LUND
UNIVERSITY

EITG05 - Digital Communications

Lecture 5

Receivers in Digital Communication Systems

```
Michael Lentmaier
Monday, September 17, 2018
```


Chapter 4: Receivers

$$
\underset{\{0,1\}}{\mathrm{b}[\mathrm{i}]} \rightarrow \text { Transmitter }^{\mathrm{s}(\mathrm{t})} \rightarrow \text { Channel } \xrightarrow{\mathrm{r}(\mathrm{t})} \rightarrow \text { Receiver } \xrightarrow[\{0,1\}]{\stackrel{\hat{\mathrm{b}}[\mathrm{i}]}{ }}
$$

Figure 4.1: A digital communication system.

- How can we estimate the transmitted sequence?
- Is there an optimal way to do this?

Where are we now?

What we have done so far: (Chapter 2)

- Concepts of digital signaling: bits to analog signals
- Average symbol energy \bar{E}_{s}, Euclidean distance $D_{i, j}$
- Bandwidth of the transmit signal

The Detection Problem

Assumptions:

- A random (i.i.d.) sequence of messages $m[i]$ is transmitted
- There are $M=2^{k}$ possible messages, i.e., k bits per message
- All signal alternatives $z_{\ell}(t), \ell=1, \ldots, M$ are known by the receiver
- T_{s} is chosen such that the signal alternatives $z_{\ell}(t)$ do not overlap
- $N(t)$ is additive white Gaussian noise (AWGN) with $R_{N}(f)=N_{0} / 2$

Questions

- How should decisions be made at the receiver?
- What is the resulting bit error probability P_{b} ?

An optimal decision strategy

- Suppose we want to minimize the symbol error probability P_{s}
- That means we maximize the probability of a correct decision

$$
\operatorname{Pr}\{m=\hat{m}(r(t)) \mid r(t)\}
$$

where m denotes the transmitted message

- This leads to the following decision rule:

$$
\begin{gathered}
\hat{m}(r(t))=m_{\ell} \\
\text { where } \ell=\arg \max _{i} \operatorname{Pr}\left\{m=m_{i} \mid r(t)\right\}
\end{gathered}
$$

- We decide for the message that maximizes the probability above
- A receiver that is based on this decision rule is called maximum-a-posteriori probability (MAP) receiver

A slightly different decision strategy

- The maximum likelihood (ML) receiver is based on a slightly different decision rule:

$$
\hat{m}(r(t))=m_{\ell}: \quad \ell=\arg \max _{i} \operatorname{Pr}\left\{r(t) \mid m_{i} \text { sent }\right\}
$$

- Using the Bayes rule we can write

$$
\operatorname{Pr}\left\{m=m_{i} \mid r(t)\right\}=\frac{\operatorname{Pr}\left\{r(t) \mid m_{i} \text { sent }\right\} \cdot P_{i}}{\operatorname{Pr}\{r(t)\}}
$$

- The decision rule of the MAP receiver can be formulated as

$$
\hat{m}(r(t))=m_{\ell}: \quad \ell=\arg \max _{i} \operatorname{Pr}\left\{r(t) \mid m_{i} \text { sent }\right\} \cdot P_{i}
$$

- It follows that the ML receiver is equivalent to the MAP receiver for equally likely messages, $P_{i}=1 / M, i=0,1, \ldots, M-1$.

Structure of the general MAP receiver

- We know that one of the M messages must be the best
- Hence we can simply test each $m_{\ell}, \ell=0,1, \ldots, M-1$

This receiver minimizes the symbol error probability P_{s}

- For our considered scenario with Gaussian noise: maximizing $\operatorname{Pr}\left\{r(t) \mid m_{i}\right.$ sent $\}$ is equivalent to minimizing the squared Euclidean distance $D_{r, i}^{2}$.
- The received signal is compared with all noise-free signals $z_{i}(t)$ in terms of the squared Euclidean distance

$$
D_{r, i}^{2}=\int_{0}^{T_{s}}\left(r(t)-z_{i}(t)\right)^{2} d t
$$

- The message is selected according to the decision rule:

$$
\hat{m}(r(t))=m_{\ell}: \quad \ell=\arg \min _{i} D_{r, i}^{2}
$$

The Minimum Euclidean Distance Receiver

- The squared Euclidean distance is a measure of similarity
- An implementation is often based on correlators with output

$$
\int_{0}^{T_{s}} r(t) z_{i}(t) d t, \quad i=0,1, \ldots, M-1
$$

- Using

$$
D_{r, i}^{2}=\int_{0}^{T_{s}}\left(r(t)-z_{i}(t)\right)^{2} d t=E_{r}-2 \int_{0}^{T_{s}} r(t) z_{i}(t) d t+E_{i}
$$

we can write

$$
\ell=\arg \min _{i} D_{r, i}^{2}=\arg \max _{i} \int_{0}^{T_{s}} r(t) z_{i}(t) d t-E_{i} / 2
$$

- The received signal is compared with all possible noise-free signal alternatives $z_{i}(t)$
The receiver needs to know the channel!

$$
\text { Digital Communications: Lecture } 5
$$

Example: $M=4$

\Rightarrow wrong decision: $\hat{m}=3$
$E_{0}=E_{1}=E_{2}=E_{3}=E$

Correlation based implementation

$$
\ell=\arg \min _{i} D_{r, i}^{2}=\arg \max _{i} \int_{0}^{T_{s}} r(t) z_{i}(t) d t-E_{i} / 2
$$

Example 4.4: 64-QAM receiver

Assume that $\left\{z_{\ell}(t)_{\ell=0}^{M-1}\right.$ is a 64-ary QAM signal constellation. Draw a block-diagram of a minimum Euclidean distance receiver that uses only two integrators.

Solution:

A QAM signal alternative can be written as $z_{i}(t)=A_{i} g(t) \cos \left(\omega_{c} t\right)-B_{i} g(t) \sin \left(\omega_{c} t\right)$, where $g(t)$ is a baseband pulse. The output value from the $i:$ th correlator in Figure 4.8 $i s$,

$$
\begin{aligned}
\int_{0}^{T_{s}} r(t) z_{i}(t) d t & =A_{i} \underbrace{\int_{0}^{T_{s}} r(t) g(t) \cos \left(\omega_{c} t\right) d t}_{x}-B_{i} \underbrace{\int_{0}^{T_{s}} r(t) g(t) \sin \left(\omega_{c} t\right) d t}_{-y}= \\
& =A_{i} x+B_{i} y
\end{aligned}
$$

Observe that x and y do not depend on the index i.
Hence, a possible implementation of the receiver is to first generate x and y, and then calculate the M correlations $A_{i} x+B_{i} y, i=0, i, \ldots, M-1$. By subtracting the value $E_{i} / 2$ from the $i:$ th correlation, the decision variables $\xi_{0}, \ldots, \xi_{M-1}$ are finally obtained.

For M-ary constellations with fixed pulse shape $g(t)$ the implementation can be further simplified

Example 4.4: 64-QAM receiver

The implementation of this receiver is shown below:

The complexity of this receiver is significantly reduced compared to the receiver in Figure 4.8 on page 241! Only two integrators are here used, instead of $64(=M)$ in Figure 4.8 .

- pulse shape and carrier waveform are recreated at the receiver \Rightarrow these parts are very similar to the transmitter
- integration and comparison can be performed separately

$$
\text { Nichael Lentmaier, Fall } 2018
$$

$$
\text { Digital Communications: Lecture } 5
$$

Matched filter implementation

- A filter with impulse response $q(t)$ is matched to a signal $z_{i}(t)$ if

$$
q(t)=z_{i}\left(-t+T_{S}\right)=z_{i}\left(-\left(t-T_{S}\right)\right)
$$

- Let the received signal $r(t)$ enter this matched filter $q(t)$
- The matched filter output, evaluated at time $t=(n+1) T_{s}$, can be written as

$$
\left.r(t) * q(t)\right|_{t=(n+1) T_{s}}=\int_{n T_{s}}^{(n+1) T_{s}} r(\tau) z_{i}\left(\tau-n T_{s}\right) d \tau
$$

- Observe:
this is exactly the same output value as the correlator produces
\Rightarrow We can replace each correlator with a matched filter which is sampled at times $t=(n+1) T_{s}$

A geometric interpretation

- Our receiver computes: (maximum correlation)

$$
\max _{i}\left\{x A_{i}+y B_{i}-E_{g} / 2\right\}
$$

- Equivalently we can compute: (minimum Euclidean distance)

$$
\min _{i}\left\{\left(x-\frac{A_{i} E_{g}}{2}\right)^{2}+\left(y-\frac{B_{i} E_{g}}{2}\right)^{2}\right\}
$$

Ex. QPSK: received point (x, y) is closest to the point of message m_{3} $x=$ message points, $\bullet=$ noisy received values (x, y)

Matched filter vs correlator implementation

Summary: receiver types

- Minimum Euclidean distance (MED) receiver:
decision is based on the signal alternative $z_{i}(t)$ closest to $r(t)$
- Correlation receiver:
an implementation of the MED receiver based on correlators
- Matched filter receiver:
an implementation of the MED receiver based on matched filters
- Maximum likelihood (ML) receiver:
equivalent to MED receiver under our assumptions: ML = ED
- Maximum a-posteriori (MAP) receiver:
minimizes symbol error probability P_{s}
equivalent to ML if $P_{i}=1 / M, i=0, \ldots, M-1: \mathrm{ML}=\mathrm{ED}=\mathrm{MAP}$

Michael Lentmaier, Fall 2018

$$
\text { Digital Communications: Lecture } 5
$$

Analysis Binary Signaling

- Binary signaling ($M=2, T_{s}=T_{b}$) simplifies the general receiver
- Consider the two decision variables

$$
\xi_{i}[n]=\int_{n T_{s}}^{(n+1) T_{s}} r(t) z_{i}\left(t-n T_{s}\right) d t-E_{i} / 2, \quad i=0,1
$$

- The decision $\hat{m}[n]$ is made according to the larger value, i.e.,

$$
\xi_{1}[n] \stackrel{\hat{m}[n]=m_{1}}{\underset{m}{ }[n]=m_{0}} \gtrless \underset{0}{\gtrless} \boldsymbol{\xi}_{0}[n]
$$

- This can be reduced to a single decision variable only

$$
\xi[n]=\int_{n T_{s}}^{(n+1) T_{s}} r(t)\left(z_{1}\left(t-n T_{s}\right)-z_{0}\left(t-n T_{s}\right)\right) d t
$$

which is compared to a threshold value

$$
\xi[n] \underset{\hat{m}[n]=m_{0}}{\stackrel{\hat{m}[n]=m_{1}}{\gtrless} \frac{E_{1}-E_{0}}{2}}
$$

Bit error probability

- Because of the noise the receiver will sometimes make errors
- During a time interval τ we transmit the sequence \mathbf{b} of length

$$
B=R_{b} \tau
$$

- The detected (estimated) sequence $\hat{\mathbf{b}}$ will contain $B_{\text {err }}$ bit errors

$$
B_{e r r}=d_{H}(\mathbf{b}, \hat{\mathbf{b}}) \leq B
$$

- The Hamming distance $d_{H}(\mathbf{b}, \hat{\mathbf{b}})$ is defined as the number of positions in which the sequences are different
- The bit error probability P_{b} is defined as

$$
P_{b}=\frac{1}{B} \sum_{i=1}^{B} \operatorname{Pr}\{\hat{b}[i] \neq b[i]\}=\frac{E\left\{d_{H}(\mathbf{b}, \hat{\mathbf{b}})\right\}}{B}
$$

- It measures the average number of bit errors per detected (estimated) information bit

Michael Lentmaier, Fall 2018

Receiver for Binary Signaling

- Only one correlator or one matched filter is now required:

- Matched filter output needs be sampled at correct time

When do we make a wrong decision?

- Assuming $m=m_{0}$ is sent, the decision variable becomes

$$
\xi[n]=\int_{0}^{T_{s}} r(t)\left(z_{1}(t)-z_{0}(t)\right) d t=\int_{0}^{T_{s}}\left(z_{0}(t)+N(t)\right) \cdot\left(z_{1}(t)-z_{0}(t)\right) d t
$$

- We can divide this into a signal component β_{0} and a noise component \mathcal{N}

$$
\begin{gathered}
\xi[n]=\beta_{0}+\mathcal{N} \\
\beta_{0}=\int_{0}^{T_{s}} z_{0}(t)\left(z_{1}(t)-z_{0}(t)\right) d t, \quad \mathcal{N}=\int_{0}^{T_{s}} N(t)\left(z_{1}(t)-z_{0}(t)\right) d t
\end{gathered}
$$

- Wrong decision: if $\xi[n]>\left(E_{1}-E_{0}\right) / 2$ then $\hat{m}=m_{1} \neq m_{0}=m$
- Analogously, when $m=m_{1}$ is sent we get

$$
\begin{gathered}
\xi[n]=\beta_{1}+\mathcal{N} \\
\beta_{1}=\int_{0}^{T_{s}} z_{1}(t)\left(z_{1}(t)-z_{0}(t)\right) d t
\end{gathered}
$$

$$
\text { Digital Communications: Lecture } 5
$$

Probability of a wrong decision

- There exist two ways to make an error:

P_{F} : false alarm probability $\quad P_{M}$: missed detection probability
- The two probabilities of error can be determined as

$$
\begin{aligned}
& P_{F}=\operatorname{Pr}\left\{\hat{m}[n]=m_{1} \mid m=m_{0}\right\}=\operatorname{Pr}\left\{\beta_{0}+\mathcal{N}>\left(\beta_{0}+\beta_{1}\right) / 2\right\} \\
& P_{M}=\operatorname{Pr}\left\{\hat{m}[n]=m_{0} \mid m=m_{1}\right\}=\operatorname{Pr}\left\{\beta_{1}+\mathcal{N}<\left(\beta_{0}+\beta_{1}\right) / 2\right\}
\end{aligned}
$$

- We can express these in terms of the $Q(x)$-function:

$$
P_{F}=P_{M}=Q\left(\frac{\beta_{1}-\beta_{0}}{2 \sigma}\right)
$$

Decision regions

- With

$$
\beta_{0}+\beta_{1}=-\int_{0}^{T_{s}} z_{0}^{2}(t) d t+\int_{0}^{T_{s}} z_{1}^{2}(t) d t=E_{1}-E_{0}
$$

the decision threshold lies in the center between β_{0} and β_{1} :

$$
\frac{E_{1}-E_{0}}{2}=\frac{\beta_{0}+\beta_{1}}{2}
$$

- Furthermore we see that

$$
\beta_{1}-\beta_{0}=\int_{0}^{T_{s}}\left(z_{1}(t)-z_{0}(t)\right)^{2} d t=D_{1,0}^{2}=D_{0,1}^{2}
$$

Gaussian Noise

- The noise component \mathcal{N} is a Gaussian random variable with

$$
p(\mathcal{N})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(\mathcal{N}-m)^{2} / 2 \sigma^{2}}
$$

with mean $m=0$ and variance $\sigma^{2}=N_{0} / 2 E_{v}$

- Our bit error probability is related to the probability that the noise value \mathcal{N} is larger than some threshold A

$$
\operatorname{Pr}\{\mathcal{N} \geq A\}=\operatorname{Pr}\left\{\frac{\mathcal{N}-m}{\sigma} \geq \frac{A-m}{\sigma}\right\}=Q\left(\frac{A-m}{\sigma}\right)
$$

- The $Q(x)$-function is defined as

$$
Q(x)=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y=\frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)
$$

The $Q(x)$-function

Michael Lentmaier, Fall 2018

$$
\text { Digital Communications: Lecture } 5
$$

Bit error probability

- The bit error probability can be written as

$$
P_{b}=P_{0} P_{F}+P_{1} P_{M}=\left(P_{0}+P_{1}\right) P_{F}=P_{F}=P_{M}
$$

- With $\beta_{1}-\beta_{0}=D_{0,1}^{2}$ and $\sigma^{2}=N_{0} / 2 \cdot D_{0,1}^{2}$ we obtain

$$
P_{b}=Q\left(\frac{\beta_{1}-\beta_{0}}{2 \sigma}\right)=Q\left(\frac{D_{0,1}^{2}}{2 \sigma}\right)=Q\left(\sqrt{\frac{D_{0,1}^{2}}{2 N_{0}}}\right)
$$

- This fundamental result provides the bit error probability P_{b} of an ML receiver for binary transmission over an AWGN channel
- The additive noise \mathcal{N} is sampled from a filtered noise process

$$
N(t) \longrightarrow \quad v(t)=z_{1}\left(T_{s}-t\right)-z_{0}\left(T_{s}-t\right) \quad \underset{t=(n+1) T_{s}}{ } N
$$

$$
\sigma^{2}=N_{0} / 2 \cdot E_{v}=N_{0} / 2 \int_{0}^{T_{s}}\left(z_{1}(t)-z_{0}(t)\right)^{2} d t
$$

The $Q(x)$-function (page 182)

Michael Lentmaier, Fall 2018
Digital Communications: Lecture 5

Example

- Let $z_{0}(t)=0$ and $z_{1}(t)$ rectangular with amplitude A and $T=T_{b}$
- The information bit rate is $R_{b}=400 \mathrm{kbps}$
- Regarding the noise we know that $A^{2} / N_{0}=70 \mathrm{~dB}$

Task: determine the bit error probability P_{b}

Solution:

- First we find that $D_{0,1}^{2}=A^{2} / R_{b}$
- Then

$$
\frac{D_{0,1}^{2}}{2 N_{0}}=\frac{A^{2}}{N_{0}} \cdot \frac{1}{2 R_{b}}=12.5
$$

- $P_{b}=Q(\sqrt{12.5})=Q(3.536)=2.3 \cdot 10^{-4}$
- Last step: check Table 3.1 on page 182

An energy efficiency perspective

- Consider the case $P_{0}=P_{1}=1 / 2$
- The average received energy per bit is then

$$
\mathcal{E}_{b}=\frac{1}{2} \int_{0}^{T_{b}} z_{0}^{2}(t) d t+\frac{1}{2} \int_{0}^{T_{b}} z_{1}^{2}(t) d t=\frac{E_{0}+E_{1}}{2}
$$

- We can then introduce the normalized squared Euclidean distance

$$
d_{0,1}^{2}=\frac{D_{0,1}^{2}}{2 \mathcal{E}_{b}}=\frac{1}{2 \mathcal{E}_{b}} \int_{0}^{T_{b}}\left(z_{1}(t)-z_{0}(t)\right)^{2} d t
$$

- With this the bit error probability becomes

$$
P_{b}=Q\left(\sqrt{\frac{D_{0,1}^{2}}{2 N_{0}}}\right)=Q\left(\sqrt{d_{0,1}^{2} \frac{\mathcal{E}_{b}}{N_{0}}}\right)
$$

- The parameter $d_{0,1}^{2}$ is a measure of energy efficiency

$$
\text { Digital Communications: Lecture } 5
$$

