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Last week: Analysis Binary Signaling

� Only one correlator or one matched filter is now required:

m0
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m1

r(t)

z1(t-nT s)-z0(t-nT s)

(n+1)T s
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Matched filter

Threshold unit
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Sampling
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^

� Matched filter output needs be sampled at correct time
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Example: (see Matlab demo)
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Errors:          2      Total errors:         21      Total symbols:        360          Error rate: 0.05833

    1     2     3     4     5     6     7     8     9     10     11     12     13     14     15     16     17     18     19     20

t/Ts

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 6

An energy efficiency perspective
� Consider the case P0 = P1 = 1/2
� The average received energy per bit is then

Eb =
1
2

∫ Tb

0
z2

0(t) dt +
1
2

∫ Tb

0
z2

1(t) dt =
E0 +E1

2

� We can then introduce the normalized squared Euclidean
distance

d2
0,1 =

D2
0,1

2Eb
=

1
2Eb

∫ Tb

0

(
z1(t)− z0(t)

)2 dt

� With this the bit error probability becomes

Pb = Q



√

D2
0,1

2N0


= Q

(√
d2

0,1
Eb

N0

)

� The parameter d2
0,1 is a measure of energy efficiency
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Special case 1: antipodal signals
� In case of antipodal signals we have z1(t) =−z0(t) and

D2
0,1 =

∫ Tb

0

(
z1(t)− z0(t)

)2 dt = 4
∫ Tb

0
z2

1(t) dt = 4E

� From E0 = E1 = E follows

Eb =
E+E

2
= E

and
d2

0,1 =
D2

0,1

2Eb
=

4E
2E

= 2

� The bit error probability for any pair of antipodal signals becomes

Pb = Q

(√
2
Eb

N0

)
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Special case 2: orthogonal signals
� In case of orthogonal signals we have∫ Tb

0
z0(t)z1(t) dt = 0

and hence (compare page 28)

D2
0,1 =

∫ Tb

0

(
z1(t)− z0(t)

)2 dt = E0 +E1

� This gives

Eb =
E0 +E1

2
and

d2
0,1 =

D2
0,1

2Eb
=

E0 +E1

E0 +E1
= 1

� The bit error probability for any pair of orthogonal signals is

Pb = Q

(√ Eb

N0

)
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Comparison
Antipodal vs orthogonal signaling:
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Larger values of d2
0,1 give better energy efficiency
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Antipodal vs orthogonal signaling

� There is a constant gap between the two curves
� We can measure the difference in energy efficiency by the ratio

Eb,atp

Eb,ort
=

d2
0,1,ort

d2
0,1,atp

=
1
2

� In terms of dB this corresponds to

10log10

(Eb,atp

Eb,ort

)
= 10log10

(
d2

0,1,ort

d2
0,1,atp

)
=−3 [dB]

⇒ antipodal signaling requires 3 dB less energy for equal Pb
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Example 4.11: rank pairs with respect to d2
0,1
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Can we do better?

� It is possible to show that for two equally likely signal alternatives
we always have

d2
0,1 ≤ 2

� Antipodal signaling is hence optimal for binary signaling (M = 2)

Remark:
� Channel coding can be used to further increase d2

0,1
� Sequences of binary pulses with large separation are designed
� This does not contradict the result from above:

coded binary signals correspond to uncoded signals with M > 2

Channel coding can be used for improving energy efficiency
Cost: complexity, latency, (bandwidth)
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Relationship between parameters
� The bit error probability can be expressed in different ways

Pb = Q



√

D2
0,1

2N0


= Q

(√
d2

0,1
Eb

N0

)
= Q

(√
d2

0,1
Pz

Rb N0

)

� Assuming z0(t) = α s0(t) and z1(t) = α s1(t) we also get

Pb = Q



√

d2
0,1

α2P̄sent

Rb N0


= Q



√

d2
0,1

ρ
· α2P̄sent

N0 W




� Recall that ρ = Rb/W is the bandwidth efficiency and N0 W is the
noise power within the bandwidth W

The expression that is most appropriate to use depends on the
specific problem to be solved

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 6

A "typical" type of problem
� The bit error probability must not exceed a certain level,

Pb ≤ Pb,req = Q
(√X )

� Example: if Pb,req = 10−9 then X ≈ 36

� Consequences:

d2
0,1

Eb

N0
≥ X

Rb ≤ d2
0,1

X · Pz

N0

Rb ≤ d2
0,1

X · α2P̄sent

N0

� Note: the received signal power Pz decreases with
communication distance
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Example 4.12: transmission hidden in noise

In a specific application equally likely binary antipodal signals are used, and the pulse
shape is grc(t) with amplitude A and duration T ≤ Tb. AWGN with power spectral
density N0/2, and the ML receiver is assumed. It is required that the bit error probability
must not exceed 10−9. It is also required that the power spectral density satisfies R(f) ≤
N0/2 for all frequencies f (the information signal is intentionally “hidden” in the
noise). Determine system and signal parameters above such that these two requirements
are satisfied.

� Pb = Q
(√

2Eb/N0

)
≤ 10−9 ⇒ Eb/N0 ≥ 18

� R(f ) = Rb|Grc(f )|2 has maximum at f = 0
� R(0) = Rb A2T2/4 ≤ N0/2 (check pulse shape)
� Eb/N0 = 3/8A2T/N0 ≥ 18
� Hidden in noise: A2T/N0 ≤ 2/(RbT)
� Pb requirement: A2T/N0 ≥ 48
� Solution:

choose T ≤ Tb/24 and A2 = 48N0/T
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Non-ideal receiver conditions
Example 4.15: unexpected additional noise wx, i.e., w = wN +wx
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Can be analyzed with our methods
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Non-ideal receiver conditions
Example 4.16: hostile bursty interference, active with pon = 0.05
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Observe: at low power an interference in bursts is
more severe than continuous interference
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M-ary Signaling

m̂

Ts

0

(   )dt +
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0

(   )dt +
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ξM-1

{z  (t)}
=0

M-1

+

z  (t)1

z  (t)0

z       (t)M-1
Ts

0

(   )dt +
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RECEIVER

. .
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-E  /2

-E  /2

-E        /2M-1

0

1

� The receiver computes M decision variables ξ0,ξ1, . . . ,ξM−1
� The selected message m̂ is based on the largest value

m̂ = m� , �= argmax
i

ξi

� Question: when do we make a wrong decision?
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Probability of a wrong decision
� For M = 2 we have considered two error probabilities PF and PM
� For a given message m = mj, in general there are M−1 ways

(events) to make a wrong decision,{
ξi > ξj

∣∣ m = mj
}
, i �= j

� The probability of a wrong decision can be upper bounded by

Pr{m̂ �= mj|m = mj}= Pr
{M−1⋃

i=0
i�=j

ξi > ξj

∣∣∣ m = mj

}

≤
M−1

∑
i=0
i�=j

Pr
{

ξi > ξj
∣∣ m = mj

}
(union bound)

� Note: given some events A and B, the union bound states that

Pr{A∪B} ≤ Pr{A}+Pr{B} ,

where equality holds if A and B are independent
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Symbol error probability
� The symbol error probability can be upper bounded by

Ps ≤
M−1

∑
j=0

Pj

M−1

∑
i=0
i�=j

Pr
{

ξi > ξj
∣∣ m = mj

}

� From the binary case M = 2 we know that (pick i = 0 and j = 1)

Pr
{

ξi > ξj
∣∣ m = mj

}
= Q



√

D2
i,j

2N0




where Di,j is the Euclidean distance between zi(t) and zj(t)
� We obtain the following main result for M-ary signaling:

max
i

i�=j

Q



√

D2
i,j

2N0


 ≤ Ps ≤

M−1

∑
j=0

Pj

M−1

∑
i=0
i�=j

Q



√

D2
i,j

2N0



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Example: orthogonal signaling
� Consider M orthogonal signals with equal energy E
� Examples: FSK, PPM

� For each pair zi(t) and zj(t) we get

D2
i,j = E+E = 2E

� From the union bound we obtain

Ps ≤
M−1

∑
j=0

Pj

M−1

∑
i=0
i�=j

Q



√

D2
i,j

2N0




= (M−1) Q

(√
2E
2N0

)
= (M−1) Q

(√
E
N0

)

� This generalizes the binary case from the previous lecture
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Distances Di,j are important
� Ps is determined by the distances Di,j between the signal pairs
� Let us sort these distances

Dmin < D1 < D2 < · · ·< Dmax

� Then the upper bound on Ps can be written as

Ps ≤ c Q



√

D2
min

2N0


+ c1 Q



√

D2
1

2N0


+ · · ·+ cx Q



√

D2
max

2N0




� The coefficients are

c� =
M−1

∑
j=1

Pj ·nj,� , �= 0,1,2, . . . ,x

� nj,�: number of signals at distance D� from signal zj(t)

How many distinct terms do exist for 4-PAM?
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A useful approximation of Ps

� The union bound is easy to compute if we know all distances D�

� At large signal-to-noise ratio (small N0), i.e., when Ps is small, the
first term provides a good approximation

Ps ≈ c Q



√

D2
min

2N0




� We see that the minimum distance D2
min and the average number

of closest signals c dominate the performance in this case

� Explanation:
the function Q(x) decreases very fast as x increases (faster than
exponentially). The other terms become negligible at some point.

⇒ at small Ps (small N0) we can compare different signal
constellations by means of D2

min, similarly to the binary case
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Energy efficiency and normalized distances
� Consider the case P� = 1/M, �= 0,1, . . . ,M−1
� The average received energy per bit is given by

Eb =
1
k

M−1

∑
i=0

1
M

∫ Ts

0
z2

i (t) dt =
1
k

E0 +E1 + · · ·EM−1

M

� Using the normalized squared Euclidean distances

d2
� =

D2
�

2Eb
,

the union bound can be written as

Ps ≤ c Q

(√
d2

min
Eb

N0

)
+c1 Q

(√
d2

1
Eb

N0

)
+ · · ·+cx Q

(√
d2

max
Eb

N0

)

� The parameters d2
� determine the energy efficiency
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Approximate Ps for some constellations
� Considering the dominating term in the union bound we obtain

Ps ≈ c Q

(√
d2

min
Eb

N0

)

� This approximation is valid if Eb
N0

is sufficiently large

c d2min

M-ary PAM 2(1− 1/M)
6 log2(M)
M2 − 1

M-ary PSK (M > 2) 2 2 log2(M) sin2(π/M)
M-ary FSK M − 1 log2(M)

M-ary QAM 4(1− 1/
√
M)

3 log2(M)
M − 1

Table 4.1: The coefficient c, and d2min, for some common signal constellations.
Equally likely signal alternatives are assumed. See Subsection 2.4.1.1 for the
M-ary PAM case, and Subsection 2.4.5.1 for the M-ary QAM case. M equal
energy orthogonal FSK signals are also assumed.
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Example 4.19
Assume two signal constellations, denoted A and B respectively, with corresponding
parameters d2min,A and d2min,B. From the equality (see e.g. the dominating term in the
union bound),

d2min,AEb,A/N0 = d2min,BEb,B/N0

we find that the difference (in dB) in received energy per information bit is (compare
with (2.13) on page 16),

10 log10(Eb,B)− 10 log10(Eb,A) = 10 log10
d2min,A

d2min,B

Calculate the value 10 log10
d2min,A

d2min,B
if “A” is binary antipodal PAM, and if “B” is

4-ary PAM. Assume, that the conditions leading to (2.50) are satiesfied.

� For M-ary PAM we have (Table 4.1 or Table 5.1)

d2
min = 6log2(M)/(M2 −1) ⇒ d2

min,A = 2, d2
min,B = 4/5

� 10log10 d2
min,A/d2

min,B = 10log10 5/2 = 3.98 dB

Binary PAM is 3.98 dB more energy efficient than 4-ary PAM!
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Example scenario: M-ary QAM
� We want to ensure that Ps ≤ Ps,req, where for M-ary QAM

Ps ≤ 4 Q

(√
d2

min
Eb

N0

)
= 4 Q

(√
X

)
, d2

min = 3 log2
M

M−1

� The pulse shape g(t) is chosen such that

ρ = log2(M) ρBPSK , where ρ =
Rb

W
≤ d2

min
X · Pz

N0 W

� Combining these requirements we obtain

M ≤ 1+
3

X ρBPSK
· Pz

N0 W
= 1+

3
X · Pz Ts

N0

� Hence we want to choose M = 2k such that (QAM: k even)

2k ≤ 1+
3

X ρBPSK
· Pz

N0 W
< 2k+2
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Example 4.22: adapting M to channel quality
Assume that an M-ary QAM system adapts between 4-ary QAM, 16-ary QAM, 64-ary
QAM and 256-ary QAM. Show when a new M is chosen by plotting M (or log2(M))
versus Pz/N0W . How large is the bit rate in each case? Assume that ρBPSK = 1/2
[bps/Hz].

log2(M)

8

6

4

2

5 10 21 42

z
N0W

M=16

M=64

M=256

Depending on the channel quality we can achieve different
bit rates Rb = W, 2W, 3W, or 4W[bps]
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