

EITG05 – Digital Communications

Lecture 7

Receivers continued: Geometric representation, Capacity, Multiuser receiver, Non-coherent receiver

Example: QPSK (see Matlab demo)

Recall: QAM receiver (Example 4.4)

The implementation of this receiver is shown below:

The complexity of this receiver is significantly reduced compared to the receiver in Figure 4.8 on page 241! Only two integrators are here used, instead of 64 (= M) in Figure 4.8.

Digital Communications: Lecture 7

Distances $D_{i,j}$ are important

- P_s is determined by the distances $D_{i,j}$ between the signal pairs
- Let us sort these distances

$$D_{min} < D_1 < D_2 < \cdots < D_{max}$$

• Then the upper bound on P_s can be written as

$$P_s \le c \ Q\left(\sqrt{\frac{D_{min}^2}{2N_0}}\right) + c_1 \ Q\left(\sqrt{\frac{D_1^2}{2N_0}}\right) + \dots + c_x \ Q\left(\sqrt{\frac{D_{max}^2}{2N_0}}\right)$$

► The coefficients are

$$c_{\ell} = \sum_{j=1}^{M-1} P_j \cdot n_{j,\ell} , \quad \ell = 0, 1, 2, \dots, x$$

▶ $n_{i,\ell}$: number of signals at distance D_{ℓ} from signal $z_i(t)$

How many distinct terms do exist for QPSK?

Michael Lentmaier, Fall 2018 D

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 7

Signal Space Representation

Approximate *P_s* for some constellations

Considering the dominating term in the union bound we obtain

$$P_s \approx c \ Q\left(\sqrt{d_{min}^2 \frac{\mathcal{E}_b}{N_0}}\right)$$

• This approximation is valid if $\frac{\mathcal{E}_b}{N_0}$ is sufficiently large

	c	d^2_{\min}
M-ary PAM	2(1 - 1/M)	$\frac{6\log_2(M)}{M^2 - 1}$
M-ary PSK $(M > 2)$	2	$2\log_2(M)\sin^2(\pi/M)$
M-ary FSK	M-1	$\log_2(M)$
M-ary QAM	$4(1-1/\sqrt{M})$	$\frac{3\log_2(M)}{M-1}$

Table 4.1: The coefficient c, and d_{\min}^2 , for some common signal constellations. Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal energy orthogonal FSK signals are also assumed.

A geometric description

As we have seen in Chapter 2 we can represent our signal alternatives z_j(t) as vectors (points) in signal space

$$\mathbf{z}_j = (z_{j,1}) = (A_j \sqrt{E_g})$$
 PAM

$$\mathbf{z}_{j} = \begin{pmatrix} z_{j,1} & z_{j,2} \end{pmatrix} = \begin{pmatrix} A_{j}\sqrt{\frac{E_{g}}{2}} & B_{j}\sqrt{\frac{E_{g}}{2}} \end{pmatrix}$$
 QAM, PSK

► The signal energy can be written as

$$E_j = \int_0^{T_s} z_j^2(t) \ dt = z_{j,1}^2 + z_{j,2}^2$$

Likewise, the squared Euclidean distance becomes

$$D_{i,j}^2 = \int_0^{T_s} \left(z_i(t) - z_j(t) \right)^2 dt = (z_{i,1} - z_{j,1})^2 + (z_{i,2} - z_{j,2})^2$$

Signal energies and distances have a geometric interpretation

```
Michael Lentmaier, Fall 2018
```

Digital Communications: Lecture 7

Example 4.19

Assume two signal constellations, denoted A and B respectively, with corresponding parameters $d^2_{\min,A}$ and $d^2_{\min,B}$. From the equality (see e.g. the dominating term in the union bound),

$$d_{\min,A}^2 \mathcal{E}_{b,A}/N_0 = d_{\min,B}^2 \mathcal{E}_{b,B}/N_0$$

we find that the difference (in dB) in received energy per information bit is (compare with (2.13) on page 16),

$$10\log_{10}(\mathcal{E}_{b,B}) - 10\log_{10}(\mathcal{E}_{b,A}) = 10\log_{10}\left(\frac{d_{\min,A}^2}{d_{\min,B}^2}\right)$$

Calculate the value $10 \log_{10} \left(\frac{d^2_{\min,A}}{d^2_{\min,B}} \right)$ if "A" is binary antipodal PAM, and if "B" is 4-ary PAM. Assume, that the conditions leading to (2.50) are satisfied.

► For *M*-ary PAM we have (Table 4.1 or Table 5.1)

$$d_{min}^2 = 6\log_2(M)/(M^2 - 1) \implies d_{min,A}^2 = 2, \ d_{min,B}^2 = 4/5$$

• $10\log_{10} d_{min,A}^2/d_{min,B}^2 = 10\log_{10} 5/2 = 3.98 \text{ dB}$

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM

Michael Lentmaier, Fall 2018

Comparisons

	P_b	$Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right), (4.55)$		
M = 2	d_{\min}^2	$0 \le d_{\min}^2 \le 2, (4.57)$		
	ρ	$ \rho_{bin}, (2.21) $		
	P_s	$2\left(1-\frac{1}{M}\right)Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right), (5.35)$		
M-ary PAM	d_{\min}^2	$\frac{6 \log_2(M)}{M^2 - 1}$, Table 4.1 on page 281, (2.50)		
	ρ	$\rho_{2-PAM} \cdot \log_2(M), (2.220)$		
	P_s	$< 2Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right), (5.43)$		
M-ary PSK	d_{\min}^2	$2\sin^2(\pi/M)\log_2(M)$, Table 4.1, Fig. 5.11		
	ρ	$\rho_{BPSK} \cdot \log_2(M), (2.229)$		
M-ary QAM	P_s	$4\left(1-\frac{1}{\sqrt{M}}\right)Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right) -$		
$({\rm rect.},k~{\rm even})$		$-4\left(1-\frac{1}{\sqrt{M}}\right)^2 Q^2\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right), (5.50)$		
(QPSK with	d_{\min}^2	$\frac{3 \log_2(M)}{M-1}$, Table 4.1, Subsection 2.4.5.1		
M = 4)	ρ	$\rho_{BPSK} \cdot \log_2(M), (2.229)$		
M-ary FSK	P_s	$\leq (M-1)Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right)$, Example 4.18c, Table 4.1		
(orthogonal	d_{\min}^2	$\log_2(M)$, Table 4.1 on page 281		
FSK)	ρ	See (2.245)		
Table 5.1, p. 361				

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 7

Symbol error probability comparison

Symbol error probability comparison

M-ary PAM, M = 2, 4, 8, 16

 $d_{\min}^2 = 6 \cdot \frac{\log_2 M}{M^2 - 1}$

M-ary PSK, M = 2, 4, 8, 16, 32

M-ary PSK

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 7

Gain in d_{min}^2 compared with binary antipodal

Antipodal	M = 2	0[dB]
Orthogonal	M = 2	-3.01
	M = 2	0
	M = 4	-3.98
M-ary PAM	M = 8	-8.45
	M = 16	-13.27
	M = 32	-18.34
	M = 64	-23.57
	M = 2	0
	M = 4	0
M-ary PSK	M = 8	-3.57
	M = 16	-8.17
	M = 32	-13.18
	M = 64	-18.40
	M = 4	0
	M = 16	-3.98
M-ary QAM	M = 64	-8.45
	M = 256	-13.27
	M = 1024	-18.34
	M = 4096	-23.57

	M = 2	-3.01
	M = 4	0
M-ary FSK	M = 8	1.76
	M = 16	3.01
	M = 32	3.98
	M = 64	4.77
	M = 2	0
M -ary	M = 4	0
bi-	M = 8	1.76
orthogonal	M = 16	3.01
	M = 32	3.98
	M = 64	4.77

Large values *M* reduce energy efficiency

Example scenario: *M*-ary QAM

• We want to ensure that $P_s \leq P_{s,req}$, where for *M*-ary QAM

$$P_s \leq 4 \ Q\left(\sqrt{d_{\min}^2 \frac{\mathcal{E}_b}{N_0}}\right) = 4 \ Q\left(\sqrt{\mathcal{X}}\right) \ , \quad d_{\min}^2 = 3 \ \log_2 \frac{M}{M-1}$$

• The pulse shape g(t) is chosen such that

$$ho = \log_2(M)
ho_{BPSK}$$
, where $ho = rac{R_b}{W} \leq rac{d_{min}^2}{\mathcal{X}} \cdot rac{\mathcal{P}_z}{N_0 W}$

Combining these requirements we obtain

$$M \leq 1 + \frac{3}{\mathcal{X}\rho_{BPSK}} \cdot \frac{\mathcal{P}_z}{N_0 W} = 1 + \frac{3}{\mathcal{X}} \cdot \frac{\mathcal{P}_z T_z}{N_0}$$

• Hence we want to choose $M = 2^k$ such that (QAM: k even)

$$2^{k} \leq 1 + \frac{3}{\mathcal{X} \rho_{BPSK}} \cdot \frac{\mathcal{P}_{z}}{N_{0} W} < 2^{k+2}$$

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 7

Bit errors vs symbol errors

- ▶ Assume that *S* symbols are transmitted and *S*_{err} are in error
- ▶ If a symbol $\hat{m} \neq m$ is decided, this causes at least 1 bit error and at most $k = \log_2 M$ bit errors

$$S_{err} \leq B_{err} \leq k S_{err}$$

• This leads to the following relationship between P_b and P_s :

$$\frac{P_s}{k} = \frac{E\{S_{err}\}}{S \cdot k} \le P_b \le \frac{E\{S_{err} \cdot k\}}{S \cdot k} = P_s$$

- P_s depends on the signal constellation only
- The exact P_b depends on the mapping from bits to messages m_ℓ and hence signal alternatives $s_{m_\ell}(t)$

Example: Which mapping is better for 4-PAM? (and why?)

- (1) $m_0 = 00, m_1 = 11, m_2 = 01, m_3 = 10$
- (2) $m_0 = 00, m_1 = 01, m_2 = 11, m_3 = 10$

Example 4.22: adapting M to channel quality

Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or $\log_2(M)$) versus \mathcal{P}_z/N_0W . How large is the bit rate in each case? Assume that $\rho_{BPSK} = 1/2$ [bps/Hz].

Depending on the channel quality we can achieve different bit rates $R_b = W$, 2W, 3W, or 4W[bps]

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 7

Gray code mappings

 \blacktriangleright We have seen that for small N_0 we can approximate

$$P_s \approx c \ Q\left(\sqrt{\frac{D_{min}^2}{2N_0}}\right)$$

This motivates the use of Gray code mappings:

Michael Lentmaier, Fall 2018

Example:

16-QAM

Digital Communications: Lecture 7

How can we achieve large data rates?

- The bit rate R_b can be increased in different ways
- ► We can select a signal constellation with large M ⇒ this typically increases the error probability P_s exception: orthogonal signals (FSK): require more bandwidth W
- Achieving equal P_s with larger M is possible by increasing \mathcal{E}_b/N_0 \Rightarrow this reduces the energy efficiency
- We can also increase R_b by increasing the bandwidth W \Rightarrow this does not improve the bandwidth efficiency $\rho = R_b/W$

Question:

what is the largest achievable rate R_b for a given error probability P_s , channel quality \mathcal{E}_b/N_0 and bandwidth *W*?

This question was answered by Claude Shannon in 1948: "A mathematical theory of communication" Course EITN45: Information Theory (VT2)

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 7

Bandwidth efficiency and gap to capacity

ρ ≤ *C*/*W*: reliable communication is impossible above
 this limit can be approached with channel coding

A fundamental limit: channel capacity

- Consider a single-path channel (|*H*(*f*)|² = α²) with finite bandwidth *W* and additive white Gaussian noise (AWGN) *N*(*t*)
- The capacity for this channel is given by

$$C = W \log_2 \left(1 + \frac{\mathcal{P}_z}{N_0 W} \right)$$
 [bps]

Shannon showed that reliable communication requires that

 $R_b \leq C$

- **Observe:** the capacity formula does not include *P_s* (why?)
- Shannon also showed that if $R_b < C$, then the probability of error P_s can be made arbitrarily small

 $P_s \rightarrow 0$

if messages are coded in blocks of length $N \rightarrow \infty$

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 7

How does channel coding work?

- We have seen that a large minimum distance d²_{min} between signals is required to improve the energy efficiency
- ▶ For binary signaling (M = 2) we have seen that $d_{min}^2 \le 2$

Idea of coding:

- generate M binary sequences of length N
- use binary antipodal signaling to create *M* signals $s_{\ell}(t)$

Example: N = 5, M = 4, $g_{rec}(t)$ pulse with $T = T_s/N$ (what is D_{min}^2 ?)

Increasing d_{min}^2 with coding

► In our example we have

$$D_{min}^2 = 4A^2 T \cdot 3 = 4E_g 3 = 12E_g$$

• Normalizing by the average energy $\mathcal{E}_{h} = N E_{\sigma} / k$ this gives

$$d_{min}^2 = \frac{D_{min}^2}{2\mathcal{E}_b} = \frac{12E_g}{2N/kE_g} = 6 \cdot \frac{k}{N} = \frac{12}{5} = 2.4$$

- Let $d_{min,H}$ denote the minimum Hamming distance between the binary code sequences \Rightarrow in our example: $d_{min H} = 3$
- Then we can write

$$d_{min}^2 = 2\frac{k}{N}d_{min,H}$$

where R = k/N is called the code rate

• Larger $d_{min,H}$ values can be achieved with larger N

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 7

Multiuser Communication

(p. 395/396)

A simple model:

- ▶ N users transmit at same time with orthonormal waveforms $\phi_{\ell}(t)$
- Binary antipodal signaling is used in this example, such that

$$s(t) = \sum_{n=1}^{N} A_n \phi_n(t) , \quad A_n \in \pm A$$

The orthonormal waveforms satisfy

$$\int_0^{T_s} \phi_i(t) \phi_j(t) dt = \begin{cases} 0 & \text{if } i \neq j , \\ 1 & \text{if } i = j \end{cases}$$

Example: symbol error probability

Multiuser Communication

- ► The separation of users can be achieved in different ways
- TDMA: (time-division multiple access)

FDMA / OFDMA: (frequency-division multiple access)

CDMA: (code-division multiple access)

► MC-CDMA: (multi-carrier CDMA) combined OFDM/CDMA

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 7

Receiver for Multiuser Communication

- This permits a simple receiver structure for each user ℓ
- The decision variable becomes

$$\begin{split} \xi &= \int_0^{T_s} \phi_\ell(t) \, r(t) \, dt = \int_0^{T_s} \phi_\ell(t) \left(\sum_{n=1}^N A_n \, \phi_n(t) + N(t) \right) \, dt \\ &= A_\ell + \int_0^{T_s} \phi_\ell(t) \, N(t) \, dt = A_\ell + \mathcal{N} \end{split}$$

 \Rightarrow receiver is only disturbed by noise and not by other users!

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 7

Differential Phase Shift Keying

• With differential PSK, the message $m[n] = m_{\ell}$ is mapped to the phase according to

$$heta_n= heta_{n-1}+rac{2\,\pi\,\ell}{M}$$
 $\ell=0,\ldots,M-1$

- The transmitted phase θ_n depends on both θ_{n-1} and m[n]
- This differential encoding introduces memory and the transmitted signal alternatives become dependent
- **Example 5.25:** binary DPSK

Michael Lentmaier, Fall 2018

Non-coherent receivers

• With phase-shift keying (PSK) the message m[n] at time nT_s is put into the phase θ_n of the transmit signal

 $s(t) = g(t) \sqrt{2E} \cos(2\pi f_c t + \theta_n), \quad nT_s \le t \le (n+1)T_s$

• The channel introduces some attenuation α , some additive noise N(t) and also some phase offset v into the received signal

 $r(t) = \alpha g(t) \sqrt{2E} \cos(2\pi f_c t + \theta_n + v) + N(t)$

- **Challenge:** the optimal receiver needs to know α and v
- In some applications an accurate estimation of v is infeasible (cost, complexity, size)
- Non-coherent receivers:

receiver structures that can work well without knowledge of the exact phase offset

How can we modify our PSK transmission accordingly?

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 7

Differential Phase Shift Keying (M = 2)

- ► The receiver uses no phase offset *v* in the carrier waveforms
- ► Without noise, the decision variable is

 $\xi[n] = r_c[n]r_c[n-1] + r_s[n]r_s[n-1]$

- $= A\cos(\theta_{n-1} + v) A\cos(\theta_{n-2} + v) + A\sin(\theta_{n-1} + v) A\sin(\theta_{n-2} + v)$
- $=A^2 \cos(\theta_{n-1} \theta_{n-2}) \Rightarrow \text{independent of } v$
- Note: non-coherent reception increases variance of noise

Digital Communications: Lecture 7