Fourier transform

LUND
UNIVERSITY

EITG05 - Digital Communications

Lecture 4

Bandwidth of Transmitted Signals

Michael Lentmaier
Thursday, September 13, 2018

Some useful Fourier transform properties

$$
\begin{aligned}
g(a t) & \leftrightarrow \frac{1}{|a|} G(f / a) & g^{*}(T-t) & \leftrightarrow G^{*}(f) e^{-j 2 \pi f T} \\
g(-t) & \leftrightarrow G(-f) & \delta(t) & \leftrightarrow 1 \\
G(t) & \leftrightarrow g(-f) & 1(d c) & \leftrightarrow \delta(f) \\
g\left(t-t_{0}\right) & \leftrightarrow G(f) e^{-j 2 \pi f t_{0}} & e^{j 2 \pi f_{c} t} & \leftrightarrow \delta\left(f-f_{c}\right) \\
g(t) e^{j 2 \pi f_{c} t} & \leftrightarrow G\left(f-f_{c}\right) & \cos \left(2 \pi f_{c} t\right) & \leftrightarrow \frac{1}{2}\left(\delta\left(f+f_{c}\right)+\delta\left(f-f_{c}\right)\right) \\
\frac{d}{d t} g(t) & \leftrightarrow j 2 \pi f G(f) & \sin \left(2 \pi f_{c} t\right) & \leftrightarrow \frac{j}{2}\left(\delta\left(f+f_{c}\right)-\delta\left(f-f_{c}\right)\right) \\
g^{*}(t) & \leftrightarrow G^{*}(-f) & \alpha e^{-\pi \alpha^{2} t^{2}} & \leftrightarrow e^{-\pi f^{2} / \alpha^{2}}
\end{aligned}
$$

\rightarrow full list in Appendix C of the compendium

$$
\begin{aligned}
X(f) & =\mathcal{F}\{x(t)\}=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t \\
& =X_{R e}(f)+j X_{I m}(f) \\
& =|X(f)| e^{j \varphi(f)}
\end{aligned}
$$

$$
\begin{aligned}
x(t) & =\mathcal{F}^{-1}\{X(f)\}=\int_{-\infty}^{\infty} X(f) e^{+j 2 \pi f t} d f \\
& =\int_{-\infty}^{\infty}|X(f)| e^{+j(2 \pi f t+\varphi(f))} d f
\end{aligned}
$$

Some useful Fourier transform properties

- Consider two signals $x(t)$ and $y(t)$ and their Fourier transforms

$$
x(t) \longleftrightarrow X(f), \quad y(t) \longleftrightarrow Y(f)
$$

- Recall the convolution operation $z(t)=x(t) * y(t)$:

- Filtering:

$$
x(t) * y(t) \longleftrightarrow X(f) \cdot Y(f)
$$

- Multiplication:

$$
x(t) \cdot y(t) \longleftrightarrow X(f) * Y(f)
$$

Spectrum of time-limited signals

- Consider some time-limited signal $s_{T}(t)$ of duration T, with $s_{T}(t)=0$ for $t<0$ and $t>T$
- Assume that within the interval $0 \leq t \leq T$, the signal $s_{T}(t)$ is equal to some signal $s(t)$, i.e.,

$$
s_{T}(t)=s(t) \cdot g_{\text {rec }}(t),
$$

where $g_{\text {rec }}(t)$ is the rectangular pulse of amplitude $A=1$

- Taking the Fourier transform on both sides we get

$$
S_{T}(f)=S(f) * G_{r e c}(f)=S(f) * A T \frac{\sin (\pi f T)}{\pi f T} e^{-j \pi f T}
$$

- Since $G_{\text {rec }}(f)$ is unlimited along the frequency axis, this is the case for $S_{T}(f)$ as well (convolution increases length)

Time-limited signals can never be strictly band-limited

$$
\text { Digital Communications: Lecture } 4
$$

Some definitions of bandwidth

Pulse shape	$W_{\text {lobe }}$	\% power in $W_{\text {lobe }}$	W_{90}	W_{99}	$W_{99.9}$	Asymptotic decay
rec	$2 / \mathrm{T}$	90.3	$1.70 / \mathrm{T}$	$20.6 / \mathrm{T}$	$204 / \mathrm{T}$	f^{-2}
tri	$4 / \mathrm{T}$	99.7	$1.70 / \mathrm{T}$	$2.60 / \mathrm{T}$	$6.24 / \mathrm{T}$	f^{-4}
hcs	$3 / \mathrm{T}$	99.5	$1.56 / \mathrm{T}$	$2.36 / \mathrm{T}$	$5.48 / \mathrm{T}$	f^{-4}
rc	$4 / \mathrm{T}$	99.95	$1.90 / \mathrm{T}$	$2.82 / \mathrm{T}$	$3.46 / \mathrm{T}$	f^{-6}
Nyquist	R_{s}	100	$0.9 R_{s}$	$0.99 R_{s}$	$0.999 R_{s}$	ideal

Table 2.1: Double-sided bandwidth results for power spectral densities according to (2.212). The $g_{r e c}(t), g_{t r i}(t), g_{h c s}(t)$ and $g_{r c}(t)$ pulse shapes are defined in Appendix D, and T denotes the duration of the pulse. The Nyquist pulse shape is not limited in time and it is defined in (D.49) with parameters $\beta=0$ and $\mathcal{T}=T_{s}$.

- This table is useful for PAM, PSK, and QAM constellations
- Except bandwidth W, the asymptotic decay is also relevant

Some definitions of bandwidth

- Main-lobe definition:
$W_{\text {lobe }}$ is defined by the width of the main-lobe of $R(f)$
This is how we have defined bandwidth in previous examples
- In baseband we use the one-sided width, while in bandpass applications the two-sided width is used (positive frequencies)
- Percentage definition:
W_{99} is defined according to the location of 99% of the power
- For bandpass signals W_{99} is found as the value that satisfies

$$
\int_{f_{c}-W_{99} / 2}^{f_{c}+W_{99} / 2} R(f) d f=0.99 \int_{0}^{\infty} R(f) d f
$$

- Other percentages can be used as well: $W_{90}, W_{99.9}$
- Nyquist bandwidth

Assuming an ideal pulse with finite bandwidth (see Chapter 6)

$$
W_{n y q}=\frac{R_{s}}{2}[\mathrm{~Hz}]
$$

Michael Lentmaier, Fall 2018

$$
\text { Digital Communications: Lecture } 4
$$

Pulse spectrum examples

Figure 2.19: $10 \log _{10}\left(\frac{|G(f)|^{2}}{E_{g} T}\right)$ for the $g_{r e c}(t), g_{h c s}(t)$, and $g_{r c}(t)$ pulse shapes. See also Example 2.26.

From last lecture: $R(f)$ for Binary Signaling

- In the general binary case, i.e., $M=2$, we have

$$
A(f)=P_{0} S_{0}(f)+P_{1} S_{1}(f)
$$

- This simplifies the expression for the power spectral density to

$$
\begin{array}{rlrl}
R(f) & =R_{c}(f) & & +R_{d}(f) \\
& =\frac{P_{0} P_{1}}{T_{b}}\left|S_{0}(f)-S_{1}(f)\right|^{2} & +\frac{\left|P_{0} S_{0}(f)+P_{1} S_{1}(f)\right|^{2}}{T_{b}^{2}} \sum_{n=-\infty}^{\infty} \delta\left(f-n / T_{b}\right)
\end{array}
$$

(derivation in Ex. 2.20)

- We will now consider some examples from the compendium

Example 2.23

Assume equally likely antipodal signal alternatives below. Assume that $s_{1}(t)=-s_{0}(t)=$ $g_{r c}(t)$, where the time raised cosine pulse $g_{r c}(t)$ is defined in (D.18). Assume also that $T=T_{b}$.
Find an expression for the power spectral density $R(f)$. Calculate the bandwidth W, defined as the one-sided width of the mainlobe of $R(f)$, if R_{b} is 10 [kbps]. Calculate also the bandwidth efficiency ρ.

- Same as Example 2.21, but with $g_{r c}(t)$ pulse
- Analogously we get

$$
R(f)=R_{b}\left|G_{r c}(f)\right|^{2}
$$

- From the one-sided main-lobe we get

$$
W=2 / T[\mathrm{~Hz}]
$$

- Bandwidth efficiency $\rho=1 / 2[\mathrm{bps} / \mathrm{Hz}]$ is the same (why?)

Example 2.21

Assume equally likely antipodal signal alternatives, such that

$$
s_{1}(t)=-s_{0}(t)=g(t)
$$

where $g(t)=g_{\text {rec }}(t)$, and $g_{\text {rec }}(t)$ is given in (D.1). Assume also that $T \leq T_{b}$.
i) Calculate the power spectral density $R(f)$.
ii) Calculate the bandwidth W defined as the one-sided width of the mainlobe of $\boldsymbol{R}(\boldsymbol{f})$, if the information bit rate is $10[\mathrm{kbps}]$, and if $T=T_{b} / 2$.
Calculate also the bandwidth efficiency ρ.
iii) Estimate the attenuation in dB of the first sidelobe of $R(f)$ compared to $R(0)$.

- $M=2$ with equally likely antipodal signaling $s_{1}(t)=-s_{0}(t)=g(t)$
- With $P_{0}=P_{1}=1 / 2$ and $S_{1}(f)=-S_{0}(f)=G(f)$ we get

$$
R(f)=R_{b}\left|S_{1}(f)\right|^{2}=R_{b}\left|S_{0}(f)\right|^{2}=R_{b}|G(f)|^{2}
$$

- Details for the pulse in Appendix D

Example 2.24

Assume $P_{0}=P_{1}$ and that,

$$
s_{1}(t)=-s_{0}(t)=g_{r c}(t) \cos \left(2 \pi f_{c} t\right)
$$

with $T=T_{b}$, and $f_{c} \gg 1 / T$. Hence, a version of binary PSK signaling is considered here (alternatively binary antipodal bandpass PAM). Calculate the bandwidth \boldsymbol{W}, defined as the double-sided width of the mainlobe around the carrier frequency $\boldsymbol{f}_{\boldsymbol{c}}$. Assume that the information bit rate is $10[\mathrm{kbps}]$. Calculate also the bandwidth

- This corresponds to the bandpass case
- Let $g_{h f}(t)$ denote the high-frequency pulse

$$
g_{h f}(t)=g_{r c}(t) \cos \left(2 \pi f_{c} t\right) \quad \text { and } \quad R(f)=R_{b}\left|G_{h f}(f)\right|^{2}
$$

- Using shift operations we get

$$
R(f)=R_{b}\left|\frac{G_{r c}\left(f+f_{c}\right)}{2}+\frac{G_{r c}\left(f-f_{c}\right)}{2}\right|^{2}
$$

- From the two-sided main-lobe we get

$$
W=4 / T[\mathrm{~Hz}]
$$

Example: discrete frequencies in $R(f)$

- Assume $M=2$
- Let $s_{0}(t)=0$ and $s_{1}(t)=5$ with a pulse duration $T=T_{b} / 2$
- With this the average signal becomes

$$
a(t)=\frac{s_{0}(t)+s_{1}(t)}{2}=2.5, \quad 0 \leq t \leq T
$$

- We can then write (within the pulse duration T)

$$
s_{0}(t)=-2.5+a(t), \quad s_{1}(t)=+2.5+a(t)
$$

Observe:

1. this method is a waste of signal energy since $a(t)$ does not carry any information
2. repetition of $a(t)$ in every symbol interval creates some periodic signal component in the time domain, which leads to discrete frequencies in the frequency domain
\qquad

$$
\text { Diaital Communications:_Lecture } 4
$$

$R(f)$: M-ary PAM signals

- With M-ary PAM signaling we have

$$
s_{\ell}=A_{\ell} g(t), \quad \ell=0,1, \ldots, M-1
$$

- Then

$$
S_{\ell}(f)=A_{\ell} G(f), \quad \text { and } \quad A(f)=\sum_{\ell=0}^{M-1} P_{\ell} A_{\ell} G(f)
$$

- With this we obtain the simplified expression

$$
R(f)=\frac{\sigma_{A}^{2}}{T_{s}}|G(f)|^{2}+\frac{m_{A}^{2}}{T_{s}^{2}}|G(f)|^{2} \sum_{n=-\infty}^{\infty} \delta\left(f-n / T_{s}\right),
$$

where m_{A} denotes the mean and $\sigma_{A}^{2}=\bar{E}_{s} / E_{g}-m_{A}^{2}$ the variance of the amplitudes A_{ℓ}

- Assuming zero average amplitude $m_{A}=0$ and using $\bar{P}=\sigma_{A}^{2} E_{g} R_{s}$ this reduces to

$$
R(f)=R_{c}(f)=\frac{\sigma_{A}^{2}}{T_{s}}|G(f)|^{2}=\frac{\bar{P}}{E_{g}}|G(f)|^{2}
$$

From last lecture: general $R(f)$

- The power spectral density $R(f)$ can be divided into a continuous part $R_{c}(f)$ and a discrete part $R_{d}(f)$

$$
R(f)=R_{c}(f)+R_{d}(f)
$$

- The general expression for the continuous part is

$$
\begin{aligned}
R_{c}(f) & =\frac{1}{T_{s}} \sum_{n=0}^{M-1} P_{n}\left|S_{n}(f)-A(f)\right|^{2} \\
& =\left(\frac{1}{T_{s}} \sum_{n=0}^{M-1} P_{n}\left|S_{n}(f)\right|^{2}\right)-\frac{|A(f)|^{2}}{T_{s}}
\end{aligned}
$$

- For the discrete part we have

$$
R_{d}(f)=\frac{|A(f)|^{2}}{T_{s}^{2}} \sum_{n=-\infty}^{\infty} \delta\left(f-n / T_{s}\right)
$$

Example 2.28

Assume the bit rate $R_{b}=9600[\mathrm{bps}], M$-ary PAM transmission and that $m_{A}=0$. Determine the (baseband) bandwidth W, defined as the one-sided width of the mainlobe of the power spectral density $R(f)$, if $M=2, M=4$ and $M=8$, respectively. Furhermore, assume a rectangular pulse shape with amplitude A_{g}, and duration $T=T$ Calculate also the bandwidth efficiency ρ.

- What is W for a given pulse shape and different M ?
- Using $T=T_{s}, m_{A}=0$ and $g(t)=g_{\text {rec }}(t)$, we have

$$
R(f)=\frac{\sigma_{A}^{2}}{T_{s}}\left|G_{\text {rec }}(f)\right|^{2}
$$

- For the given pulse we get $W=1 / T_{s}$, where $T_{s}=k T_{b}$

$$
\begin{array}{rcccc}
k=1 & \Rightarrow & M=2 & \Rightarrow & W=9600[\mathrm{~Hz}] \\
k=2 & \Rightarrow & M=4 & \Rightarrow & W=4800[\mathrm{~Hz}] \\
k=3 & \Rightarrow & M=8 & \Rightarrow & W=3200[\mathrm{~Hz}]
\end{array}
$$

- Bandwidth efficiency: $\rho=R_{b} / W=k T_{b} / T_{b}=k$

What does bandwidth efficiency tell us?

In the previous example we had a bandwidth efficiency of

$$
\rho=\frac{R_{b}}{W}=k
$$

Saving bandwidth

- The previous example showed that the bandwidth W can be reduced by increasing M
- $T=T_{s}=k T_{b}$ increases with M
- $W=1 / T=R_{b} / k$ decreases accordingly

Improving bit rate

- Assume instead that the bandwidth W is fixed in the same example, i.e., the symbol duration $T_{s}=T$ is fixed
- Then $R_{b}=k W$ increases with M
- Assume for example $W=1 \mathrm{MHz}$:

$$
R_{b}=1 \mathrm{Mbps} \text { if } M=2(k=1)
$$

$$
R_{b}=10 \mathrm{Mbps} \text { if } M=1024(k=10)
$$

Digital Communications: Lecture

$R(f)$: M-ary QAM signals

- Remember that M-ary QAM signals contain M-ary PSK and M-ary bandpass PAM signals as special cases:

$$
\begin{aligned}
\mathrm{BP}-\mathrm{PAM}: & B_{\ell}=0 \\
\mathrm{PSK}: & A_{\ell}=\cos \left(v_{\ell}\right), \quad B_{\ell}=\sin \left(v_{\ell}\right)
\end{aligned}
$$

- \Rightarrow our results for $R(f)$ of M-ary QAM signals include these cases
- For symmetric constellations, such that $a(t)=0$, the simplified version applies
- The bandwidth W is determined by $\left|G\left(f-f_{c}\right)\right|^{2}$ and hence the two-sided main-lobe of $|G(f)|^{2}$
\Rightarrow if the same pulse $g(t)$ is used then M-ary QAM, M-ary bandpass PAM and M-ary PSK have the same bandwidth W

$R(f)$: M-ary QAM signals

- With M-ary QAM signaling the signal alternatives are

$$
s_{\ell}(t)=A_{\ell} g(t) \cos \left(2 \pi f_{c} t\right)-B_{\ell} g(t) \sin \left(2 \pi f_{c} t\right), \quad \ell=0,1, \ldots, M-1
$$

- Then the Fourier transform becomes

$$
\begin{aligned}
S_{\ell}(f) & =A_{\ell} \frac{G\left(f+f_{c}\right)+G\left(f-f_{c}\right)}{2}-j B_{\ell} \frac{G\left(f+f_{c}\right)-G\left(f-f_{c}\right)}{2} \\
& =\left(A_{\ell}-j B_{\ell}\right) \frac{G\left(f+f_{c}\right)}{2}+\left(A_{\ell}+j B_{\ell}\right) \frac{G\left(f-f_{c}\right)}{2}
\end{aligned}
$$

- Assuming a zero average signal $a(t)=0$ and $f_{c} T \geq 1$ this simplifies to

$$
R(f)=R_{c}(f)=\bar{P} \frac{\left|G\left(f+f_{c}\right)\right|^{2}+\left|G\left(f-f_{c}\right)\right|^{2}}{2 E_{g}}
$$

Example

Bandwidth consumption for BPSK, QPSK and 16-QAM assuming equal R_{b} and $f_{c}=100 R_{b}$

Figure 2.20: The power spectral density for binary QAM (BPSK, widest mainlobe), 4 -ary QAM (QPSK), and 16-ary QAM (smallest mainlobe). The figure shows $10 \log _{10}\left(R_{b} R(f) / P\right)[\mathrm{dB}]$ in the frequency interval $98 R_{b} \leq f \leq 102 R_{b}$. The carrier frequency is $f_{c}=100 R_{b}[\mathrm{~Hz}]$, and a $T_{s}=k T_{b}$ long $g_{h c s}(t)$ pulse is assumed. See also (2.227) and (2.230).

$R(f)$: M-ary FSK signals

- With M-ary frequency shift keying (FSK) signaling the signal alternatives are

$$
s_{\ell}(t)=A \cos \left(2 \pi f_{\ell} t+v\right), \quad 0 \leq t \leq T_{s}
$$

- Choosing $v=-\pi / 2$ this can be written as

$$
s_{\ell}(t)=g_{\text {rec }}(t) \sin \left(2 \pi f_{\ell} t\right), \quad \text { with } T=T_{s},
$$

since $s_{\ell}(t)=0$ outside the symbol interval

- The Fourier transform is then

$$
S_{\ell}(f)=j \frac{G_{\text {rec }}\left(f+f_{\ell}\right)-G_{\text {rec }}\left(f-f_{\ell}\right)}{2}
$$

- The exact power spectral density $R(f)$ can now be computed by the general formula (2.202)-(2.204)

$$
\text { Digital Communications: Lecture } 4
$$

Example 2.36

Assume that orthogonal M-ary FSK is used to communicate digital information in the frequency band $1.1 \leq f \leq 1.2[\mathrm{MHz}]$
For each M below, find the largest bit rate that can be used (use bandwidth approximations):
$\begin{array}{llll}\text { i) } M=2 & \text { ii) } M=4 & \text { iii) } M=8 & \text { iv) } M=16\end{array}$ v) $M=32$
Which of the M-values above give a higher bit rate than the $M=2$ case?
Solution:
It is given that $W_{M-F S K}=100[\mathrm{kHz}]$. From (2.245), the largest bit rate is obtained with $I=1$:

$$
R_{b} \approx 10^{5} \cdot \frac{\log _{2}(M)}{(M-1) / 2+2}
$$

M	$\frac{\log _{2}(M)}{(M-1) / 2+2}$	R_{b}
2	$\frac{1}{5 / 2}=0.4$	40 kbps
4	$\frac{2}{7 / 2}=\frac{4}{7} \approx 0.5714$	$\approx 57 \mathrm{kbps}$
8	$\frac{3}{11 / 2}=\frac{6}{11} \approx 0.5455$	$\approx 55 \mathrm{kbps}$
16	$\frac{4}{19 / 2}=\frac{8}{19} \approx 0.4211$	$\approx 42 \mathrm{kbps}$
32	$\frac{5}{35 / 2}=\frac{10}{35} \approx 0.2857$	$\approx 29 \mathrm{kbps}$

[^0]
$R(f)$: M-ary FSK signals

- Let us find an approximate expression for the FSK bandwidth W
- Assume that

$$
f_{\ell}=f_{0}+\ell f_{\Delta}, \quad \ell=0, \ldots, M-1
$$

- Then the bandwidth W can be approximated by

$$
W \approx R_{s}+f_{M-1}-f_{0}+R_{s}=(M-1) f_{\Delta}+2 R_{s}
$$

- Consider now orthogonal FSK with $f_{\Delta}=I \cdot R_{S} / 2$ for some $I>0$
- The bandwidth efficiency is then

$$
\rho=\frac{R_{b}}{W} \approx \frac{R_{b}}{(M-1) f_{\Delta}+2 R_{s}}=\frac{R_{b}}{((M-1) I / 2+2) R_{s}}=\frac{\log _{2} M}{(M-1) I / 2+2}
$$

Observe: the bandwidth efficiency of orthogonal M-ary FSK gets small if M is large
Last week we saw: M-ary FSK has good energy and Euclidean distance properties \Rightarrow trade-off

$$
\text { Michael Lentmaier, Fall } 2018
$$

$R(f)$: OFDM-type signals

- An OFDM symbol (signal alternative) $x(t)$ can be modeled as a superposition of N orthogonal QAM signals, each carrying k_{n} bits, that are transmitted at different frequencies (sub-carriers)

$$
x(t)=\sum_{n=0}^{N-1} s_{n, Q A M}(t)
$$

- Assuming each QAM signal has zero mean and that the different carriers have independent bit streams we get

$$
R(f)=R_{c}(f)=R_{s} E\left\{|X(f)|^{2}\right\}=\sum_{n=0}^{N-1} R_{n}(f)
$$

- Using our previous results for QAM in each sub-carrier we get

$$
R(f)=R_{c}(f)=\sum_{n=0}^{N-1} \bar{P} \frac{\left|G\left(f+f_{c}\right)\right|^{2}+\left|G\left(f-f_{c}\right)\right|^{2}}{2 E_{g}}
$$

$R(f)$: OFDM-type signals

Illustration of $R_{n}(f)$ contributed by three neighboring sub-carriers:

- Assuming $f_{n}=f_{0}+n /\left(T_{s}-\Delta_{h}\right)$ we can estimate the bandwidth as

$$
W \approx(N+1) f_{\Delta}=\frac{N+1}{1-\Delta_{h} / T_{s}} R_{s} \approx N \cdot R_{s}, \quad N \gg 1, \Delta_{h} \ll T_{s}
$$

- The bandwidth efficiency is then approximated by

$$
\rho=\frac{R_{b}}{W}=\frac{R_{s}}{W} \sum_{k=0}^{N-1} k_{n} \approx \frac{1}{N} \sum_{k=0}^{N-1} k_{n}[\mathrm{bps} / \mathrm{Hz}]
$$

Michael Lentmaier, Fall 2018

$$
\text { Digital Communications: Lecture } 4
$$

Example 2.35

ADSL: uses plain telephone cable (twisted pair, copper)

In ADSL, a coded OFDM technique is used. The level of the power spectral density in the downstream is roughly -73 dB . As a basic example, let us here assume that the pacing is 5 kHz Furthermore, it is here also assumed that uncoded 16-ary QAM is used in each subchannel (assumes a very "good" communication link).
For the ADSL downlink above, determine the bit rate in each subchannel, the total bit ate, and the bandwidth efficiency.

Example: $R(f)$ for OFDM

- $N=16$ sub-carriers
- $T=T_{s}=0.1[\mathrm{~ms}]$
- $f_{\Delta}=R_{s} / 0.95=10.53[\mathrm{kHz}]$
- $W \approx \frac{17}{0.95} R_{s}=179[\mathrm{kHz}]$

What about filtering away the side-lobes?

- Let us use a spectral rectangular pulse $X_{\text {srec }}(f)$ of amplitude $A=1$ and width f_{Δ} to strictly limit the bandwidth
- Similar to the time-limited case we can write

$$
S_{f_{\Delta}}(f)=S(f) \cdot X_{\text {srec }}(f)
$$

- Taking the inverse Fourier transform on both sides we get

$$
s_{f_{\Delta}}(t)=s(t) * x_{s r e c}(t)=s(t) * A f_{0} \frac{\sin \left(\pi f_{0} t\right)}{\pi f_{0} t}
$$

- Since $x_{\text {srec }}(t)$ is unlimited along the time axis, this is the case for the filtered signal $s_{f_{\Delta}}(t)$ as well
- The signal $x_{\text {srec }}(t)$ defines the ideal Nyquist pulse

As a consequence of filtering, the transmitted symbols will overlap in time domain \Rightarrow inter-symbol-interference (ISI)

Nyquist Pulse

a)

Figure 6.6: a) Ideal Nyquist spectrum; b) Ideal Nyquist pulse.

$$
\begin{aligned}
x_{n c}(t) & =x_{0} \frac{\sin \left(\pi R_{n y q} t\right)}{\pi R_{n y q} t}, \\
X_{n c}(f) & =\left\{\left.\begin{array}{ll}
x_{0} / R_{n y q}, & |f| \leq R_{n y q} / 2 \\
0 & ,
\end{array} \right\rvert\,>R_{n y q} / 2\right.
\end{aligned}
$$

How can we further improve ρ ?

MIMO MODEL

- MIMO: multiple-input multiple output
- transmission over multiple antennas in the same frequency band
- challenge: the individual wireless channels interfere
- 5G world record 2016: (team from Lund involved) spectral efficiency of $145.6 \mathrm{bps} / \mathrm{Hz}$ with 128 antennas

[^0]: From this table it is seen that $M=4,8,16$ give a higher bit rate than $M=2$.

