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Fourier transform

X(f ) = F{x(t)}=
∫ ∞

−∞
x(t) e−j2π f t dt

= XRe(f )+ j XIm(f )

= |X(f )|ejϕ(f )

x(t) = F−1{X(f )}=
∫ ∞

−∞
X(f ) e+j2π f t df

=
∫ ∞

−∞
|X(f )| e+j(2π f t+ϕ(f )) df
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Some useful Fourier transform properties

g(at) ↔ 1

|a| G(f/a)

g(−t) ↔ G(−f)

G(t) ↔ g(−f)

g(t− t0) ↔ G(f)e−j2πft0

g(t)ej2πfct ↔ G(f − fc)

d

dt
g(t) ↔ j2πf G(f)

g∗(t) ↔ G∗(−f)

g∗(T − t) ↔ G∗(f)e−j2πfT

δ(t) ↔ 1

1(dc) ↔ δ(f)

ej2πfct ↔ δ(f − fc)

cos(2πfct) ↔ 1

2
(δ(f + fc) + δ(f − fc))

sin(2πfct) ↔ j

2
(δ(f + fc)− δ(f − fc))

αe−πα2t2 ↔ e−πf2/α2

→ full list in Appendix C of the compendium
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Some useful Fourier transform properties
� Consider two signals x(t) and y(t) and their Fourier transforms

x(t) ←→ X(f ) , y(t) ←→ Y(f )

� Recall the convolution operation z(t) = x(t) ∗ y(t):
x(t)

A

τ

y(t)

B

10τ
tt

τ

z(t)

AB τ

10τ 11τ
t

z(t) = x(t) ∗ y(t) =

∫ +∞

−∞
y(ν) · x(t− ν) dν

� Filtering:
x(t) ∗ y(t) ←→ X(f ) ·Y(f )

� Multiplication:

x(t) · y(t) ←→ X(f ) ∗ Y(f )
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Spectrum of time-limited signals
� Consider some time-limited signal sT(t) of duration T, with

sT(t) = 0 for t < 0 and t > T
� Assume that within the interval 0 ≤ t ≤ T, the signal sT(t) is equal

to some signal s(t), i.e.,

sT(t) = s(t) ·grec(t) ,

where grec(t) is the rectangular pulse of amplitude A = 1
� Taking the Fourier transform on both sides we get

ST(f ) = S(f ) ∗ Grec(f ) = S(f ) ∗ AT
sin(π f T)

π f T
e−jπ f T

� Since Grec(f ) is unlimited along the frequency axis, this is the
case for ST(f ) as well (convolution increases length)

Time-limited signals can never be strictly band-limited
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Some definitions of bandwidth
� Main-lobe definition:

Wlobe is defined by the width of the main-lobe of R(f )
This is how we have defined bandwidth in previous examples

� In baseband we use the one-sided width, while in bandpass
applications the two-sided width is used (positive frequencies)

� Percentage definition:
W99 is defined according to the location of 99% of the power

� For bandpass signals W99 is found as the value that satisfies∫ fc+W99/2

fc−W99/2
R(f )df = 0.99

∫ ∞

0
R(f )df

� Other percentages can be used as well: W90, W99.9
� Nyquist bandwidth

Assuming an ideal pulse with finite bandwidth (see Chapter 6)

Wnyq =
Rs

2
[Hz]
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Some definitions of bandwidth

Pulse shape Wlobe % power W90 W99 W99.9 Asymptotic
in Wlobe decay

rec 2/T 90.3 1.70/T 20.6/T 204/T f−2

tri 4/T 99.7 1.70/T 2.60/T 6.24/T f−4

hcs 3/T 99.5 1.56/T 2.36/T 5.48/T f−4

rc 4/T 99.95 1.90/T 2.82/T 3.46/T f−6

Nyquist Rs 100 0.9Rs 0.99Rs 0.999Rs ideal

Table 2.1: Double-sided bandwidth results for power spectral densities according
to (2.212). The grec(t), gtri(t), ghcs(t) and grc(t) pulse shapes are defined in
Appendix D, and T denotes the duration of the pulse. The Nyquist pulse shape
is not limited in time and it is defined in (D.49) with parameters β = 0 and
T = Ts.

� This table is useful for PAM, PSK, and QAM constellations
� Except bandwidth W, the asymptotic decay is also relevant
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Pulse spectrum examples
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Figure 2.19: 10 log10

(
|G(f)|2
EgT

)
for the grec(t), ghcs(t), and grc(t) pulse shapes.

See also Example 2.26.
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From last lecture: R(f ) for Binary Signaling

� In the general binary case, i.e., M = 2, we have

A(f ) = P0 S0(f )+P1 S1(f )

� This simplifies the expression for the power spectral density to

R(f ) = Rc(f ) + Rd(f )

=
P0P1

Tb
|S0(f )−S1(f )|2 +

|P0 S0(f )+P1 S1(f )|2
T2

b

∞

∑
n=−∞

δ (f −n/Tb)

(derivation in Ex. 2.20)

� We will now consider some examples from the compendium

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 4

Example 2.21
Assume equally likely antipodal signal alternatives, such that

s1(t) = −s0(t) = g(t)

where g(t) = grec(t), and grec(t) is given in (D.1). Assume also that T ≤ Tb.

i) Calculate the power spectral density R(f).

ii) Calculate the bandwidth W defined as the one-sided width of the mainlobe
of R(f), if the information bit rate is 10 [kbps], and if T = Tb/2.

Calculate also the bandwidth efficiency ρ.

iii) Estimate the attenuation in dB of the first sidelobe of R(f) compared to R(0).

� M = 2 with equally likely antipodal signaling s1(t) =−s0(t) = g(t)
� With P0 = P1 = 1/2 and S1(f ) =−S0(f ) = G(f ) we get

R(f ) = Rb |S1(f )|2 = Rb |S0(f )|2 = Rb |G(f )|2

� Details for the pulse in Appendix D
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Example 2.23
Assume equally likely antipodal signal alternatives below. Assume that s1(t) = −s0(t) =
grc(t), where the time raised cosine pulse grc(t) is defined in (D.18). Assume also that
T = Tb.

Find an expression for the power spectral density R(f). Calculate the bandwidth W ,
defined as the one-sided width of the mainlobe of R(f), if Rb is 10 [kbps]. Calculate
also the bandwidth efficiency ρ.

� Same as Example 2.21, but with grc(t) pulse
� Analogously we get

R(f ) = Rb |Grc(f )|2

� From the one-sided main-lobe we get

W = 2/T [Hz]

� Bandwidth efficiency ρ = 1/2 [bps/Hz] is the same (why?)
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Example 2.24
Assume P0 = P1 and that,

s1(t) = −s0(t) = grc(t) cos(2πfct)

with T = Tb, and fc � 1/T . Hence, a version of binary PSK signaling is considered
here (alternatively binary antipodal bandpass PAM). Calculate the bandwidth W, de-
fined as the double-sided width of the mainlobe around the carrier frequency
fc. Assume that the information bit rate is 10 [kbps]. Calculate also the bandwidth

� This corresponds to the bandpass case
� Let ghf (t) denote the high-frequency pulse

ghf (t) = grc(t)cos(2π fc t) and R(f ) = Rb |Ghf (f )|2

� Using shift operations we get

R(f ) = Rb

∣∣∣∣Grc(f + fc)
2

+
Grc(f − fc)

2

∣∣∣∣
2

� From the two-sided main-lobe we get

W = 4/T [Hz]
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Example: discrete frequencies in R(f )
� Assume M = 2
� Let s0(t) = 0 and s1(t) = 5 with a pulse duration T = Tb/2
� With this the average signal becomes

a(t) =
s0(t)+ s1(t)

2
= 2.5 , 0 ≤ t ≤ T

� We can then write (within the pulse duration T)

s0(t) =−2.5+a(t) , s1(t) = +2.5+a(t)

Observe:
1. this method is a waste of signal energy since a(t) does not carry

any information
2. repetition of a(t) in every symbol interval creates some

periodic signal component in the time domain, which leads
to discrete frequencies in the frequency domain
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From last lecture: general R(f )
� The power spectral density R(f ) can be divided into

a continuous part Rc(f ) and a discrete part Rd(f )

R(f ) = Rc(f )+Rd(f )

� The general expression for the continuous part is

Rc(f ) =
1
Ts

M−1

∑
n=0

Pn |Sn(f )−A(f )|2

=

(
1
Ts

M−1

∑
n=0

Pn |Sn(f )|2
)
− |A(f )|2

Ts

� For the discrete part we have

Rd(f ) =
|A(f )|2

T2
s

∞

∑
n=−∞

δ (f −n/Ts)

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 4

R(f ): M-ary PAM signals
� With M-ary PAM signaling we have

s� = A� g(t) , �= 0,1, . . . ,M−1
� Then

S�(f ) = A� G(f ) , and A(f ) =
M−1

∑
�=0

P� A� G(f )

� With this we obtain the simplified expression

R(f ) =
σ2

A
Ts

|G(f )|2 +
m2

A
T2

s
|G(f )|2

∞

∑
n=−∞

δ (f −n/Ts) ,

where mA denotes the mean and σ2
A = Es/Eg −m2

A the variance of
the amplitudes A�

� Assuming zero average amplitude mA = 0 and using P = σ2
A Eg Rs

this reduces to

R(f ) = Rc(f ) =
σ2

A
Ts

|G(f )|2 = P
Eg

|G(f )|2
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Example 2.28
Assume the bit rate Rb = 9600 [bps], M-ary PAM transmission and that mA = 0.
Determine the (baseband) bandwidth W , defined as the one-sided width of the mainlobe
of the power spectral density R(f), if M = 2, M = 4 and M = 8, respectively. Fur-
thermore, assume a rectangular pulse shape with amplitude Ag, and duration T = Ts.
Calculate also the bandwidth efficiency ρ.

� What is W for a given pulse shape and different M?
� Using T = Ts, mA = 0 and g(t) = grec(t), we have

R(f ) =
σ2

A
Ts

|Grec(f )|2

� For the given pulse we get W = 1/Ts, where Ts = k Tb

k = 1 ⇒ M = 2 ⇒ W = 9600[Hz]
k = 2 ⇒ M = 4 ⇒ W = 4800[Hz]
k = 3 ⇒ M = 8 ⇒ W = 3200[Hz]

� Bandwidth efficiency: ρ = Rb/W = k Tb/Tb = k
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What does bandwidth efficiency tell us?
In the previous example we had a bandwidth efficiency of

ρ =
Rb

W
= k

Saving bandwidth
� The previous example showed that the bandwidth W can be

reduced by increasing M
� T = Ts = k Tb increases with M
� W = 1/T = Rb/k decreases accordingly

Improving bit rate
� Assume instead that the bandwidth W is fixed in the same

example, i.e., the symbol duration Ts = T is fixed
� Then Rb = k W increases with M
� Assume for example W = 1MHz:

Rb = 1Mbps if M = 2 (k = 1)
Rb = 10Mbps if M = 1024 (k = 10)
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R(f ): M-ary QAM signals

� With M-ary QAM signaling the signal alternatives are

s�(t) = A� g(t) cos(2π fc t)−B� g(t) sin(2π fc t) , �= 0,1, . . . ,M−1

� Then the Fourier transform becomes

S�(f ) = A�
G(f + fc) + G(f − fc)

2
− j B�

G(f + fc) − G(f − fc)
2

= (A�− jB�)
G(f + fc)

2
+(A�+ jB�)

G(f − fc)
2

� Assuming a zero average signal a(t) = 0 and fc T ≥ 1 this
simplifies to

R(f ) = Rc(f ) = P
|G(f + fc)|2 + |G(f − fc)|2

2Eg
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R(f ): M-ary QAM signals

� Remember that M-ary QAM signals contain M-ary PSK and
M-ary bandpass PAM signals as special cases:

BP-PAM: B� = 0
PSK: A� = cos(ν�) , B� = sin(ν�)

� ⇒ our results for R(f ) of M-ary QAM signals include these cases
� For symmetric constellations, such that a(t) = 0, the simplified

version applies
� The bandwidth W is determined by |G(f − fc)|2 and hence the

two-sided main-lobe of |G(f )|2

⇒ if the same pulse g(t) is used then M-ary QAM, M-ary bandpass
PAM and M-ary PSK have the same bandwidth W
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Example
Bandwidth consumption for BPSK, QPSK and 16-QAM
assuming equal Rb and fc = 100Rb
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Figure 2.20: The power spectral density for binary QAM (BPSK, widest main-
lobe), 4-ary QAM (QPSK), and 16-ary QAM (smallest mainlobe). The figure
shows 10 log10(RbR(f)/P̄ ) [dB] in the frequency interval 98Rb ≤ f ≤ 102Rb.
The carrier frequency is fc = 100Rb [Hz], and a Ts = kTb long ghcs(t) pulse is
assumed. See also (2.227) and (2.230).
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R(f ): M-ary FSK signals
� With M-ary frequency shift keying (FSK) signaling the signal

alternatives are

s�(t) = A cos(2π f� t + ν) , 0 ≤ t ≤ Ts

� Choosing ν =−π/2 this can be written as

s�(t) = grec(t) sin(2π f� t) , with T = Ts ,

since s�(t) = 0 outside the symbol interval
� The Fourier transform is then

S�(f ) = j
Grec(f + f�)−Grec(f − f�)

2

� The exact power spectral density R(f ) can now be computed
by the general formula (2.202)–(2.204)
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R(f ): M-ary FSK signals
� Let us find an approximate expression for the FSK bandwidth W
� Assume that

f� = f0 + � f∆ , �= 0, . . . ,M−1

� Then the bandwidth W can be approximated by

W ≈ Rs + fM−1 − f0 + Rs = (M−1) f∆ + 2Rs

� Consider now orthogonal FSK with f∆ = I ·Rs/2 for some I > 0
� The bandwidth efficiency is then

ρ =
Rb

W
≈ Rb

(M−1) f∆ +2Rs
=

Rb(
(M−1) I/2+2

)
Rs

=
log2 M

(M−1) I/2+2

Observe: the bandwidth efficiency of orthogonal M-ary FSK gets
small if M is large
Last week we saw: M-ary FSK has good energy and Euclidean
distance properties ⇒ trade-off
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Example 2.36
Assume that orthogonal M-ary FSK is used to communicate digital information in the
frequency band 1.1 ≤ f ≤ 1.2 [MHz].

For each M below, find the largest bit rate that can be used (use bandwidth approxima-
tions):

i) M = 2 ii) M = 4 iii) M = 8 iv) M = 16 v) M = 32

Which of the M-values above give a higher bit rate than the M = 2 case?

Solution:
It is given that WM−FSK = 100 [kHz]. From (2.245), the largest bit rate is obtained
with I = 1:

Rb ≈ 105 · log2(M)

(M − 1)/2 + 2

M log2(M)
(M−1)/2+2

Rb

2 1
5/2

= 0.4 40 kbps

4 2
7/2

= 4
7
≈ 0.5714 ≈ 57 kbps

8 3
11/2

= 6
11

≈ 0.5455 ≈ 55 kbps

16 4
19/2

= 8
19

≈ 0.4211 ≈ 42 kbps

32 5
35/2

= 10
35

≈ 0.2857 ≈ 29 kbps

From this table it is seen that M = 4, 8, 16 give a higher bit rate than M = 2. �
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R(f ): OFDM-type signals
� An OFDM symbol (signal alternative) x(t) can be modeled as a

superposition of N orthogonal QAM signals, each carrying kn
bits, that are transmitted at different frequencies (sub-carriers)

x(t) =
N−1

∑
n=0

sn,QAM(t)

� Assuming each QAM signal has zero mean and that the different
carriers have independent bit streams we get

R(f ) = Rc(f ) = Rs E{|X(f )|2}=
N−1

∑
n=0

Rn(f )

� Using our previous results for QAM in each sub-carrier we get

R(f ) = Rc(f ) =
N−1

∑
n=0

P
|G(f + fc)|2 + |G(f − fc)|2

2Eg
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R(f ): OFDM-type signals
Illustration of Rn(f ) contributed by three neighboring sub-carriers:
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� Assuming fn = f0 +n/(Ts −∆h) we can estimate the bandwidth as

W ≈ (N +1) f∆ =
N +1

1−∆h/Ts
Rs ≈ N ·Rs , N 	 1 , ∆h 
 Ts

� The bandwidth efficiency is then approximated by

ρ =
Rb

W
=

Rs

W

N−1

∑
k=0

kn ≈
1
N

N−1

∑
k=0

kn [bps/Hz]
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Example: R(f ) for OFDM
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� N = 16 sub-carriers
� T = Ts = 0.1 [ms]
� f∆ = Rs/0.95 = 10.53 [kHz]
� W ≈ 17

0.95 Rs = 179 [kHz]
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Example 2.35

ADSL: uses plain telephone cable (twisted pair, copper)

0 4 25 138 1104
f [kHz]

POTS: telephony, modem, FAX

Power
spectral
density

ADSL uplink
   64-1024 kbps

ADSL downlink
0.5-8 Mbps

In ADSL, a coded OFDM technique is used. The level of the power spectral density
in the downstream is roughly -73 dB. As a basic example, let us here assume that the
OFDM symbol rate in the downlink is 4000 [symbol/s], and that the subchannel carrier
spacing is 5 kHz. Furthermore, it is here also assumed that uncoded 16-ary QAM is
used in each subchannel (assumes a very “good” communication link).

For the ADSL downlink above, determine the bit rate in each subchannel, the total bit
rate, and the bandwidth efficiency.
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What about filtering away the side-lobes?
� Let us use a spectral rectangular pulse Xsrec(f ) of amplitude A = 1

and width f∆ to strictly limit the bandwidth
� Similar to the time-limited case we can write

Sf∆(f ) = S(f ) ·Xsrec(f )

� Taking the inverse Fourier transform on both sides we get

sf∆(t) = s(t) ∗ xsrec(t) = s(t) ∗ Af0
sin(π f0 t)

π f0 t

� Since xsrec(t) is unlimited along the time axis, this is the case for
the filtered signal sf∆(t) as well

� The signal xsrec(t) defines the ideal Nyquist pulse

As a consequence of filtering, the transmitted symbols will
overlap in time domain ⇒ inter-symbol-interference (ISI)
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Nyquist Pulse

x    (t)nc
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nyqR
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= -T s nyqR
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a)

Figure 6.6: a) Ideal Nyquist spectrum; b) Ideal Nyquist pulse.

xnc(t) = x0
sin(πRnyqt)

πRnyqt
, −∞ ≤ t ≤ ∞ (6.39)

Xnc(f) =

{
x0/Rnyq , |f | ≤ Rnyq/2
0 , |f | > Rnyq/2

(6.40)

The Nyquist pulse and the effect of ISI will be studied in Chapter 6
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How can we further improve ρ?
MIMO MODEL

d1

dn

dN t

. . .
. . .

αk,n

αk,N t

αk,1

r1
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rNr

ML
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d =
^ . . .

d1

^

dN t

^

. . .
. . .

w1

wk

wNr

rk =

Nt∑
n=1

αk,ndn + wk

� MIMO: multiple-input multiple output
� transmission over multiple antennas in the same frequency band
� challenge: the individual wireless channels interfere
� 5G world record 2016: (team from Lund involved)

spectral efficiency of 145.6 bps/Hz with 128 antennas
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