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Example: (see Matlab demo)

z(t) (random data, rectangular pulse)
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Last week: Analysis Binary Signaling
» Only one correlator or one matched filter is now required:

zy (t-nT 5)-zo(t-nT S)

m (+1)T ¢ my £ X
o:) —a r(t) j'( ) dt Sn) &n] Z '20 —» min]
my nTg m

Correlator

E €, —> min]
(t)=z | (T -z (T ) T e > -
~~ t:(n+1)Ts
Matched filter N

My

Sampling Y
Threshold unit

» Matched filter output needs be sampled at correct time
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An energy efficiency perspective

» Consider the case Py =P; =1/2
» The average received energy per bit is then

_ Eyt+E;

s=21"20a+ L[ 204
b—i/o 75(1) t+§/0 z1(¢) dt 5

» We can then introduce the normalized squared Euclidean

distance 5
D 1 Ty 2
d2 :ﬂ:—/ ) —z0(2))” dt
01= 28, =28 Jy (21(1) —20(2))

» With this the bit error probability becomes

D} g
n=o(\3t )=o)

» The parameter d(%’l is a measure of energy efficiency
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Special case 1: antipodal signals Special case 2: orthogonal signals

» In case of orthogonal signals we have

Ty
/0 20(t)z1(¢) dr=0

and hence (compare page 28)

» In case of antipodal signals we have z;(r) = —z(¢) and

D%,l = /OTb (Zl (1) —Zo(l‘))2 dt=4/0sz%(t) dt =4E

» From E, = E, = E follows ) T, 2

E+E
&=——=E > This gives
2 & — Ey+ E;
and 2 _ Dy, _4E 5 b= Ty
01728, T 2E and )
. o . . . &2 :Dm _EotEr _
» The bit error probability for any pair of antipodal signals becomes Ol 28 T Eo+E
g » The bit error probability for any pair of orthogonal signals is
Py=014/2—
No Py—0 &y
b= \/ No
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Comparison Antipodal vs orthogonal signaling
Antipodal vs orthogonal signaling:
10° ; ; < ; , ‘ ; » There is a constant gap between the two curves
» We can measure the difference in energy efficiency by the ratio
10 & | g d2
: : b.atp _ 0,1,0rt _ l
:410’2 E : : £ gbv"” d(z), 1atp 2
é " Antipodal Orthogonal )
Rl : : E » In terms of dB this corresponds to
107E : R 3 5 d
' z z 10log;, (ﬂ) = 10log,, % = —3 [dB]
gb,ort dO,l,atp
107 B
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ = antipodal signaling requires 3 dB less energy for equal P,
-2 0 2 10 12 14

6
&/Ny in dB

Larger values of d(z),] give better energy efficiency

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 6 Michael Lentmaier, Fall 2018 Digital Communications: Lecture 6



Example 4.11: rank pairs with respect to dj | Can we do better?

7(0) 210 70 240
A Y l 2 » It is possible to show that for two equally likely signal alternatives
Y 3% NN we always have
Pair | Pair 2 d(2)1 <2
2 20 2O=sinm/Ty) 2,(O=sin@mU2T ) ) ) . . . ) )
» Antipodal signaling is hence optimal for binary signaling (M = 2)
A Ty A A4
t 2 . t T _, U/\ t
To T Tp T
A w12 AV Remark:
. " . w“ " » Channel coding can be used to further increase d? |
70(t 1 70(t 1 ]
N N N » Sequences of binary pulses with large separation are designed
Tﬁﬂ, o " Ty T \/\/Th ' /\A ' » This does not contradict the result from above:
e paire coded binary signals correspond to uncoded signals with M > 2
7(® 70 70 21t ) ) ) o
N R R Channel coding can be used for improving energy efficiency
‘ LI ) jbuﬂ ! Cost: complexity, latency, (bandwidth)
Th Tp Ty
B~ 72 A 2
Pair 7 Pair 8
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Relationship between parameters A "typical" type of problem
» The bit error probability can be expressed in different ways » The bit error probability must not exceed a certain level,
D2 £ P PbSPb,req:Q(\/‘?)
Py=0 (/5 | =0/}, = :Q( di 1 5 >
2No " No " Ry No » Example: if Py, = 107 then X ~ 36

» Consequences:

» Assuming zo(z) = aso(r) and z; (1) = ars) (r) we also get 2 & o
0y, =
a?P A} 2Py 2
P, = d2 sent _ -0l sen d p
h=0 01" Ry Ny ¢ P NoW Ry < —L. %
X No
. . - . d,
» Recall that p = R,/W is the bandwidth efficiency and Ny W is the R, < L. O Pyent
noise power within the bandwidth W X N

» Note: the received signal power P, decreases with
communication distance

The expression that is most appropriate to use depends on the
specific problem to be solved
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Non-ideal receiver conditions
Example 4.15: unexpected additional noise wy, i.e., w = wy + wy

Example 4.12: transmission hidden in noise

In a specific application equally likely binary antipodal signals are used, and the pulse
shape is grc(t) with amplitude A and duration T < T,. AWGN with power spectral 10°
density No/2, and the ML receiver is assumed. It is required that the bit error probability
must not exceed 10™°. It is also required that the power spectral density satisfies R(f) <
No/2 for all frequencies f (the information signal is intentionally “hidden” in the
noise). Determine system and signal parameters above such that these two requirements
are satisfied. -

T T T T T T T T

Ideal case Error floor

> Py=0(V2E/Ny ) <107 = &/No > 18
> R(f) = Ry|G(f)|* has maximum at f = 0
» R(0) =R, A’T? /4 < Ny/2 (check pulse shape)

Bit error probability
s
|

> &/No=3/8AT/Ny > 18
» Hidden in noise: A>T /Ny < 2/(R,T)
> Py requirement: AZT/N() >48 Rl s 10 15 o o B 30 35 40

» Solution:

2 _
choose T < Tj/24 and A” = 48No/T Can be analyzed with our methods
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Non-ideal receiver conditions
Example 4.16: hostile bursty interference, active with p,, = 0.05

M-ary Signaling

RECEIVER
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Bit error probability

» The receiver computes M decision variables &y, &, ..., &1
» The selected message 7 is based on the largest value

0 5 10

. 15
/0% in dB A

m=my, (?:argmlaxfi

Observe: at low power an interference in bursts is

. _ . o
more severe than continuous interference > Question: when do we make a wrong decision’
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Probability of a wrong decision

» For M =2 we have considered two error probabilities Pr and Py,
» For a given message m = m;, in general there are M — | ways
(events) to make a wrong decision,

{&>& |m=m}, i#j
» The probability of a wrong decision can be upper bounded by
M—1
Pr{m # mjlm = m;} :Pr{ Ué&>¢ ‘ m—mj}
i=0

i#f

M-1
<Y Pr{&>& | m=m} (unionbound)
> Note: given some events A and B, the union bound states that

Pr{AUB} < Pr{A}+ Pr{B},

where equality holds if A and B are independent
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Example: orthogonal signaling

» Consider M orthogonal signals with equal energy E
» Examples: FSK, PPM

» For each pair z;(r) and z;(r) we get

D};=E+E=2E

» From the union bound we obtain

M-1 -1 DIZJ
P, < P;

=(M—1)Q(\/g>=(M—1)Q( )

» This generalizes the binary case from the previous lecture
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Symbol error probability
» The symbol error probability can be upper bounded by

M-1 M-1
Po< ) P ) Pri&i> G [ m=m}
j=0  i=0
i#
» From the binary case M =2 we know that (pick i=0and j = 1)

2

Dy,
Pr{§i>§j|m:mj}:Q 21\}10

where D;; is the Euclidean distance between z;(r) and z;(¢)
» We obtain the following main result for M-ary signaling:

DiZJ M—1 M-1 Di2,,'
< P, < P;
m?XQ 2Ny | S*ZG ];)Q 2Ny
7 =
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Distances D, ; are important

» P, is determined by the distances D;; between the signal pairs
» Let us sort these distances

Dyin <Dy <Dy <+ < Dy

» Then the upper bound on P, can be written as

D2, D? D2
PrseQ o | ra el | Tote ey 3h

» The coefficients are

M—1
= Z Pi-nj,, £=0,1,2,...,x
j=1

» nj ¢ number of signals at distance D, from signal z;(r)
How many distinct terms do exist for 4-PAM?
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A useful approximation of P; Energy efficiency and normalized distances

The union bound is easy to compute if we know all distances D, » Consider the case Py =1/M, (=0,1,...,.M —1

At large signal-to-noise ratio (small Np), i.e., when P, is small, the » The average received energy per bit is given by
first term provides a good approximation

v

v

RS 1 Eg+E|+---Ey_y

& = — 2(f) dt =~
P e O S A
s C — -
2No » Using the normalized squared Euclidean distances
» We see that the minimum distance D?,, and the average number L Diﬁ
of closest signals ¢ dominate the performance in this case t728
» Explanation: the union bound can be written as
the function Q(x) decreases very fast as x increases (faster than
exponentially). The other terms become negligible at some point. 2 & 2 &b
P;<cQ dminﬁo +c1 Q leio 4+ QO

= at small P, (small Ny) we can compare different signal
constellations by means of D2 | similarly to the binary case

min?

» The parameters d? determine the energy efficiency
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Approximate P, for some constellations Example 4.19

Assume two signal constellations, denoted A and B respectively, with corresponding
parameters d2;, 4 and d2;, p. From the equality (see e.g. the dominating term in the
union bound),

» Considering the dominating term in the union bound we obtain

Pi~cQ 2. é Arnin,aE,4/No = dain, 55,8/ No
’ mn No we find that the difference (in dB) in received energy per information bit is (compare
with (2.13) on page 16),
» This approximation is valid if % is sufficiently large a2
0 101og, (&, ) — 101og,o(Ep,4) = 101og,, | o

Bin,
¢ Izllill 2
M-ary PAM 2(1— 1/M) GIO%Z(JM) Calculate the value 10log,, (Z;‘”"’A) if “A” is binary antipodal PAM, and if “B” is
“ M= —1 min, B

M-ary PSK (M > 2) 9 21og, (M) sin®(x/M) 4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.

M-ary FSK M—1 log, (M)

M-ary QAM 4(1— 1/v/31) 3log, (M) » For M-ary PAM we have (Table 4.1 or Table 5.1)

d2., = 6logy(M)/(M* 1) = doya=2, doinp=4/5

Table 4.1: The coefficient ¢, and d2;,, for some common signal constellations. min 2 min,A > Zmin,B

Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the
M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal
energy orthogonal FSK signals are also assumed.

> 10loggdrp 4/doin g = 10l0g195/2 = 3.98 dB

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!
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Example scenario: M-ary QAM

» We want to ensure that P, < P; ,.,, Where for M-ary QAM

Example 4.22: adapting M to channel quality

Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary
QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or log,(M))

) gb ) versus P./NoW . How large is the bit rate in each case? Assume that pppsk = 1/2
Po<d0(\[d it | =40 <\/x ) . dpy =3 logy [bps/Hz).

» The pulse shape g() is chosen such that

log ,(M)
M=256
R, d2, P 8
=log,(M where p = — < “min, 2 =
p =1log, (M) pgpsk p WX NgW 6 M=64
M=16
» Combining these requirements we obtain N
2
M<1+L PZ =1 i.pZTS T T T T T > ?Z
= Xpgpsk NoW X N X 5¥ 10% 21% 42% NoW

» Hence we want to choose M = 2% such that (QAM: k even)

3 P,

Depending on the channel quality we can achieve different
X pgpsk NoW

k< bit rates R, = W, 2W, 3W, or 4W[bps]

< 2k+2
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