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Intersymbol Interference (ISl)
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For R, =1/Ts < 1/T, we can use the ML receiver from Chapter 4
Question: can we use such a receiver for larger rates Ry > 1/T,?
Consider the following receiver structure (compare to last slide)

s®= 5 Alnle(t-nT t 1 i
o |0 O T

= il

t=tg+LTs+iTg

Transmitter Channel Receiver

v

v

The signal y(¢) after the receiver filter v(z) is

y(1) = i Aln]x(t—nTs) +we(1) ,

n=—oo

where w.(¢) is a filtered Gaussian process
The decision variable is obtained after sampling

v

E[] =y(T+iT,), T =to+LT,, where LT, >T,
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Note that z(r) now is a superposition of overlapping pulses u(t)




lllustration of ISl in the receiver
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Discrete time model for ISI
» According to our model the decision variable can be written as

Elll =y(T +iTy) ZA X(T+iTs—nTy) +we(T +iTy)

» Let us introduce the discrete sequences
X[ =x(T+iTy), weli] =we(T+iTy)

» This leads to the following discrete-time model of our system

welil

€ [l
Al o) deretion. [ i

Z Aln]x[i — n] +we[i] = A[i] * x[i] +we[f]
Remark: the discrete-time impulse response x[i] represents
pulse shape g(t), channel filter 4(z), and receiver filter v(¢)
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Example 6.1

The transmitted sequence of amplitudes A[i] is given as,

Ali]

1
¢ ddsd 594

Calculate, and plot, the sequence of decision variables &[i] in Figure 6.2, for 0 <i <8,
in the noiseless case (i.e. w(t) =0) if to =0 and if the output pulse x(t) is:

‘TTT T T ;
+1

i) L=1 and x(t) as below. ii) L=2 and x(t) as below.
X(t) x(t)
X0 X0
t t
0 Ts 2T Ts 2Ty 4Ts
> i) &[] = x0A[f] i) Eli] = RA[i4+ 1] +x0A[i] + 2 Ali— 1]
& lil
*0
i
1 56 8
X0
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How much ISI can we tolerate?

» We can divide the decision variable &[i] into a desired term
(message) and an undesired term (interference plus noise)

Elil =Ali]x[0] + ; Aln]x[i —n]+-weli]
message ISI noise

» The influence of ISI depends on its relative strength
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Worst case ISI

» The ISI| term can be written as

ISI="Y" Aln]x[i—n] = i Ali —n] x[n]

n=-—oo n——oo

n#i n#0

» Question: when does this term become largest?
» For symmetric M-ary PAM we have max |A[i]| = M — 1 and get
ISL}. = max(ISI) = Z max (A[i —n]x[n]) = (M—1) Y |x[n]|

n—=—oo n—=—oo

n#0 n#0
» Similarly, the worst case minimal ISI becomes

oo

IS, =min(ISI) = —(M —1) Y |x[n]|

n—=-—oo

Observe: the worst case ISI occurs for a information sequence
Ali] consisting of a particular pattern of +(M — 1) values
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Condition for ISl free reception
» Let us assume that x[i] satisfies the following condition:

X0 ifi=0

Mi] = x(T +iTy) = x0 8] = {0 ifi 0

» Then .
Eli] = Z Aln]x[i — n] +w¢[i] = A[{]x[0] 4+ w][i]

Nn—=-—oo
» Otherwise there always will exist some non-zero IS| term
» For this reason we are interested in signals

x(t) =g(t) * h(t) * v(z)
for which the above condition is satisfied

Which parts of x(¢) can we influence?

Michael Lentmaier, Fall 2018 Digital Communications: Lecture 11




Symbol rates for ISI free reception

» Suppose that the ISl free condition is satisfied for symbol rate R}
» Then it will be satisfied for rates

Example 6.6:
Consider the overall pulse shape z(t) below, and T = 4/7200.

x(t)

X0
| AN | VAN \/\1‘ t[s]
‘ I\/ N VRS N
7200 7200 7200

Assume the bitrate 14400 [b/s] and 16-ary PAM signaling. Does ISI occur in the
receiver?
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Representation in frequency domain

» The discrete sequence x[i] can be obtained by sampling a
non-causal pulse x,.(t) at times i Ty,

x[i] = x0c(iTs) ,  where x,.(t) =x(T +1¢) ,

» The Fourier transform X (v) of x[i] can then be expressed in
terms of the Fourier transform X,,.(f) of the signal x,.(z):

X(v) = i x[n]e—jznm:% i ch(vT—Sn> |

n=—oo S p=—o0

where
X (f) :/ xnc(t)e*jz”ff dt=G(f)H(f) V(f) o t2mf T
Observe: the spectrum of the sampled sequence x[i] consists
of the periodically repeated spectrum of the continuous signal
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Nyquist condition in frequency domain
» Let us now formulate the ISl free condition in frequency domain:
x[i]=x00[]] =X(v)=F{xli]}=x Vv
» Choosing v = f T; this leads to the equivalent Nyquist condition

X(fTs): d _ X 1

X, —nR R, = —
R, n;_m welf =nR) =7 K=

» Let W, denote the baseband bandwidth of x,.(z),
ch(f) = 07 lf| > Wlp
» Then IS| always will be present if the symbol rate satisfies

R, > 2W[,,
(non-overlapping spectrum cannot add up to a constant)

> If we have R; <2Wj,:
ISI-free reception is possible if X,,.(f) has a proper shape
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Example 6.7

Assume that Xnc(f) is given below.

Xnc(®)

f [Hz]
—4000 0 4000

a) Sketch the left hand side of (6.33), > o2 Xne(f —nRs), if Rs = 12000 symbols
per second.

b) Does ISI occur in the receiver?

What happens if Ry = 80007
And R, = 40007
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Example 6.8

Assume that Xnc(f) s,

Xnc()

A

’7*‘ f[Hz]

—4000 0 4000

A = xoTs.
Show that there is no ISI if the symbol rate is Rs = 8000 [symbol/s].
Solution:

0
S Xne(f-n8000)

n=—o0

A

T T T T T

| | | | |
. I , I I . L . L T f [Hz]
16000 -8000 -4000 O 4000 8000 16000 24000

Since Z Xne(f —n8000) = xzo/Rs, for all f, there is no ISI in the receiver.

n=-—oo
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Ideal Nyquist pulse
» The maximum possible signaling rate for ISl-free reception is
Ruyg =Rs = 7= 2W;,  (Nyquist rate)
» With ideal Nyquist signaling;, the bandwidth efficiency is

p _ Ry Ry log, (M)
b Wip Rnyq/2

» The ideal Nyquist pulse must have rectangular spectrum

=2log, M =2k [bps/Hz]

X0/Rnyg s 1 |f| < Ruyg/2 Sin(7 Ryyq 1)
Xne(f) = = xpe(t) =xg ——————=
0, else TRuyqt
Xne () Xnc(t)
1 _
*0/Rnyq —go=Ts x Royg
nyq \
£ [H: | L L] L] t
“Rnyq/2 Rnyq/2 tHzl ~RY ‘ U)e{m ‘
a) b) !
Rnyq
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Some comments on bandwidth

» Remember: in Chapter 2 we have seen that strictly band-limited
signals always have to be unlimited in time

» In practice we have to find compromises, which was leading to
different definitions of bandwidth for time-limited signals

Pulse shape | Wigpe | % power Woo Wyo Wao.0 Asymptotic
in Wiope decay

rec 2/T 90.3 1.70/T | 20.6/T | 204/T f2

tri 4/T 99.7 1.70/T | 2.60/T | 6.24/T 7

hces 3/T 99.5 1.56/T | 2.36/T | 5.48/T 7

rc 4/T 99.95 1.90/T | 2.82/T | 3.46/T f°

Nyquist R 100 0.9Rs | 0.99R,s | 0.999R, ideal

» We can see that time-limited signals need at least about twice
the Nyquist bandwidth

» For OFDM with many sub-carriers N this is negligible (why?)

» For single-carrier systems, some close-to-Nyquist pulses
are typically used in practice
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Spectral Raised Cosine Pulses

» The spectral raised cosine pulse shape is defined by the
following spectrum

Xne(f)
xoTs /[3:0
/B:l
/ \ f
[ I 0 1 1
Ty 2T 2Ty T

Wp=(1+p) 5=

» The name refers to the way the shape is composed

x0Ty, 0<lf<f
Xoe(f) = )%n[l+cos(”%Ts—%-%)} ) %SVISWW
0 fl > Wy,

1+

R
— =1 —, 0<B<1

where W, =
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Spectral Raised Cosine Pulses

» The parameter 3, 0 < 8 < 1, is called the rolloff factor and can be
used to smoothly control the bandwidth efficiency

Ry RglogyM  2logy M 2k

Pre = W, T U+ PRJ2 . 1+P  1+B

» In time domain the signal can be expressed as

sin(nt/Ts) cos(wPe/Ty)

xnC(t):'xo TEI/TA 17(2ﬁI/T3)2 ) _oogtgoo
Xne() B
7 ---B=1
atg 2Ty /|
5 SN N/ B Ny t
STy 3T -Ts ‘ Tg 2Tg 3Ts 4Ts 5T 6Ts

» Larger rolloff factors f = faster amplitude decay of x,.(r)
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Spectral Raised Cosine Pulses

Zne(t)

-0.4

B=0,0.3

,0.5,1
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Signaling with overlapping pulses: =1

Aln]z(t —nT's)
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Signaling with overlapping pulses: =0

Aln]x(t —nTs)

;
>
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Spectral Root Raised Cosine Pulse

» When analyzing the Nyquist condition we have considered the
output signal of the receiver filter v(z), i.e.,

Xne(t) = g(2) * h(t) * v(t) =u(t) * v(z)

» The matched filter for our receiver structure with delay 7 = LT
should be equal to
v(t) =u(LT;—1)

» As a consequence, we need to choose pulse shape g(¢) and
receiver filter v(¢) in such a way that

VOl = vXe(f)  and |G H()| = VX(f)

in order to ensure a raised cosine spectrum for

Xue(f) =[GV HP) = [V()I* = X5 ()

» Hence v(z) is a pulse with root-raised cosine spectrum
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Introduction to equalizers

» We have considered the receiver structure

w()

s®= > AlnlgtnTg t r(t) i
= 2 Alnlg Z0) ® y(®) \@ Threshold

= il

t=tg+LTs+iTg

Transmitter Channel Receiver

» When ISI occurs this receiver is suboptimal and is no longer
equivalent to the ML rule (sequence estimation, Viterbi algorithm)

» Equalization:

instead of tolerating the ISl in the above structure, an equalizer

can be used for removing (or reducing) the effect of ISI
» Linear equalizer: zero-forcing, MMSE
can be implemented by linear filters, low complexity
» Decision feedback equalizer:
non-linear device with feedback, aims at subtracting the
estimated ISI from the signal
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Introduction to equalizers

LINEAR i
EQUALIZER | N
LAl | Threshold | All

! detector

s()= T Anjg(tnTg)
n=- ®

Threshold
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