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Intersymbol Interference (ISI)
� For Rs = 1/Ts < 1/Tu we can use the ML receiver from Chapter 4
� Question: can we use such a receiver for larger rates Rs ≥ 1/Tu?
� Consider the following receiver structure (compare to last slide)

h(t) m[i]^+

t=t  +LT  +iT0 s s

Threshold
detector

[i]ξsA[n]g(t-nT  )
n= 8 v(t)

ChannelTransmitter

w(t)

z(t)s(t) = ∑

8

r(t) y(t)

Receiver

� Note that z(t) now is a superposition of overlapping pulses u(t)
� The signal y(t) after the receiver filter v(t) is

y(t) =
∞

∑
n=−∞

A[n]x(t−nTs)+wc(t) ,

where wc(t) is a filtered Gaussian process
� The decision variable is obtained after sampling

ξ [i] = y(T + iTs) , T = t0 +LTs , where LTs ≥ Tu
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Illustration of ISI in the receiver
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Discrete time model for ISI
� According to our model the decision variable can be written as

ξ [i] = y(T + iTs) =
∞

∑
n=−∞

A[n]x(T + iTs −nTs)+wc(T + iTs)

� Let us introduce the discrete sequences

x[i] = x(T + iTs) , wc[i] = wc(T + iTs)

� This leads to the following discrete-time model of our system

[i]ξ
+

w  [i]c

x[i] Threshold
detection m[i]^A[i]

ξ [i] =
∞

∑
n=−∞

A[n]x[i−n]+wc[i] = A[i] ∗ x[i]+wc[i]

Remark: the discrete-time impulse response x[i] represents
pulse shape g(t), channel filter h(t), and receiver filter v(t)
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Example 6.1
The transmitted sequence of amplitudes A[i] is given as,

A[i]

1

1 5 8 9
i

Calculate, and plot, the sequence of decision variables ξ[i] in Figure 6.2, for 0 ≤ i ≤ 8,
in the noiseless case (i.e. w(t) = 0) if t0 = 0 and if the output pulse x(t) is:

Ts 2Ts

x0

2Ts 4TsTs

x0

x(t)

0
t

x(t)

t

i) L=1 and x(t) as below. ii) L=2 and x(t) as below.

� i) ξ [i] = x0 A[i] ii) ξ [i] = x0
2 A[i+1]+ x0 A[i]+ x0

2 A[i−1]
ξ [i]

x0

-x 0

i
1 5 6 8
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How much ISI can we tolerate?
� We can divide the decision variable ξ [i] into a desired term

(message) and an undesired term (interference plus noise)

ξ [i] = A[i]x[0]

︸ ︷︷ ︸
message

+
∞

∑
n=−∞

n�=i

A[n]x[i−n]

︸ ︷︷ ︸
ISI

+wc[i]

︸︷︷︸
noise

� The influence of ISI depends on its relative strength

ISI-free
noise-free
value
A[i]x[0]

ξ [i]

Noise
margin

Worst
case:

ISIwc

Worst
case:

ISIwc

Noise
margin

Noise margin
without ISI = D/2

Decision boundaries

- +
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Worst case ISI
� The ISI term can be written as

ISI =
∞

∑
n=−∞

n�=i

A[n]x[i−n] =
∞

∑
n=−∞

n�=0

A[i−n]x[n]

� Question: when does this term become largest?
� For symmetric M-ary PAM we have max |A[i]|= M−1 and get

ISI+wc = max(ISI) =
∞

∑
n=−∞

n�=0

max(A[i−n]x[n]) = (M−1)
∞

∑
n=−∞

n�=0

|x[n] |

� Similarly, the worst case minimal ISI becomes

ISI−wc = min(ISI) =−(M−1)
∞

∑
n=−∞

n�=0

|x[n] |

Observe: the worst case ISI occurs for a information sequence
A[i] consisting of a particular pattern of ±(M−1) values
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Condition for ISI free reception
� Let us assume that x[i] satisfies the following condition:

x[i] = x(T + iTs) = x0 δ [i] =

{
x0 if i = 0
0 if i �= 0

� Then

ξ [i] =
∞

∑
n=−∞

A[n]x[i−n]+wc[i] = A[i]x[0] +wc[i]

� Otherwise there always will exist some non-zero ISI term
� For this reason we are interested in signals

x(t) = g(t) ∗ h(t) ∗ v(t)

for which the above condition is satisfied

Which parts of x(t) can we influence?
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Symbol rates for ISI free reception
� Suppose that the ISI free condition is satisfied for symbol rate R∗

s

� Then it will be satisfied for rates

Rs =
R∗

s

�
, �= 1,2,3, . . .

Example 6.6:
Consider the overall pulse shape x(t) below, and T = 4/7200.

x0

7200
4

7200
1

7200
8

t [s]

x(t)

Assume the bitrate 14400 [b/s] and 16-ary PAM signaling. Does ISI occur in the
receiver?
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Representation in frequency domain
� The discrete sequence x[i] can be obtained by sampling a

non-causal pulse xnc(t) at times iTs,

x[i] = xnc(iTs) , where xnc(t) = x(T + t) ,

� The Fourier transform X (ν) of x[i] can then be expressed in
terms of the Fourier transform Xnc(f ) of the signal xnc(t):

X (ν) =
∞

∑
n=−∞

x[n]e− j2π ν n =
1
Ts

∞

∑
n=−∞

Xnc

(
ν −n

Ts

)
,

where

Xnc(f ) =
∫ ∞

−∞
xnc(t)e−j2π f t dt = G(f )H(f )V(f )e+j2π f T

Observe: the spectrum of the sampled sequence x[i] consists
of the periodically repeated spectrum of the continuous signal
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Nyquist condition in frequency domain
� Let us now formulate the ISI free condition in frequency domain:

x[i] = x0 δ [i] ⇒X (ν) = F{x[i]}= x0 ∀ν

� Choosing ν = f Ts this leads to the equivalent Nyquist condition

X (f Ts)

Rs
=

∞

∑
n=−∞

Xnc(f −nRs) =
x0

Rs
, Rs =

1
Ts

� Let Wlp denote the baseband bandwidth of xnc(t),

Xnc(f ) = 0, |f |> Wlp

� Then ISI always will be present if the symbol rate satisfies

Rs > 2Wlp

(non-overlapping spectrum cannot add up to a constant)
� If we have Rs ≤ 2Wlp:

ISI-free reception is possible if Xnc(f ) has a proper shape
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Example 6.7
Assume that Xnc(f) is given below.

X    (f)nc

4000 4000

A

f [Hz]
0

a) Sketch the left hand side of (6.33), ∞
n=−∞ Xnc(f−nRs), if Rs = 12000 symbols

per second.

b) Does ISI occur in the receiver?

What happens if Rs = 8000?

And Rs = 4000?
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Example 6.8
Assume that Xnc(f) is,

4000

X    (f)nc

4000
f [Hz]

0

A

A = x0Ts.
Show that there is no ISI if the symbol rate is Rs = 8000 [symbol/s].

Solution:

X    (f-n8000)nc
n= 8

∑

8

800016000 4000 8000 160004000 24000
f [Hz]

A

0

Since

∞

n=−∞
Xnc(f − n8000) = x0/Rs, for all f , there is no ISI in the receiver.
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Ideal Nyquist pulse
� The maximum possible signaling rate for ISI-free reception is

Rnyq = Rs =
1
Ts

= 2Wlp (Nyquist rate)

� With ideal Nyquist signaling, the bandwidth efficiency is

ρnyq =
Rb

Wlp
=

Rnyq log2(M)

Rnyq/2
= 2 log2 M = 2k [bps/Hz]

� The ideal Nyquist pulse must have rectangular spectrum

Xnc(f ) =

{
x0/Rnyq , if |f | ≤ Rnyq/2
0 , else

⇒ xnc(t) = x0
sin(π Rnyq t)

π Rnyq t

x    (t)nc

x0

X    (f)nc

x0/Rnyq

R nyq/2R nyq/2

nyqR
1

nyqR
1

= -T s nyqR
1 = Ts

b)

tf [Hz]

a)
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Some comments on bandwidth
� Remember: in Chapter 2 we have seen that strictly band-limited

signals always have to be unlimited in time
� In practice we have to find compromises, which was leading to

different definitions of bandwidth for time-limited signals

Pulse shape Wlobe % power W90 W99 W99.9 Asymptotic
in Wlobe decay

rec 2/T 90.3 1.70/T 20.6/T 204/T f−2

tri 4/T 99.7 1.70/T 2.60/T 6.24/T f−4

hcs 3/T 99.5 1.56/T 2.36/T 5.48/T f−4

rc 4/T 99.95 1.90/T 2.82/T 3.46/T f−6

Nyquist Rs 100 0.9Rs 0.99Rs 0.999Rs ideal

� We can see that time-limited signals need at least about twice
the Nyquist bandwidth

� For OFDM with many sub-carriers N this is negligible (why?)
� For single-carrier systems, some close-to-Nyquist pulses

are typically used in practice
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Spectral Raised Cosine Pulses
� The spectral raised cosine pulse shape is defined by the

following spectrum
X    (f)nc

x  T0 s

Ts

1
Ts

1
Ts2
1

Ts2
1

β=1

β=0

Rs
2pW    =(1+   )β

0
f

� The name refers to the way the shape is composed

Xnc(f ) =




x0 Ts , 0 ≤ |f | ≤ 1−β
2Ts

x0 Ts
2

[
1+ cos

(
π|f |Ts

β − π
2 · 1−β

β

)]
, 1−β

2Ts
≤ |f | ≤ Wlp

0 |f |> Wlp

where Wlp =
1+β
2Ts

= (1+β )
Rs

2
, 0 ≤ β ≤ 1
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Spectral Raised Cosine Pulses
� The parameter β , 0 ≤ β ≤ 1, is called the rolloff factor and can be

used to smoothly control the bandwidth efficiency

ρsrc =
Rb

Wlp
=

Rs log2 M
(1+β )Rs/2

=
2 log2 M

1+β
=

2k
1+β

� In time domain the signal can be expressed as

xnc(t) = x0
sin(πt/Ts)

πt/Ts
· cos(πβ t/Ts)

1− (2β t/Ts)2 , −∞ ≤ t ≤ ∞

x    (t)nc

β=1

β=0

Ts Ts2 Ts3 Ts4 Ts5 Ts6

Ts-4 Ts-2

Ts-5 Ts-3 Ts-

t

� Larger rolloff factors β ⇒ faster amplitude decay of xnc(t)
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Spectral Raised Cosine Pulses
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Signaling with overlapping pulses: β = 1
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Signaling with overlapping pulses: β = 0
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Spectral Root Raised Cosine Pulse
� When analyzing the Nyquist condition we have considered the

output signal of the receiver filter v(t), i.e.,

xnc(t) = g(t) ∗ h(t) ∗ v(t) = u(t) ∗ v(t)

� The matched filter for our receiver structure with delay T = LTs
should be equal to

v(t) = u(LTs − t)

� As a consequence, we need to choose pulse shape g(t) and
receiver filter v(t) in such a way that

|V(f )|=
√

Xrc
nc(f ) and |G(f )H(f )|=

√
Xrc

nc(f )

in order to ensure a raised cosine spectrum for
Xnc(f ) = |G(f )H(f )|2 = |V(f )|2 = Xrc

nc(f )

� Hence v(t) is a pulse with root-raised cosine spectrum
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Introduction to equalizers
� We have considered the receiver structure

h(t) m[i]^+

t=t  +LT  +iT0 s s

Threshold
detector

[i]ξsA[n]g(t-nT  )
n= 8 v(t)

ChannelTransmitter

w(t)

z(t)s(t) = ∑

8

r(t) y(t)

Receiver

� When ISI occurs this receiver is suboptimal and is no longer
equivalent to the ML rule (sequence estimation, Viterbi algorithm)

� Equalization:
instead of tolerating the ISI in the above structure, an equalizer
can be used for removing (or reducing) the effect of ISI

� Linear equalizer: zero-forcing, MMSE
can be implemented by linear filters, low complexity

� Decision feedback equalizer:
non-linear device with feedback, aims at subtracting the
estimated ISI from the signal
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Introduction to equalizers

s(t) =   Σ   A[n]g(t-nT  )

8

n=-

8 H(f) v(t)
z(t) r(t) y[i]

w(t)
CHANNEL

t=T 0+iT s

a)

Adfe [i]
~

DECISION-FEEDBACK EQUALIZER

pff[i]
Threshold
detector

pfb[i]

p[i]

LINEAR
EQUALIZER

A[i]
~

Threshold
detector

A[i]
^

Adfe [i]
^

Adfe [i]
~

DECISION-FEEDBACK EQUALIZER

pff[i]
Threshold
detector

pfb[i]

p[i]

LINEAR
EQUALIZER

A[i]
~

Threshold
detector

A[i]
^

Adfe [i]
^

x[i]A[i]
y[i]

wc[i]

b)

s
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