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» Concepts of digital signaling: bits to analog signals
» Average symbol energy E,, Euclidean distance D;;
» Bandwidth of the transmit signal
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Chapter 4: Receivers The Detection Problem

. A N(t)
b t bli]
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(0.1} 0.1} m[0]=m; si(t z:(t (t Receiver m[0]
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—= {50, - h(t) ——= based on 1(t) —=>
Figure 4.1: A digital communication system. in0<t<Tg

. Assumptions:

< o Bl » Arandom (i.i.d.) sequence of messages mli] is transmitted

= o4 2 | L SN m » There are M = 2 possible messages, i.e., k bits per message
Lo PENEAE (N 1Y e UL » All signal alternatives zy(¢), ¢ =1,...,M are known by the receiver
4 1 » T, is chosen such that the signal alternatives z,(r) do not overlap
oo » N(t) is additive white Gaussian noise (AWGN) with Ry (f) = No/2

Questions:
» How can we estimate the transmitted sequence?

» How should decisions be made at the receiver?
» |s there an optimal way to do this?

» What is the resulting bit error probability P,?
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An optimal decision strategy Structure of the general MAP receiver

» We know that one of the M messages must be the best

» Suppose we want to minimize the symbol error probability P,
» Hence we can simply test each my, £ =0,1,....M —1

That means we maximize the probability of a correct decision

Pr{m=in(r(1)) | r(t)}

v

MAP-receiver

: |
| U !
. |
where m denotes the transmitted message i Pr{m=mq Ir(t)} 0 }
|
» This leads to the following decision rule: i U, |
| Pr{m=m, Ir(t)} }
R P () | SELECT [
(r(t)) =my ”‘t received | : LARGEST }d'eci';“ion
where ¢ = argmax Pr{m = my|r(r)} Sme:ssage noisy | ' !
i signal | I
. _— - } Pr{m=m,, r(t)} l i
» We decide for the message that maximizes the probability above ! M1 |
! 1

> Areceiver that is based on this decision ruleiscaled oo
maximum-a-posteriori probability (MAP) receiver
This receiver minimizes the symbol error probability Py
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A slightly different decision strategy The Minimum Euclidean Distance Receiver

» The maximum likelihood (ML) receiver is based on a slightly NGO
different decision rule:

10 Receiver based
m=mj -~ > zi() —— on r(t) in = m
J J

m(r(t)) =my: €= argmax Pr{r(t)|m; sent} 0<t<Ts

» Using the Bayes rule we can write ) o ) .
» For our considered scenario with Gaussian noise:

Prim—m | ()} — Pr{r(t)|m; sent} - P; maximizing Pr{r(t)|m; sent} is equivalent to minimizing the
rim=mi | r(t)} = Pr{r(t)} squared Euclidean distance D2,.

» The received signal is compared with all noise-free signals z;(¢)
in terms of the squared Euclidean distance

D= [ (0 2(0)* a

» The message is selected according to the decision rule:

» The decision rule of the MAP receiver can be formulated as

m(r(t)) =my: {=argmaxPr{r(t)|m; sent}-P;

» |t follows that the ML receiver is equivalent to the MAP receiver
for equally likely messages, P, =1/M,i=0,1,... M —1.
m(r(t)) =mg: £ =argmin D?,
; :
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The Minimum Euclidean Distance Receiver Correlation based implementation

» The squared Euclidean distance is a measure of similarity

. . . . TS
» An implementation is often based on correlators with output ¢ =argmin D?; = argmax / r(t)zi(t) dt —E; /2
i ’ i 0
Ts
r(t) z; i=0,1,.... M—1 i
/0 (r)2i(7) dr , 01,..., ! RECEIVER !
. ! 0 o2 |
» Using ; T 1
: —= j( )dt —= S0 :
) Ts 2 T | 0 !
D, = / (r(1) — 2:(r))* dt = E, —2 / r(1) zi(t) di + E; A By |
’ 0 0 NG Ts }
. ! ——= j( )dt —= il = rlﬁ
we can write 1) ! SELECT !
72(t) ——= . 0 .
| : : LARGEST !
-, s 0) | ‘
¢ =argmin D:; = argmax / r(t)zi(t) dt —E; /2 2D | PG -EM-1/2 !
l ’ i 0 | !
! Ts |
! EM-1 |
» The received signal is compared with all possible noise-free ! g Cde = !
signal alternatives z;(r) ! |
The receiver needs to know the channel!  [5/~ A&y T
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Example: M =4 Example 4.4: 64-QAM receiver
r(t) = zo(t) + N(t) Assume that {z¢(t)).5" is a 64-ary QAM signal constellation. Draw a block-diagram

20(t) ” € = 0ATT8E of a minimum Euclidean distance receiver that uses only two integrators.
s i
& = 05011 E
. ’ : g Solution:

o= —14754 F

& ’ A QAM signal alternative can be written as zi(t) = Aig(t) cos(wet) — Big(t) sin(wet),

§=—0.4989E where g(t) is a baseband pulse. The output value from the i:th correlator in Figure 4.8
s,

/0 “rmydt = A /D "1 (1)g(t) cos(wet)dt — B /0 " r(D)g(t) sin(wet)dt =

T -y

A;x + Biy

& =0.2187E
& =-145T5E

Observe that x and y do not depend on the index i.

Hence, a possible implementation of the receiver is to first generate x and y, and then
& =—12447F calculate the M correlations A;x + By, i =0, 4,...,M — 1. By subtracting the value
& =045T5E E;/2 from the i:th correlation, the decision variables o, . ..,Ev—1 are finally obtained.

For M-ary constellations with fixed pulse shape g(7) the
implementation can be further simplified
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Example 4.4: 64-QAM receiver

The implementation of this receiver is shown below:

cos(w ) 9(t)

)
r(t)
9

-sin( mcl) g(t) Decision

The complexity of this receiver is significantly reduced compared to the receiver in Figure
4.8 on page 241! Only two integrators are here used, instead of 64 (= M) in Figure
4.8.

= these parts are very similar to the transmitter
» integration and comparison can be performed separately
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Matched filter implementation

v

A filter with impulse response ¢(t) is matched to a signal z;(z) if

q(t) = zi(=1+T5) = z(=(1=Ty))

v

Let the received signal r(¢) enter this matched filter ¢(r)

The matched filter output, evaluated at time r = (n+ 1)Tj, can be
written as

v

(n+1) Ty
040 = [ r®u(c—nT)dr

Observe:
this is exactly the same output value as the correlator produces

v

= We can replace each correlator with a matched filter which is
sampled at times r = (n+1) T,
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A geometric interpretation
» Our receiver computes: (maximum correlation)
max{xA; +yB; — Eg/2}

» Equivalently we can compute: (minimum Euclidean distance)

, AE\? BiE,\*
mim (x ) ) + 1y >

Ex. QPSK: received point (x,y) is closest to the point of message m;

z = message points, ® = noisy received values (z,y)

y
A=t Eg2 . Ap=T
B1 =1 B2=1
T T > X
Eg/2E P Eg/2 ® (x,y) = noisy received values
Ag=1x "9 x A3= 1
BO=-1 53=.1
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CORRELATION RECEIVER
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Summary: receiver types

» Minimum Euclidean distance (MED) receiver:
decision is based on the signal alternative z;(¢) closest to (r)

» Correlation receiver:
an implementation of the MED receiver based on correlators

» Matched filter receiver:
an implementation of the MED receiver based on matched filters

» Maximum likelihood (ML) receiver:
equivalent to MED receiver under our assumptions: ML = ED

» Maximum a-posteriori (MAP) receiver:
minimizes symbol error probability P
equivalentto MLif P, =1/M,i=0,...,M—1: ML = ED = MAP
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Analysis Binary Signaling
» Binary signaling (M = 2, T, = T},) simplifies the general receiver
» Consider the two decision variables
(nJrl)Tx
Eln] :/ H0)zilt—nTy) di—EiJ2, i=0,1
nTs
» The decision /&i[n] is made according to the larger value, i.e.,

m[n]=my
» This can be reduced to a single decision variable only
(n+1) Ty
&= [0 (@ t=nT) ~zole—nTy) dr
which is compared to a threshold value

m[n]=m
g = Db

Mln)=myg
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Bit error probability

» Because of the noise the receiver will sometimes make errors
During a time interval t we transmit the sequence b of length

v

B=R,7T

The detected (estimated) sequence b will contain B.,, bit errors

v

Berr = dH(bvﬁ) <B

The Hamming distance dy(b,b) is defined as the number of
positions in which the sequences are different

v

v

The bit error probability Py, is defined as

E{dp(b.b)}

P=1 Y Pribil £ i} =

v

It measures the average number of bit errors per detected
(estimated) information bit
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Receiver for Binary Signaling
» Only one correlator or one matched filter is now required:

z4 (t-nT s)-zo(t-nT S

m (n+1)T My EE .
orO e ) I( ) dt cn) En] Z 12 O mn
my nTg m,

| N —

Correlator

I'T"I1 A
E,-E, — min]
v(ty=z |(T A2 o(T ) VE ey : ‘20

~—  —— =T s m
%/_/

Matched filter 0

Sampling i Y
Threshold unit

» Matched filter output needs be sampled at correct time
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When do we make a wrong decision? Decision regions

» Assuming m = my is sent, the decision variable becomes D2,
gl = [ ) ar)—2a(o) di= [ (a0 4N () - (1)~ 20(0) eson my | T secson my
» We can divide this into a signal component f, and ‘ | ‘ gy
a noise component A/ Bo Threshoild
Elnl=Po+N » With . .
Bo = /OT () (@1 (1) —20() di, N = /OT"N(1> (21(0) —20(1)) dit Bo+Br = */0 %(1) ‘”*/O A1) di = By~ Eo

the decision threshold lies in the center between Sy and §;:

Ei—Ey  Bo+pi
» Analogously, when m = m; is sent we get 2 2

» Wrong decision: if £[n] > (E| — Ep)/2 thenii=m; A#mo=m

En)=B1+N » Furthermore we see that

T Ts 2 2 2
Br= [ a0 (0 —z(0) Bi=o= | ) =s0(0)” dr =Dk = 0f,
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Probability of a wrong decision Gaussian Noise
» There exist two ways to make an error: » The noise component A is a Gaussian random variable with
: 1 2 /952
r : r — ~WN=-m)*/20
0 Py N2 P 1 p(N) s e
T T » &n]
B, B, with mean m = 0 and variance 6> = Ny /2 E,
Threshold » Our bit error probability is related to the probability that the noise
Py false alarm probability Py missed detection probability value \V'is larger than some threshold A
» The two probabilities of error can be determined as PrN > A} = Pr{N;m > A;m} _0 <A ;m)
Pp = Pr{im[n] =m|m=mo} =Pr{fo+N > (Bo+pB1)/2}
Py =Pri{imn]=molm=mi} =Pr{Bi+N < (Bo+pB1)/2} » The O(x)-function is defined as
» We can express these in terms of the Q(x)-function: 0(x) = ] o2 dy = lerfc (})
(BB X V2m 2
Prp=Py=0 o
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The Q(x)-function The Q(x)-function (page 182)

s Q@ [z ] Q@ [z Q@ [ = Q)
10° . . . : . . : . : : 0.0 | 5.0000e-01 | 3.0 | 1.3499e-03 | 6.0 | 9.8659%¢-10 | 9.0 | 1.1286e-19
0.1 | 4.6017e-01 | 3.1 | 9.6760e-04 | 6.1 | 5.3034e-10 | 9.1 4.5166e-20
0.2 | 4.2074e-01 | 3.2 | 6.8714e-04 | 6.2 | 2.8232e-10 | 9.2 | 1.7897e-20
0.3 | 3.8209e-01 | 3.3 | 4.8342e-04 | 6.3 | 1.4882e-10 | 9.3 | 7.0223e-21
0.4 | 3.4458¢-01 | 3.4 | 3.3693e-04 | 6.4 | 7.7688¢c-11 9.4 | 2.7282¢-21
= 0.5 | 3.0854e-01 | 3.5 | 2.3263e-04 | 6.5 | 4.0160e-11 9.5 1.0495e-21
10 F 3 0.6 | 2.7425e-01 | 3.6 | 1.5911e-04 | 6.6 | 2.0558¢-11 9.6 | 3.9972e-22
0.7 | 2.4196e-01 | 3.7 | 1.0780e-04 | 6.7 | 1.0421e-11 9.7 | 1.5075e-22
0.8 | 2.1186e-01 | 3.8 | 7.2348e-05 | 6.8 | 5.2310e-12 | 9.8 5.6293e-23
0.9 | 1.8406e-01 | 3.9 | 4.8096e-05 | 6.9 | 2.6001e-12 | 9.9 | 2.0814e-23
1.0 | 1.5866e-01 | 4.0 | 3.1671e-05 | 7.0 | 1.2798e-12 | 10.0 | 7.6199e-24
107 E 1.1 | 1.3567e-01 | 4.1 | 2.0658e-05 | 7.1 | 6.2378e-13
1.2 | 1.1507e-01 | 4.2 | 1.3346e-05 | 7.2 | 3.0106e-13
1.3 | 9.6800e-02 | 4.3 | 8.5399¢-06 | 7.3 | 1.4388e-13
1.4 | 8.0757e-02 | 4.4 | 5.4125e-06 | 7.4 | 6.8092¢-14
. 1.5 | 6.6807e-02 | 4.5 | 3.3977e-06 | 7.5 | 3.1909e-14
CFTRE i 1.6 | 5.4799e-02 | 4.6 | 2.1125e-06 | 7.6 | 1.4807e-14
1.7 | 4.4565e-02 | 4.7 | 1.3008e-06 | 7.7 | 6.8033e-15
1.8 | 3.5930e-02 | 4.8 | 7.9333e-07 | 7.8 | 3.0954e-15
1.9 | 2.8717e-02 | 4.9 | 4.7918e-07 | 7.9 | 1.3945e-15
2.0 | 2.2750e-02 | 5.0 | 2.8665e-07 | 8.0 | 6.2210e-16
~ 2.1 | 1.7864e-02 | 5.1 | 1.6983e-07 | 8.1 | 2.7480e-16
107 = | 2.2 | 1.3903e-02 | 5.2 | 9.9644e-08 | 8.2 | 1.2019e-16
2.3 | 1.0724e-02 | 5.3 | 5.7901e-08 | 8.3 | 5.2056e-17
2.4 | 8.1975e-03 | 5.4 | 3.3320e-08 | 8.4 | 2.2324e-17
2.5 | 6.2097e-03 | 5.5 | 1.8990e-08 | 8.5 | 9.4795¢-18
2.6 | 4.6612e-03 | 5.6 | 1.0718e-08 | 8.6 | 3.9858e-18
1071 i 2.7 | 3.4670e-03 | 5.7 | 5.9904e-09 | 8.7 | 1.6594e-18
2.8 | 2.5551e-03 | 5.8 | 3.3157e-09 | 8.8 | 6.8408e-19
2.9 | 1.8658e-03 | 5.9 | 1.8175e-09 | 8.9 | 2.7923e-19
Q(1.2816) =~ 1077 [ Q(5.1993) ~ 1077
107° I I I I 1 I 1 I 1 I Q(2.3263) ~ 1072 | Q(5.6120) ~ 10~%
-0.5 0 0.5 1 15 2 25 3 3.5 4 4.5 5 Q(3.0902) ~ 1072 | Q(5.9978) ~ 10~°
T Q(3.7190) ~ 10~* | Q(6.3613) ~ 10~1°
Q(4.2649) =~ 107° | Q(6.
Q(4.7534) ~ 107° | Q(
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Bit error probability Example
> The bit error probability can be written as » Let z0(r) = 0 and z; () rectangular with amplitude A and 7 =T,
Py, =PyPp+ PPy = (Py+P1)Pr=Pr=Py » The information bit rate is R, = 400 kbps
, . » Regarding the noise we know that A% /N, = 70 dB
» With B, — By = D3, and 62 = Ny/2- D}, we obtain egarding the noise we know that A%/No
b Bi—Bo 0 Dj, 0 D3, Task: determine the bit error probability P,
b= o= e
20 20 2Ny _
) . i » Solution:
» This fundamental result provides the bit error probability P, of an » First we find that D2, — A%/R
ML receiver for binary transmission over an AWGN channel UL b
. . . . . » Then
» The additive noise NV is sampled from a filtered noise process D2 A2 1
0,1
— =—.— =125
N(t) —ﬁ V(1) =z (T 1)z (T D) }— 7@ N 2Ng Ny 2Ry
t=(n+1)T
> Py=0 (\/12.5) —0(3.536)=2.3-10"*
Ty
=Np/2-E, =Ny/2 / ' (z1(2) —zo(t))2 dr » Last step: check Table 3.1 on page 182
0
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An energy efficiency perspective

» Consider the case Pp=P; =1/2
» The average received energy per bit is then

1 T 1 T Ey+E
sb:f/ (1) di + 7/ Ay dr= 2B
2 Jo 2 Jo 2

» We can then introduce the normalized squared Euclidean

distance )

D, 1 Ty
2 _ 0l _ _ 2
Bi= e =55 | @0O-0) a

» With this the bit error probability becomes

| DZ g
Pb_Q( 2;};)_Q( d(2),1N2>

» The parameter d&l is a measure of energy efficiency
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