

EITG05 – Digital Communications

Lecture 1

Introduction, Overview, Basic Concepts (p. 1-32)

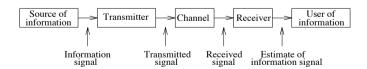
Michael Lentmaier Monday, September 3, 2018

What is communication?

► The purpose of a communication system is to transmit messages (information) from a source to a destination

Examples: sound, picture, movie, text, etc.

- The messages are converted into signals that are suitable for transmission
- ► The physical medium for transmission is called the channel



▶ The received signal is used to estimate the messages

What are analog / digital signals?

Digital Communications

We are in a global digital (r)evolution

- ▶ Mobile data and telephony (GSM, EDGE, 3G, 4G, 5G)
- Digital radio and television, Bluetooth, WLAN
- ▶ Data storage, CD, DVD, Flash, magnetic storage
- Optical fiber, DSL (long range, high rate)
- ► Cloud computing, big data, distributed storage
- ► Connected devices, Internet of things, machine-to-machine communication, distributed control, cyber physical systems

The large number of different application scenarios require flexible communication solutions (data rate / delay / reliability / complexity)

Remark storage of data falls also into the category of a communication system (why?)

Michael Lentmaier, Fall 2018

Michael Lentmaier, Fall 2018

Digital Communications: Lecture

Analog versus digital

- Analog communication: both source and processing are analog
- Digital communication:
 the source messages are digital, i.e., can be represented
 by discrete numbers (digits)

Example 1: I speak and you listen to the acoustic sound wave

Example 2: I record my speech to MP3 and send it to you, who plays it back on your computer or phone

Example 3: I use morse code and a flashlight to transmit a message to my neighbor

In all cases some analog medium has to be used during the transmission at some point

Digital Communications: Lecture

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 1

Scope of this course

- ► Transmitter principles: bits to analog signals (Chap. 2)
- ► Receiver principles: analog noisy signals to bits (Chap. 4,5,6)
- ► Characteristics of the communication link (Chap. 3,6)

Requirements:

- Data should arrive correctly at the receiver
- ► High bit rates are desirable
- ► Energy/power efficiency
- Bandwidth efficiency

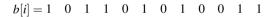
What are the technical solutions and challenges?

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 1

The Transmitter

How can we map digital data to analog signals?



A simple approach:

apply some voltage A during transmission of a 1



Basic operation: (more general)

represent the sequence of information bits b[i] by a sequence of analog waveforms, resulting in the transmit signal s(t)

WWW.

Not in this course

- ► Analog to digital conversion, sampling theorem, quantization
- ⇒ basic signals & systems or signal processing course
- Source coding (compression)
 - ⇒ covered in information theory course (elective)
- ► Channel coding (robust and reliable communication)
- ⇒ covered in separate course (elective)
- Cryptography (secure communication)
 - ⇒ covered in separate course (elective))

There exist a large number of specialized courses that can be taken after this basic course.

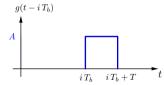
There is also a project course in wireless communications.

Michael Lentmaier, Fall 2018

Digital Communications: Lecture

The Transmitter

▶ The analog waveform corresponding to the bit b[i] can be written as a time-shifted version of an elementary pulse g(t)

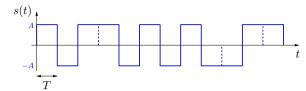


- $ightharpoonup T_b$ is the information bit interval, while T is the pulse duration
- ▶ For now we assume that $T \le T_b$, i.e., the pulses do not overlap
- ightharpoonup We can now represent the transmit sequence s(t) as follows

$$s(t) = b[0]g(t) + b[1]g(t - T_b) + b[2]g(t - 2T_b) + \cdots$$

Variations of our signaling example

- In our example we only send a signal when b[i] = 1This modulation type is called on-off signaling
- ▶ Instead we could send a pulse with amplitude -A for b[i] = 0:



This modulation type is called antipodal signaling

• We could also choose a different pulse shape g(t)

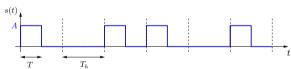
In this chapter: different modulation types and their properties

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 1

What data rate can we achieve?

• We could also choose a shorter pulse, with $T < T_b$ (what for?)



► An important parameter is the information bit rate

$$R_b = \frac{B}{\tau} \text{ [bps] (bits per second)},$$

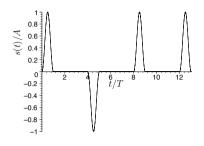
if the source produces \emph{B} information bits during $\emph{\tau}$ seconds

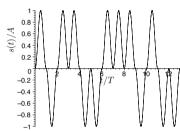
▶ If we avoid overlapping pulses we need $T \le T_b$ and

$$R_b = \frac{1}{T_b} \le \frac{1}{T}$$

Observe: T determines the pulse length and T_b the rate

Another pulse example (\rightarrow p. 10)



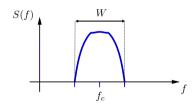


Michael Lentmaier, Fall 2018

Digital Communications: Lecture 1

What bandwidth is required?

▶ The bandwidth W of the transmit signal is a valuable resource



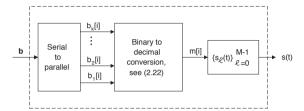
- For typical pulses g(t) the bandwidth W is proportional to $\frac{1}{T}$
- $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} \hline \end{$
- ► A challenging goal is to achieve a large bandwidth efficiency

$$\rho = \frac{R_b}{W} \left[\frac{b/s}{Hz} \right]$$

Question: What happens when the pulse duration gets small?

Increasing the message alphabet

- ▶ Up to this point we have considered binary signaling only
- ▶ Each bit b[i] was mapped to one of two signals $s_0(t)$ or $s_1(t)$
- ▶ More generally, we can combine k bits $b_1[i], b_2[i], \dots b_k[i]$ to a single message m[i], which then is mapped to a signal $s_{\ell}(t)$



▶ In case of M-ary signaling, one of $M = 2^k$ messages m[i] is transmitted by its corresponding signal alternative

$$s_{\ell}(t) \in \{s_0(t), s_1(t), \dots, s_{M-1}(t)\}$$

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 1

Symbol rate versus bit rate

► Since *k* information bits are transmitted with each symbol, the symbol interval (symbol time) becomes

$$T_s = k T_b$$

► Accordingly, the symbol rate (signaling rate) is given by

$$R_s = \frac{1}{T_s} \left[\frac{\text{symbols}}{\text{s}} \right] = \frac{R_b}{k}$$

▶ When the message equals m[i] = j then $s_j(t - iT_s)$ is sent

$$s(t) = s_{m[0]}(t) + s_{m[1]}(t - T_s) + s_{m[2]}(t - 2T_s) + \cdots$$

How does k affect the bandwidth efficiency ρ ?

Remark: Be careful with the different definitions of time: t: time variable T: pulse duration T_b : bit time T_s : symbol time

M-ary signaling

Example: k = 2, $M = 2^2 = 4$

The binary sequence

is mapped by

$$m[i] = \sum_{n=1}^{k} b_n[i] \ 2^{n-1} = b_1[i] + b_2[i] \cdot 2$$

to M = 4 signal alternatives

$$b[i] = 00 \leftrightarrow m[i] = 0 \leftrightarrow s_0(t)$$

$$b[i] = 10 \leftrightarrow m[i] = 1 \leftrightarrow s_1(t)$$

$$b[i] = 01 \leftrightarrow m[i] = 2 \leftrightarrow s_2(t)$$

$$b[i] = 11 \leftrightarrow m[i] = 3 \leftrightarrow s_3(t)$$

The message sequence becomes

$$m[i] = 1 \quad 3 \quad 2 \quad 2 \quad 0 \quad 3$$

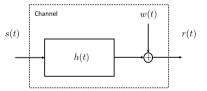
With k = 14 there are M = 16384 signal alternatives

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 1

The Channel

▶ The channel is often modeled as time-invariant filter with noise



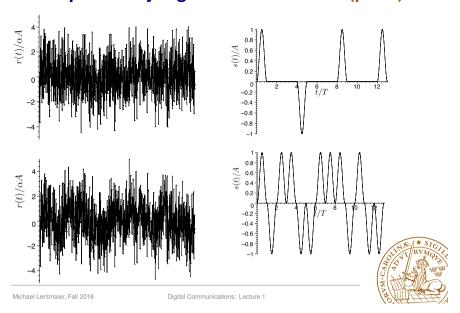
- \blacktriangleright h(t) is the channel impulse response and w(t) the additive noise
- ▶ The received signal becomes

$$r(t) = s(t) * h(t) + w(t) = \int_{-\infty}^{\infty} h(\tau) s(t - \tau) d\tau + w(t)$$

▶ For now we assume the simple case (α : attenuation)

$$h(t) = \alpha \delta(t)$$
 $\Rightarrow r(t) = \alpha s(t) + w(t)$

Example: noisy signal at the receiver (p. 13)



Bit Errors

- ► The bit error probability is an important measure of communication performance
- It is defined as the average number of information bit errors per detected information bit

$$P_b = \frac{E\{B_{err}\}}{B}$$

Example:

- ► Assume a bit rate of 1 Mbps and that 10 bit errors occur per hour on the average. What is the bit error probability?
- ► The total number of bits in an hour is

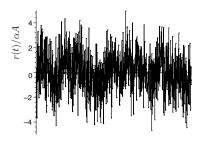
$$B = 1000000 \cdot 60 \cdot 60 = 3.6 \cdot 10^9$$

This gives

$$P_b = \frac{10}{R} = 2.78 \cdot 10^{-9}$$

⇒ Computer simulations become very time consuming!

The Receiver



- ▶ Due to the attenuation α during transmission, the noise w(t) has a strong impact on the received signal r(t)
- ► A well designed receiver can still detect the symbols correctly! In this example, only 1 of 10⁵ bits will be wrong in average
- ► We will learn about the receiver and its performance later, in Chapters 4 and 5

SIGILAR SIGILAR RVMOLICAN RVMOLICAN

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 1

Signal energy and power

▶ The symbol energy E_{ℓ} of a signal alternative $s_{\ell}(t)$ is given by

$$E_{\ell} = \int_0^{T_s} s_{\ell}^2(t) dt < \infty, \quad \ell = 0, 1, \dots, M - 1$$

► An important system parameter is the average symbol energy

$$\overline{E}_s = \sum_{\ell=0}^{M-1} P_\ell E_\ell \; , \quad P_\ell = \Pr\left\{m[i] = \ell\right\}$$

and the average signal energy per information bit

$$\overline{E}_b = \frac{\overline{E}_s}{k}$$

► The average signal power is then given by

$$\overline{P} = R_s \overline{E}_s = \frac{R_b}{k} \cdot k \overline{E}_b = R_b \overline{E}_b$$

Signal energy and power

▶ The attenuation α and the noise w(t) determine the quality of a communication link

$$r(t) = \alpha s(t) + w(t)$$

Example:

If a transmitted signal s(t) has energy \overline{E}_h , how much energy \mathcal{E}_h is then in the received signal $z(t) = \alpha \cdot s(t)$ if $\alpha = 0.001$?

• Using $z^2(t) = \alpha^2 s^2(t)$ we obtain

$$\overline{P}_z = \alpha^2 \overline{P} = \alpha^2 R_b \overline{E}_b$$

and
$$\mathcal{E}_b = \frac{\overline{P}_z}{R_b} = \alpha^2 \frac{\overline{P}}{R_b} = \alpha^2 \overline{E}_b$$

• If $\alpha = 0.001$ then the power is reduced by a factor 10^{-6}

This will increase the bit error probability!

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 1

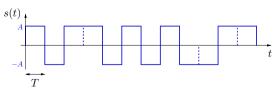
Euclidean distance example M=2

Case 1: on-off signaling

 $s_0(t) = A$ and $s_1(t) = 0$ for $0 < t < T_s = T$, which gives $D_{0,1}^2 = 2\overline{E}_b$

Observe: on-off signaling is orthogonal

Case 2: antipodal signaling



$$s_0(t) = A$$
 and $s_1(t) = -A$ for $0 < t < T_s = T$, and $D_{0,1}^2 = 4\overline{E}_b$

How well can we distinguish two signals?

▶ The squared Euclidean distance between two signals $s_i(t)$ and $s_i(t)$ is defined as

$$D_{i,j}^{2} = \int_{0}^{T_{s}} (s_{i}(t) - s_{j}(t))^{2} dt$$

$$= \int_{0}^{T_{s}} s_{i}^{2}(t) + s_{j}^{2}(t) - 2s_{i}(t)s_{j}(t) dt$$

$$= E_{i} + E_{j} - 2\int_{0}^{T_{s}} s_{i}(t)s_{j}(t) dt$$

► Two signals are antipodal if

$$s_i(t) = -s_j(t)$$
, $0 \le t \le T_s$

► Two signals are orthogonal if

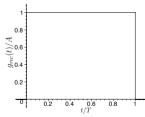
$$\int_0^{T_s} s_i(t) s_j(t) dt = 0$$

Antipodal signals have larger Euclidean distance

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 1

Examples of pulse shapes: Appendix D



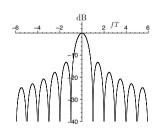


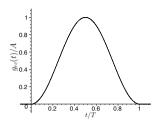
Figure D.2: $\frac{|G_{rec}(f)|^2}{E_rT}$ in dB.

1. The rectangular pulse:

$$g_{rec}(t) = \begin{cases} A & , & 0 \le t \le T \\ 0 & , & \text{otherwise} \end{cases}$$
 (D.1)

$$E_g = \int_0^T g_{rec}^2(t)dt = \int_{-\infty}^\infty |G_{rec}(f)|^2 df = A^2 T$$
 (D.2)

Examples of pulse shapes: Appendix D



-6 -4 -2 2 17 4 6 -60 -40 -70

Figure D.9: $g_{rc}(t)/A$.

Figure D.10: $\frac{|G_{rc}(f)|^2}{E_g T}$ in dB.

5. The time raised cosine pulse:

$$g_{rc}(t) = \begin{cases} \frac{A}{2} \left(1 - \cos(2\pi t/T) \right) &, \quad 0 \le t \le T \\ 0 &, \quad \text{otherwise} \end{cases}$$
(D.18)

$$E_g = 3A^2T/8$$
 (D.19)

Michael Lentmaier, Fall 2018

Digital Communications: Lecture 1