1+
3

X ρBPSK
· Pz

N0 W
< 2k+2
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Example 4.22: adapting M to channel quality
Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary
QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or log2(M))
versus Pz/N0W . How large is the bit rate in each case? Assume that ρBPSK = 1/2
[bps/Hz].

log2(M)

8

6

4

2

5 10 21 42

z
N0W

M=16

M=64

M=256

Depending on the channel quality we can achieve different
bit rates Rb = W, 2W, 3W, or 4W[bps]
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Bit errors vs symbol errors
� Assume that S symbols are transmitted and Serr are in error
� If a symbol m̂ �= m is decided, this causes at least 1 bit error and

at most k = log2 M bit errors
Serr ≤ Berr ≤ k Serr

� This leads to the following relationship between Pb and Ps:

Ps

k
=

E{Serr}
S · k ≤ Pb ≤ E{Serr · k}

S · k = Ps

� Ps depends on the signal constellation only
� The exact Pb depends on the mapping from bits to messages m�

and hence signal alternatives sm�
(t)

Example: Which mapping is better for 4-PAM? (and why?)

(1) m0 = 00, m1 = 11, m2 = 01, m3 = 10

(2) m0 = 00, m1 = 01, m2 = 11, m3 = 10
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Gray code mappings
� We have seen that for small N0 we can approximate

Ps ≈ c Q



√

D2
min

2N0




� This motivates the use of Gray code mappings:

Example:
16-QAM

1000 1001 1011 1010

1100 1101 1111 1110
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z6

-3a -a a 3a
φ1

φ2

z0 z1 z2

3a

a
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How can we achieve large data rates?

� The bit rate Rb can be increased in different ways
� We can select a signal constellation with large M

⇒ this typically increases the error probability Ps
exception: orthogonal signals (FSK): require more bandwidth W

� Achieving equal Ps with larger M is possible by increasing Eb/N0
⇒ this reduces the energy efficiency

� We can also increase Rb by increasing the bandwidth W
⇒ this does not improve the bandwidth efficiency ρ = Rb/W

Question:
what is the largest achievable rate Rb for a given error probability Ps,
channel quality Eb/N0 and bandwidth W?

This question was answered by Claude Shannon in 1948:
"A mathematical theory of communication"
Course EITN45: Information Theory (VT2)
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A fundamental limit: channel capacity
� Consider a single-path channel (|H(f )|2 = α2) with finite

bandwidth W and additive white Gaussian noise (AWGN) N(t)
� The capacity for this channel is given by

C = W log2

(
1+

Pz

N0 W

)
[bps]

� Shannon showed that reliable communication requires that

Rb ≤ C
� Observe: the capacity formula does not include Ps (why?)
� Shannon also showed that if Rb < C, then the probability of error

Ps can be made arbitrarily small

Ps → 0

if messages are coded in blocks of length N → ∞
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Bandwidth efficiency and gap to capacity
(p. 369)
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Eb C/W
-12
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� ρ ≤ C/W: reliable communication is impossible above
� this limit can be approached with channel coding
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How does channel coding work?
� We have seen that a large minimum distance d2

min between
signals is required to improve the energy efficiency

� For binary signaling (M = 2) we have seen that d2
min ≤ 2

Idea of coding:
� generate M binary sequences of length N
� use binary antipodal signaling to create M signals s�(t)

Example: N = 5, M = 4, grec(t) pulse with T = Ts/N (what is D2
min?)

A

−A

A

−A

A

−A

A

−A

1 0 1 1 0 1 1 0 0 1

0 1 1 1 1 0 0 0 0 0

t

t t

t

s0(t) s1(t)

s2(t) s3(t)

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 7



Increasing d2
min with coding

� In our example we have

D2
min = 4A2 T ·3 = 4Eg 3 = 12Eg

� Normalizing by the average energy Eb = N Eg/k this gives

d2
min =

D2
min

2Eb
=

12Eg

2N/k Eg
= 6 · k

N
=

12
5

= 2.4

� Let dmin,H denote the minimum Hamming distance between the
binary code sequences ⇒ in our example: dmin,H = 3

� Then we can write
d2

min = 2
k
N

dmin,H

where R = k/N is called the code rate
� Larger dmin,H values can be achieved with larger N
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Example: symbol error probability

0 2 4 6 8 10 12 14 16
Eb/N0 [dB]

10-8
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P
s uncoded

Hamming code
N=7, k=4, d

min,H
=3 

(union bound)

� Hamming code, N = 7, k = 4, dmin,H = 3 ⇒ d2
min = 3.43

� How can we construct good codes?
EITN70: Channel Coding for Reliable Communication (HT2)
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Multiuser Communication
(p. 395/396)

...
...

s(t) r(t)

N(t)

+-User 1:    A φ1(t)

+-User 2:    A φ2(t)

+-User N:    A φN(t)

+-User   :    A φ  ( t)

A simple model:
� N users transmit at same time with orthonormal waveforms φ�(t)
� Binary antipodal signaling is used in this example, such that

s(t) =
N

∑
n=1

An φn(t) , An ∈ ±A

� The orthonormal waveforms satisfy∫ Ts

0
φi(t)φj(t) dt =

{
0 if i �= j ,
1 if i = j
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Multiuser Communication
� The separation of users can be achieved in different ways
� TDMA: (time-division multiple access)

TDMA

TS

User
in time slot

φ  (t)

t

� FDMA / OFDMA: (frequency-division multiple access)
User     in

frequency slot

FDMA

t

φ  (t) = c  sin(2 πf  t)

TS

.

� CDMA: (code-division multiple access)

-a

a

φ  (t) CDMA

TS

Each user is
assigned a

unique pattern of     a's+-

� MC-CDMA: (multi-carrier CDMA) combined OFDM/CDMA
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Receiver for Multiuser Communication

(  )dt

...
...

s(t) r(t)

N(t)

RECEIVER FOR
USER

φ  (t)

ξ     0

1
>
<
0

m̂

+-User 1:    A φ1(t)

+-User 2:    A φ2(t)

+-User N:    A φN(t)

+-User   :    A φ  ( t)

TS

0

ξ

� This permits a simple receiver structure for each user �
� The decision variable becomes

ξ =
∫ Ts

0
φ�(t)r(t) dt =

∫ Ts

0
φ�(t)

(
N

∑
n=1

An φn(t)+N(t)

)
dt

= A�+
∫ Ts

0
φ�(t)N(t) dt = A�+N

⇒ receiver is only disturbed by noise and not by other users!
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Non-coherent receivers
� With phase-shift keying (PSK) the message m[n] at time nTs is

put into the phase θn of the transmit signal

s(t) = g(t)
√

2E cos(2π fc t+θn) , nTs ≤ t ≤ (n+1)Ts

� The channel introduces some attenuation α, some additive noise
N(t) and also some phase offset ν into the received signal

r(t) = α g(t)
√

2E cos(2π fc t+θn +ν)+N(t)

� Challenge: the optimal receiver needs to know α and ν
� In some applications an accurate estimation of ν is infeasible

(cost, complexity, size)
� Non-coherent receivers:

receiver structures that can work well without knowledge
of the exact phase offset

How can we modify our PSK transmission accordingly?
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Differential Phase Shift Keying
� With differential PSK, the message m[n] = m� is mapped to the

phase according to

θn = θn−1 +
2π �

M
�= 0, . . . ,M−1

� The transmitted phase θn depends on both θn−1 and m[n]
� This differential encoding introduces memory and the transmitted

signal alternatives become dependent
� Example 5.25: binary DPSK

b[i]

Delay

Tb

Addition
modulo 2

m[i] s0(t)

s1(t)

s(t)
Channel

z(t) r(t)

N(t)
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Differential Phase Shift Keying (M = 2)

g(T b-t)

g(T b-t)

rc[n]

rs[n]

t=nT b

2cos( ωct)

r(t)

Receiver

Delay

Tb

Delay

Tb

ξ[n]
ξ[n]      0>

<

"0"

"1"

b[n-1]
^

-   2sin( ωct)

� The receiver uses no phase offset ν in the carrier waveforms
� Without noise, the decision variable is

ξ [n] = rc[n]rc[n−1]+ rs[n]rs[n−1]
= A cos(θn−1 +ν) A cos(θn−2 +ν)+A sin(θn−1 +ν) A sin(θn−2 +ν)

= A2 cos(θn−1 −θn−2) ⇒ independent of ν

� Note: non-coherent reception increases variance of noise
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